
Labs for
Foundations of Applied

Mathematics
Volume 2

Algorithm Design and Optimization

Jeffrey Humpherys & Tyler J. Jarvis, managing editors

List of Contributors

E. Evans

Brigham Young University

R. Evans

Brigham Young University

J. Grout

Drake University

J. Humpherys

Brigham Young University

T. Jarvis

Brigham Young University

J. Whitehead

Brigham Young University

J. Adams

Brigham Young University

J. Bejarano

Brigham Young University

Z. Boyd

Brigham Young University

M. Brown

Brigham Young University

A. Carr

Brigham Young University

C. Carter

Brigham Young University

T. Christensen

Brigham Young University

M. Cook

Brigham Young University

R. Dor�

Brigham Young University

B. Ehlert

Brigham Young University

M. Fabiano

Brigham Young University

K. Finlinson

Brigham Young University

J. Fisher

Brigham Young University

R. Flores

Brigham Young University

R. Fowers

Brigham Young University

A. Frandsen

Brigham Young University

R. Fuhriman

Brigham Young University

S. Giddens

Brigham Young University

C. Gigena

Brigham Young University

M. Graham

Brigham Young University

F. Glines

Brigham Young University

C. Glover

Brigham Young University

M. Goodwin

Brigham Young University

R. Grout

Brigham Young University

D. Grundvig

Brigham Young University

E. Hannesson

Brigham Young University

J. Hendricks

Brigham Young University

A. Henriksen

Brigham Young University

i

ii List of Contributors

I. Henriksen

Brigham Young University

C. Hettinger

Brigham Young University

S. Horst

Brigham Young University

K. Jacobson

Brigham Young University

J. Leete

Brigham Young University

J. Lytle

Brigham Young University

R. McMurray

Brigham Young University

S. McQuarrie

Brigham Young University

D. Miller

Brigham Young University

J. Morrise

Brigham Young University

M. Morrise

Brigham Young University

A. Morrow

Brigham Young University

R. Murray

Brigham Young University

J. Nelson

Brigham Young University

E. Parkinson

Brigham Young University

M. Probst

Brigham Young University

M. Proudfoot

Brigham Young University

D. Reber

Brigham Young University

H. Ringer

Brigham Young University

C. Robertson

Brigham Young University

M. Russell

Brigham Young University

R. Sandberg

Brigham Young University

C. Sawyer

Brigham Young University

M. Stau�er

Brigham Young University

J. Stewart

Brigham Young University

S. Suggs

Brigham Young University

A. Tate

Brigham Young University

T. Thompson

Brigham Young University

M. Victors

Brigham Young University

J. Webb

Brigham Young University

R. Webb

Brigham Young University

J. West

Brigham Young University

A. Zaitze�

Brigham Young University

This project is funded in part by the National Science Foundation, grant no. TUES Phase II

DUE-1323785.

Preface

This lab manual is designed to accompany the textbooks Foundations of Applied Mathematics

Volume 2: Algorithms, Approximation, and Optimization by Humpherys and Jarvis. The labs focus

mainly on data structures, signal transforms, and numerical optimization, including applications to

data science, signal processing, and machine learning. The reader should be familiar with Python

[VD10] and its NumPy [Oli06, ADH+01, Oli07] and Matplotlib [Hun07] packages before attempting

these labs. See the Python Essentials manual for introductions to these topics.

©This work is licensed under the Creative Commons Attribution 3.0 United States License.

You may copy, distribute, and display this copyrighted work only if you give credit to Dr. J. Humpherys.

All derivative works must include an attribution to Dr. J. Humpherys as the owner of this work as

well as the web address to

https://github.com/Foundations-of-Applied-Mathematics/Labs

as the original source of this work.

To view a copy of the Creative Commons Attribution 3.0 License, visit

http://creativecommons.org/licenses/by/3.0/us/

or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105,

USA.

iii

https://github.com/Foundations-of-Applied-Mathematics/Labs
http://creativecommons.org/licenses/by/3.0/us/

iv Preface

Contents

Preface iii

I Labs 1

1 Linked Lists 3

2 Binary Search Trees 13

3 Nearest Neighbor Search 29

4 Breadth-�rst Search 43

5 Markov Chains 55

6 The Discrete Fourier Transform 67

7 Convolution and Filtering 77

8 Introduction to Wavelets 85

9 Polynomial Interpolation 103

10 Gaussian Quadrature 115

11 One-dimensional Optimization 121

12 Gradient Descent Methods 129

13 The Simplex Method 139

14 OpenGym AI 147

15 CVXOPT 153

16 Interior Point 1: Linear Programs 163

17 Interior Point 2: Quadratic Programs 173

v

vi Contents

18 Dynamic Programming 183

19 Policy Function Iteration 193

II Appendices 201

A Getting Started 203

B Installing and Managing Python 211

C NumPy Visual Guide 215

Bibliography 219

Part I

Labs

1

1 Linked Lists

Lab Objective: One of the fundamental problems in programming is knowing which data structures

to use to optimize code. The type of data structure used determines how quickly data is accessed and

modi�ed, which a�ects the overall speed of a program. In this lab we introduce a basic data structure

called a linked list and create a class to implement it.

A linked list is a data structure that chains data together. Every linked list needs a reference

to the �rst item in the chain, called the head. A reference to the last item in the chain, called the

tail, is also often included. Each item in the list stores a piece of data, plus at least one reference

to another item in the list. The items in the list are called nodes.

Nodes
Think of data as several types of objects that need to be stored in a warehouse. A node is like a

standard size box that can hold all the di�erent types of objects. For example, suppose a particular

warehouse stores lamps of various sizes. Rather than trying to carefully stack lamps of di�erent

shapes on top of each other, it is preferable to �rst put them in boxes of standard size. Then adding

new boxes and retrieving stored ones becomes much easier. A data structure is like the warehouse,

which speci�es where and how the di�erent boxes are stored.

A node class is usually simple. The data in the node is stored as an attribute. Other attributes

may be added (or inherited) speci�c to a particular data structure.

Problem 1. Consider the following generic node class.

class Node:

"""A basic node class for storing data."""

def __init__(self, data):

"""Store the data in the value attribute."""

self.value = data

Modify the constructor so that it only accepts data of type int, float, or str. If an-

other type of data is given, raise a TypeError with an appropriate error message. Modify the

constructor docstring to document these restrictions.

3

4 Lab 1. Linked Lists

The nodes of a singly linked list have a single reference to the next node in the list (see Figure

1.1), while the nodes of a doubly linked list have two references: one for the previous node, and

one for the next node (see Figure 1.2). This allows for a doubly linked list to be traversed in both

directions, whereas a singly linked list can only be traversed in one direction.

class LinkedListNode(Node):

"""A node class for doubly linked lists. Inherits from the Node class.

Contains references to the next and previous nodes in the linked list.

"""

def __init__(self, data):

"""Store the data in the value attribute and initialize

attributes for the next and previous nodes in the list.

"""

Node.__init__(self, data) # Use inheritance to set self.value.

self.next = None # Reference to the next node.

self.prev = None # Reference to the previous node.

A B C D

head

Figure 1.1: A singly linked list. Each node has a reference to the next node in the list. The head

attribute is always assigned to the �rst node.

A B C D

tailhead

Figure 1.2: A doubly linked list. Each node has a reference to the node before it and a reference

to the node after it. In addition to the head attribute, this list has a tail attribute that is always

assigned to the last node.

The following LinkedList class chains LinkedListNode instances together by modifying each

node's next and prev attributes. The list is empty initially, so the head and tail attributes are

assigned the placeholder value None in the constructor. The append() method makes a new node

and adds it to the very end of the list (see Figure 1.3). There are two cases for appending that must

be considered separately in the implementation: either the list is empty, or the list is nonempty.

A B C A B C

head tail head tail

Figure 1.3: Appending a new node to the end of a nonempty doubly linked list. The green arrows

are the new connections. Note that the tail attribute is reassigned from B to C.

5

class LinkedList:

"""Doubly linked list data structure class.

Attributes:

head (LinkedListNode): the first node in the list.

tail (LinkedListNode): the last node in the list.

"""

def __init__(self):

"""Initialize the head and tail attributes by setting

them to None, since the list is empty initially.

"""

self.head = None

self.tail = None

def append(self, data):

"""Append a new node containing the data to the end of the list."""

Create a new node to store the input data.

new_node = LinkedListNode(data)

if self.head is None:

If the list is empty, assign the head and tail attributes to

new_node, since it becomes the first and last node in the list.

self.head = new_node

self.tail = new_node

else:

If the list is not empty, place new_node after the tail.

self.tail.next = new_node # tail --> new_node

new_node.prev = self.tail # tail <-- new_node

Now the last node in the list is new_node, so reassign the tail.

self.tail = new_node

Achtung!

The is operator is not the same as the == operator. While == checks for numerical equality,

is evaluates whether or not two objects are the same by checking their location in memory.

>>> 7 == 7.0 # True since the numerical values are the same.

True

7 is an int and 7.0 is a float, so they cannot be stored at the same

location in memory. Therefore 7 "is not" 7.0.

>>> 7 is 7.0

False

For numerical comparisons, always use ==. When comparing to built-in Python constants

such as None, True, False, or NotImplemented, use is instead.

6 Lab 1. Linked Lists

Locating Nodes

The LinkedList class only explicitly keeps track of the �rst and last nodes in the list via the head

and tail attributes. To access any other node, use each successive node's next and prev attributes.

>>> my_list = LinkedList()

>>> for data in (2, 4, 6):

... my_list.append(data)

...

To access each value, use the head attribute of the LinkedList

and the next and value attributes of each node in the list.

>>> my_list.head.value

2

>>> my_list.head.next.value # 2 --> 4

4

>>> my_list.head.next.next is my_list.tail # 2 --> 4 --> 6

True

Problem 2. Add the following methods to the LinkedList class.

1. find(): Accept a piece of data and return the �rst node in the list containing that data

(return the actual LinkedListNode object, not its value). If no such node exists, or if

the list is empty, raise a ValueError with an appropriate error message.

(Hint: if n is assigned to one of the nodes the list, what does n = n.next do?)

2. get(): Accept an integer i and return the ith node in the list. If i is negative or greater

than or equal to the number of nodes in the list, raise an IndexError.

(Hint: add an attribute that tracks the current size of the list. Update it every time a

node is successfully added or removed, such as at the end of the append() method.)

Magic Methods

Endowing data structures with magic methods makes them much more intuitive to use. Consider,

for example, how a Python list responds to built-in functions like len() and print(). At the bare

minimum, the LinkedList class should have the same functionality.

Problem 3. Add the following magic methods to the LinkedList class.

1. Write the __len__() method so that the length of a LinkedList instance is equal to the

number of nodes in the list.

2. Write the __str__() method so that when a LinkedList instance is printed, its output

matches that of a Python list. Entries are separated by a comma and one space; strings

are surrounded by single quotes, or by double quotes if the string itself has a single quote.

(Hint: use repr() to deal with quotes easily.)

7

Removal
To delete a node, all references to the node must be removed. Python automatically deletes the

object once there is no way for the user to access it. Naïvely, this might be done by �nding the

previous node to the one being removed, and setting its next attribute to None. However, there is a

problem with this approach.

class LinkedList:

...

def remove(self, data):

"""Attempt to remove the first node containing the specified data.

This method incorrectly removes additional nodes.

"""

Find the target node and sever the links pointing to it.

target = self.find(data)

target.prev.next = None # -/-> target

target.next.prev = None # target <-/-

Removing all references to the target node deletes the node (see Figure 1.4). Unfortunately,

the nodes before and after the target node are no longer linked.

>>> my_list = LinkedList()

>>> for i in range(10):

... my_list.append(i)

...

>>> print(my_list)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> my_list.remove(4) # Removing a node improperly results in

>>> print(my_list) # the rest of the chain being lost.

[0, 1, 2, 3] # Should be [0, 1, 2, 3, 5, 6, 7, 8, 9].

A B C D A B C D

Figure 1.4: Naïve removal for doubly linked Lists. Deleting all references pointing to C deletes the

node, but it also separates nodes A and B from node D.

This can be remedied by pointing the previous node's next attribute to the node after the

deleted node, and similarly changing that node's prev attribute. Then there will be no reference to

the removed node and it will be deleted, but the chain will still be connected.

A B C D A B C D

Figure 1.5: Correct removal for doubly linked Lists. To avoid gaps in the chain, nodes B and D must

be linked together.

8 Lab 1. Linked Lists

Problem 4. Modify the remove() method given above so that it correctly removes the �rst

node in the list containing the speci�ed data. Also account for the special cases of removing the

�rst, last, or only node, in which head and/or tail must be reassigned. Raise a ValueError if

there is no node in the list that contains the data.

(Hint: use the find() method from Problem 2 to locate the target node.)

Achtung!

Python keeps track of the variables in use and automatically deletes a variable (freeing up

the memory that stored the object) if there is no access to it. This feature is called garbage

collection. In many other languages, leaving a reference to an object without explicitly deleting

it can lead to a serious memory leak. See https://docs.python.org/3/library/gc.html for

more information on Python's garbage collection system.

Insertion

The append() method can add new nodes to the end of the list, but not to the middle. To do this,

get references to the nodes before and after where the new node should be, then adjust their next

and prev attributes. Be careful not to disconnect the nodes in a way that accidentally deletes nodes

like in Figure 1.4.

A B D

C

A B D

C

head tail head tail

Figure 1.6: Insertion for doubly linked lists.

Problem 5. Add an insert() method to the LinkedList class that accepts an integer index

and data to add to the list. Insert a new node containing the data immediately before the node

in the list currently at position index. After the insertion, the new node should be at position

index. For example, Figure 1.6 places a new node containing C at index 2. Carefully account

for the special case of inserting before the �rst node, which requires head to be reassigned.

(Hint: except when inserting before the head, get references to the nodes that should be imme-

diately before and after the new node following the insertion. Consider using the get() method

from Problem 2 to locate one of these nodes.)

If index is equal to the number of nodes in the list, append the node to the end of the

list by calling append(). If index is negative or strictly greater than the number of nodes in

the list, raise an IndexError.

https://docs.python.org/3/library/gc.html

9

Note

The temporal complexity for inserting to the beginning or end of a linked list is O(1), but

inserting anywhere else is O(n), where n is the number of nodes in the list. This is quite slow

compared other data structures. In the next lab we turn our attention to trees, special kinds

of linked lists that allow for much quicker sorting and data retrieval.

Restricted-Access Lists
It is sometimes wise to restrict the user's access to some of the data within a structure. In particular,

because insertion, removal, and lookup are O(n) for data in the middle of a linked list, cutting o�

access to the middle of the list forces the user to only use O(1) operations at the front and end of

the list. The three most common and basic restricted-access structures that implement this idea are

stacks, queues, and deques. Each structure restricts the user's access di�erently, making them ideal

for di�erent situations.

� Stack: Last In, First Out (LIFO). Only the last item that was inserted can be accessed. A

stack is like a pile of plates: the last plate put on the pile is (or should be) the �rst one to be

taken o�. Stacks usually have two main methods: push(), to insert new data, and pop(), to

remove and return the last piece of data inserted.

� Queue (pronounced �cue�): First In, First Out (FIFO). New nodes are added to the end of the

queue, but an existing node can only be removed or accessed if it is at the front of the queue.

A queue is like a polite line at the bank: the person at the front of the line is served �rst,

while newcomers add themselves to the back of the line. Queues also usually have a push()

and a pop() method, but push() inserts data to the end of the queue while pop() removes and

returns the data at the front of the queue. The push() and pop() operations are sometimes

called enqueue() and dequeue(), respectively.

� Deque (pronounced �deck�): a double-ended queue. Data can be inserted or removed from

either end, but data in the middle is inaccessible. A deque is like a deck of cards, where only

the top and bottom cards are readily accessible. A deque has two methods for insertion and

two for removal, usually called append(), appendleft(), pop(), and popleft().

A deque can act as a queue by using only append() and popleft() (or appendleft() and

pop()), or as a stack by using only append() and pop() (or appendleft() and popleft()).

Problem 6. Write a Deque class that inherits from LinkedList.

1. Write the following methods. Since they all involve data at the endpoints, avoid iterating

through the list so the resulting operations are O(1).

� pop(): Remove the last node in the list and return its data. Account for the special

case of removing the only node in the list. Raise a ValueError if the list is empty.

� popleft(): Remove the �rst node in the list and return its data. Raise a ValueError

if the list is empty.

(Hint: use inheritance and the remove() method of LinkedList.)

10 Lab 1. Linked Lists

� appendleft(): Insert a new node at the beginning of the list.

(Hint: use inheritance and the insert() method of LinkedList.)

Note that the LinkedList class already implements append().

2. Override the remove() method with the following code.

def remove(*args, **kwargs):

raise NotImplementedError("Use pop() or popleft() for removal")

This e�ectively disables remove() for the Deque class, preventing the user from removing

a node from the middle of the list.

3. Disable insert() as well.

Note

The *args argument allows the remove()method to receive any number of positional arguments

without raising a TypeError, and the **kwargs argument allows it to receive any number of

keyword arguments. This is the most general form of a function signature.

Python lists have append() and pop() methods, so they can be used as stacks. However, data

access and removal from the front is much slower than from the end, as Python lists are implemented

as dynamic arrays and not linked lists.

The collections module in the standard library has a deque object that is implemented as a

doubly linked list. This is an excellent object to use in practice instead of a Python list when speed

is of the essence and data only needs to be accessed from the ends of the list. Both lists and deques

are slow to modify elements in the middle, but lists can access middle elements quickly. Table 1.1

describes the complexity for common operations on lists v. deques in Python.

Operation List Complexity Deque Complexity

Append/Remove from the end O(1) O(1)

Append/Remove from the start O(n) O(1)

Insert/Delete in the middle O(n) O(n)

Access element at the start/end O(1) O(1)

Access element in the middle O(1) O(n)

Table 1.1: Complexity of operations on lists and deques.

Problem 7. Write a function that accepts the name of a �le to be read and a �le to write to.

Read the �rst �le, adding each line of text to a stack. After reading the entire �le, pop each

entry o� of the stack one at a time, writing the result to the second �le.

For example, if the �le to be read has the following list of words on the left, the resulting

�le should have the list of words on the right.

11

My homework is too hard for me. I am a mathematician.

I do not believe that Programming is hard, but

I can solve these problems. I can solve these problems.

Programming is hard, but I do not believe that

I am a mathematician. My homework is too hard for me.

You may use a Python list, your Deque class, or collections.deque for the stack. Test

your function on the �le english.txt, which contains a list of over 58,000 English words in

alphabetical order.

12 Lab 1. Linked Lists

Additional Material
Possible Improvements to the LinkedList Class
The following are some ideas for expanding the functionality of the LinkedList class.

1. Add a keyword argument to the constructor so that if an iterable is provided, each element

of the iterable is immediately added to the list. This makes it possible to cast an iterable as

a LinkedList the same way that an iterable can be cast as one of Python's standard data

structures.

>>> my_list = [1, 2, 3, 4, 5]

>>> my_linked_list = LinkedList(my_list) # Cast my_list as a LinkedList.

>>> print(my_linked_list)

[1, 2, 3, 4, 5]

>>> type(my_linked_list)

LinkedList

2. Add the following methods.

� count(): return the number of occurrences of a speci�ed value.

� reverse(): reverse the ordering of the nodes (in place).

� roll(): shift the nodes a given number of steps to the right or left (in place).

� sort(): sort the nodes by their data (in place).

3. Implement more magic methods.

� __add__(): concatenate two lists.

� __getitem__() and __setitem__(): enable standard bracket indexing. Try to allow for

negative indexing as well.

� __iter__(): support for loop iteration, the iter() built-in function, and the in state-

ment.

Other Kinds of Linked Lists
The LinkedList class can also be used as the backbone for more specialized data structures.

1. A sorted list adds new nodes strategically so that the data is always kept in order. Therefore,

a SortedLinkedList class should have an add() method that receives some data and inserts

a new node containing data before the �rst node in the list that has a value that is greater

or equal to data (thereby preserving the ordering). Other methods for adding nodes should

be disabled. Note however, that a linked list is not an ideal implementation for a sorted list

because each insertion is O(n) (try sorting english.txt).

2. In a circular linked list, the �last� node connects back to the ��rst� node. Thus a reference to the

tail is unnecessary. The roll() method mentioned above is used often so the head attribute is

at an �active� part of the list where nodes are inserted, removed, or accessed often. This data

structure can therefore decrease the average insertion or removal time for certain data sets.

2 Binary Search Trees

Lab Objective: A tree is link-based data structure where each node may refer to more than one

other node. This structure makes trees more useful and e�cient than regular linked lists in many

applications. Many trees are constructed recursively, so we begin with an overview of recursion. We

then implement a recursively structured doubly linked binary search tree (BST). Finally, we compare

the standard linked list, our BST, and an AVL tree to illustrate the relative strengths and weaknesses

of each data structure.

Recursion
A recursive function is one that calls itself. When the function is executed, it continues calling itself

until reaching a base case where the value of the function is known. The function then exits without

calling itself again, and each previous function call is resolved. The idea is to solve large problems

by �rst solving smaller problems, then combining their results.

As a simple example, consider the function f : N→ N that sums all positive integers from 1 to

some integer n.

f(n) =

n∑
i=1

i = n+

n−1∑
i=1

i = n+ f(n− 1)

Since f(n− 1) appears in the formula for f(n), f can be implemented recursively. Calculating f(n)

requires the value of f(n − 1), which requires f(n − 2), and so on. The base case is f(1) = 1, at

which point the recursion halts and unwinds. For example, f(4) is calculated as follows.

f(4) = 4 + f(3)

= 4 + (3 + f(2))

= 4 + (3 + (2 + f(1)))

= 4 + (3 + (2 + 1))

= 4 + (3 + 3)

= 4 + 6

= 10

The implementation accounts separately for the base case and the recursive case.

13

14 Lab 2. Binary Search Trees

def recursive_sum(n):

"""Calculate the sum of all positive integers in [1, n] recursively."""

if n <= 1: # Base case: f(1) = 1.

return 1

else: # Recursive case: f(n) = n + f(n-1).

return n + recursive_sum(n-1)

Many problems that can be solved iteratively can also be solved with a recursive approach.

Consider the function g : N→ N that calculates the nth Fibonacci number.

g(n) = g(n− 1) + g(n− 2), g(0) = 0, g(1) = 1.

This function is doubly recursive since g(n) calls itself twice, and there are two di�erent base cases to

deal with. On the other hand, g(n) could be computed iteratively by calculating g(0), g(1), . . . , g(n)

in that order. Compare the iterative and recursive implementations for g given below.

def iterative_fib(n):

"""Calculate the nth Fibonacci number iteratively."""

if n <= 0: # Special case: g(0) = 0.

return 0

g0, g1 = 0, 1 # Initialize g(0) and g(1).

for i in range(1, n): # Calculate g(2), g(3), ..., g(n).

g0, g1 = g1, g0 + g1

return g1

def recursive_fib(n):

"""Calculate the nth Fibonacci number recursively."""

if n <= 0: # Base case 1: g(0) = 0.

return 0

elif n == 1: # Base case 2: g(1) = 1.

return 1

else: # Recursive case: g(n) = g(n-1) + g(n-2).

return recursive_fib(n-1) + recursive_fib(n-2)

g(4)

g(3)

g(2)

g(1) g(0)

g(1)

g(2)

g(1) g(0)

3

2

1

1 0

1

1

1 0

Figure 2.1: To calculate g(n) recursively, call g(n− 1) and g(n− 2), down to the base cases g(0) and

g(1). As the recursion unwinds, the values from the base cases are passed up to previous calls and

combined, eventually giving the value for g(n).

15

Problem 1. Consider the following class for singly linked lists.

class SinglyLinkedListNode:

"""A node with a value and a reference to the next node."""

def __init__(self, data):

self.value, self.next = data, None

class SinglyLinkedList:

"""A singly linked list with a head and a tail."""

def __init__(self):

self.head, self.tail = None, None

def append(self, data):

"""Add a node containing the data to the end of the list."""

n = SinglyLinkedListNode(data)

if self.head is None:

self.head, self.tail = n, n

else:

self.tail.next = n

self.tail = n

def iterative_find(self, data):

"""Search iteratively for a node containing the data."""

current = self.head

while current is not None:

if current.value == data:

return current

current = current.next

raise ValueError(str(data) + " is not in the list")

Write a method that does the same task as iterative_find(), but with the following recursive

approach. De�ne a function within the method that checks a single node for the data. There are

two base cases: if the node is None, meaning the data could not be found, raise a ValueError;

if the node contains the data, return the node. Otherwise, call the function on the next node

in the list. Start the recursion by calling this inner function on the head node.

(Hint: see BST.find() in the next section for a similar idea.)

Achtung!

It is usually not better to rewrite an iterative method recursively, partly because recursion

results in an increased number of function calls. Each call requires a small amount of memory

so the program remembers where to return to in the program. By default, Python raises a

RuntimeError after 1000 calls to prevent a stack over�ow. On the other hand, recursion lends

itself well to some problems; in this lab, we use a recursive approach to construct a few data

structures, but it is possible to implement the same structures with iterative strategies.

16 Lab 2. Binary Search Trees

Binary Search Trees
Mathematically, a tree is a directed graph with no cycles. Trees can be implemented with link-based

data structures that are similar to a linked list. The �rst node in a tree is called the root, like the

head of a linked list. The root node points to other nodes, which are called its children. A node with

no children is called a leaf node.

A binary search tree (BST) is a tree that allows each node to have up to two children, usually

called left and right. The left child of a node contains a value that is less than its parent node's

value; the right child's value is greater than its parent's value. This speci�c structure makes it easy

to search a BST: while the computational complexity of �nding a value in a linked list is O(n) where

n is the number of nodes, a well-built tree �nds values in O(log n) time.

4

5 3

2 7

5

2

1

7

6 8

Figure 2.2: Both of these graphs are trees, but the tree on the left is not a binary search tree because

5 is to the left of 4. Swapping 5 and 3 in the graph on the left would result in a BST.

Binary search tree nodes have attributes that keep track of their value, their children, and (in

doubly linked trees) their parent. The actual binary search tree has an attribute to keep track of its

root node.

class BSTNode:

"""A node class for binary search trees. Contains a value, a

reference to the parent node, and references to two child nodes.

"""

def __init__(self, data):

"""Construct a new node and set the value attribute. The other

attributes will be set when the node is added to a tree.

"""

self.value = data

self.prev = None # A reference to this node's parent node.

self.left = None # self.left.value < self.value

self.right = None # self.value < self.right.value

class BST:

"""Binary search tree data structure class.

The root attribute references the first node in the tree.

"""

def __init__(self):

"""Initialize the root attribute."""

self.root = None

17

Note

Conceptually, each node of a BST partitions the data of its subtree into two halves: the data

that is less than the parent, and the data that is greater. We will extend this concept to higher

dimensions in the next lab.

Locating Nodes

Finding a node in a binary search tree can be done recursively. Starting at the root, check if the

target data matches the current node. If it does not, then if the data is less than the current node's

value, search again on the left child; if the data is greater, search on the right child. Continue the

process until the data is found or until hitting a dead end. This method illustrates the advantage of

the binary structure�if a value is in a tree, then we know where it ought to be based on the other

values in the tree.

class BST:

...

def find(self, data):

"""Return the node containing the data. If there is no such node

in the tree, including if the tree is empty, raise a ValueError.

"""

Define a recursive function to traverse the tree.

def _step(current):

"""Recursively step through the tree until the node containing

the data is found. If there is no such node, raise a Value Error.

"""

if current is None: # Base case 1: dead end.

raise ValueError(str(data) + " is not in the tree.")

if data == current.value: # Base case 2: data found!

return current

if data < current.value: # Recursively search left.

return _step(current.left)

else: # Recursively search right.

return _step(current.right)

Start the recursion on the root of the tree.

return _step(self.root)

Insertion

New elements are always added to a BST as leaf nodes. To insert a new value, recursively step

through the tree as if searching for the value until locating an empty slot. The node with the empty

child slot becomes the parent of the new node; connect it to the new node by modifying the parent's

left or right attribute (depending on which side the child should be on) and the child's prev

attribute.

18 Lab 2. Binary Search Trees

5

2

1

7

3 8

root

5

2

1

7

3 8

parent

Figure 2.3: To insert 3 to the BST on the left, start at the root and recurse down the tree as if

searching for 3: since 3 < 5, step left to 2; since 2 < 3, step right. However, 2 has no right child, so

2 becomes the parent of a new node containing 3.

Problem 2. Write an insert() method for the BST class that accepts some data.

1. If the tree is empty, assign the root attribute to a new BSTNode containing the data.

2. If the tree is nonempty, create a new BSTNode containing the data and �nd the existing

node that should become its parent. Determine whether the new node will be the parent's

left or right child, then double link the parent to the new node accordingly.

(Hint: write a recursive function like _step() to �nd and link the parent).

3. Do not allow duplicates in the tree: if there is already a node in the tree containing the

insertion data, raise a ValueError.

To test your method, use the __str__() and draw() methods provided in the Additional

Materials section. Try constructing the binary search trees in Figures 2.2 and 2.3.

Removal

Node removal is much more delicate than node insertion. While insertion always creates a new leaf

node, a remove command may target the root node, a leaf node, or anything in between. There are

three main requirements for a successful removal.

1. The target node is no longer in the tree.

2. The former children of the removed node are still accessible from the root. In other words, if

the target node has children, those children must be adopted by other nodes in the tree.

3. The tree still has an ordered binary structure.

When removing a node from a linked list, there are three possible cases that must each be accounted

for separately: the target node is the head, the target node is the tail, or the target node is in the

middle of the list. For BST node removal, we must similarly account separately for the removal of a

leaf node, a node with one child, a node with two children, and the root node.

19

Removing a Leaf Node

Recall that Python's garbage collector automatically deletes objects that cannot be accessed by the

user. If the node to be removed�called the target node�is a leaf node, then the only way to access

it is via the target's parent. Locate the target with find(), get a reference to the parent node (using

the prev attribute of the target), and set the parent's right or left attribute to None.

5

3

1

2

4

9

parent

target

5

3

1

2

4

9

Figure 2.4: To remove 2, get a reference to its parent. Then set the parent's right attribute to None.

Even though 2 still points to 1, 2 is deleted since nothing in the tree points to it.

Removing a Node with One Child

If the target node has one child, the child must be adopted by the target's parent in order to remain

in the tree. That is, the parent's left or right attribute should be set to the child, and the child's

prev attribute should be set to the parent. This requires checking which side of the target the child

is on and which side of the parent the target is on.

5

3

1

2

4

9parent

target

child

5

3

1

2

4

9

Figure 2.5: To remove 1, locate its parent (3) and its child (2). Set the parent's left attribute to

the child and the child's prev attribute to the parent. Even though 1 still points to other nodes, it

is deleted since nothing in the tree points to it.

20 Lab 2. Binary Search Trees

Removing a Node with Two Children

Removing a node with two children requires a slightly di�erent approach in order to preserve the

ordering in the tree. The immediate predecessor of a node with value x is the node in the tree with

the largest value that is still smaller than x. Replacing a target node with its immediate predecessor

preserves the order of the tree because the predecessor's value is greater than the values in the

target's left branch, but less than the values in the target's right branch. Note that because of how

the predecessor is chosen, any immediate predecessor can only have at most one child.

To remove a target with two children, �nd its immediate predecessor by stepping to the left

of the target (so that it's value is less than the target's value), and then to the right for as long as

possible (so that it has the largest such value). Remove the predecessor, recording its value. Then

overwrite the value of the target with the predecessor's value.

5

3

1

2

4

9target

predecessor

5

2

1

3

4

9

Figure 2.6: To remove 3, locate its immediate predecessor 2 by stepping left to 1, then right as far as

possible. Since it is a leaf node, the predecessor can be deleted using the process in Figure 2.4. Delete

the predecessor, and replace the value of the target with the predecessor's value. If the predecessor

has a left child, it can be deleted with the procedure from Figure 2.5.

Removing the Root Node

If the target is the root node, the root attribute may need to be reassigned after the target is

removed. This adds two extra cases to consider:

1. If the root has no children, meaning it is the only node in the tree, set the root to None.

2. If the root has one child, that child becomes the new root of the tree. The new root's prev

attribute should be set to None so the garbage collector deletes the target.

When the targeted root has two children, the node stays where it is (only its value is changed), so

root does not need to be reassigned.

Problem 3. Write a remove() method for the BST class that accepts some data. If the tree is

empty, or if there is no node in the tree containing the data, raise a ValueError. Otherwise,

remove the node containing the speci�ed data using the strategies described in Figures 2.4�2.6.

Test your solutions thoroughly.

(Hint: Before coding anything, outline the entire method with comments and if-else

blocks. Consider using the following control �ow to account for all possible cases.)

21

1. The target is a leaf node.

(a) The target is the root.

(b) The target is to the left of its parent.

(c) The target is to the right of its parent.

2. The target has two children.

(Hint: use remove() on the predecessor's value).

3. The target has one child.

(Hint: start by getting a reference to the child.)

(a) The target is the root.

(b) The target is to the left of its parent.

(c) The target is to the right of its parent.

AVL Trees
The advantage of a BST is that it organizes its data so that values can be located, inserted, or

removed in O(log n) time. However, this e�ciency is dependent on the balance of the tree. In a

well-balanced tree, the number of descendants in the left and right subtrees of each node is about the

same. An unbalanced tree has some branches with many more nodes than others. Finding a node

at the end of a long branch is closer to O(n) than O(log n). This is a common problem; inserting

ordered data, for example, results in a �linear� tree, since new nodes always become the right child

of the previously inserted node (see Figure 2.7). The resulting structure is essentially a linked list

without a tail attribute.

An Adelson-Velsky Landis tree (AVL) is a BST that prevents any one branch from getting longer

than the others by recursively �balancing� the branches as nodes are added or removed. Insertion

and removal thus become more expensive, but the tree is guaranteed to retain its O(log n) search

e�ciency. The AVL's balancing algorithm is beyond the scope of this lab, but the Volume 2 text

includes details and exercises on the algorithm.

1

2

3

4

5

6

root

4

2

1 3

5

6

root

Figure 2.7: On the left, the unbalanced BST resulting from inserting 1, 2, 3, 4, 5, and 6, in that

order. On the left, the balanced AVL tree that results from the same insertion. After each insertion,

the AVL tree rebalances if necessary.

22 Lab 2. Binary Search Trees

Problem 4. Write a function to compare the build and search times of the SinglyLinkedList

from Problem 1, the BST from Problems 2 and 3, and the AVL provided in the Additional

Materials section. Begin by reading the �le english.txt, storing the contents of each line in a

list. For n = 23, 24, . . . , 210, repeat the following experiment.

1. Get a subset of n random items from the data set.

(Hint: use a function from the random or np.random modules.)

2. Time (separately) how long it takes to load a new SinglyLinkedList, a BST, and an AVL

with the n items.

3. Choose 5 random items from the subset, and time how long it takes to �nd all 5 items

in each data structure. Use the find() method for the trees, but to avoid exceeding the

maximum recursion depth, use the provided iterative_find() method from Problem 1

to search the SinglyLinkedList.

Report your �ndings in a single �gure with two subplots: one for build times, and one for search

times. Use log scales where appropriate.

23

Additional Material
Possible Improvements to the BST Class

The following are a few ideas for expanding the functionality of the BST class.

1. Add a keyword argument to the constructor so that if an iterable is provided, each element of

the iterable is immediately added to the tree. This makes it possible to cast other iterables as

a BST the same way that an iterable can be cast as one of Python's standard data structures.

2. Add an attribute that keeps track of the number of items in the tree. Use this attribute to

implement the __len__() magic method.

3. Add a method for translating the BST into a sorted Python list.

(Hint: examine the provided __str__() method carefully.)

4. Add methods min() and max() that return the smallest or largest value in the tree, respectively.

Consider adding head and tail attributes that point to the minimal and maximal elements;

this would make inserting new minima and maxima O(1).

Other Kinds of Binary Trees

In addition to the AVL tree, there are many other variations on the binary search tree, each with its

own advantages and disadvantages. Consider writing classes for the following structures.

1. A B-tree is a tree whose nodes can contain more than one piece of data and point to more than

one other node. See the Volume 2 text for details.

2. The nodes of a red-black tree are labeled either red or black. The tree satis�es the following

rules to maintain a balanced structure.

(a) Every leaf node is black.

(b) Red nodes only have black children.

(c) Every (directed) path from a node to any of its descendent leaf nodes contains the same

number of black nodes.

When a node is added that violates one of these constraints, the tree is rebalanced and recolored.

3. A Splay Tree includes an additional operation, called splaying, that makes a speci�ed node the

root of the tree. Splaying several nodes of interest makes them easier to access because they

are placed close to the root.

4. A heap is similar to a BST but uses a di�erent binary sorting rule: the value of every parent

node is greater than each of the values of its children. This data structure is particularly useful

for sorting algorithms; see the Volume 2 text for more details.

Additional Code: Tree Visualization

The following methods may be helpful for visualizing instances of the BST and AVL classes. Note

that the draw() method uses NetworkX's graphviz_layout, which requires the pygraphviz module

(install it with pip install pygraphviz).

https://en.wikipedia.org/wiki/B-tree
https://en.wikipedia.org/wiki/Red%E2%80%93black_tree
https://en.wikipedia.org/wiki/Splay_tree
https://en.wikipedia.org/wiki/Heap_(data_structure)

24 Lab 2. Binary Search Trees

import networkx as nx

from matplotlib import pyplot as plt

from networkx.drawing.nx_agraph import graphviz_layout

class BST:

...

def __str__(self):

"""String representation: a hierarchical view of the BST.

Example: (3)

/ \ '[3] The nodes of the BST are printed

(2) (5) [2, 5] by depth levels. Edges and empty

/ / \ [1, 4, 6]' nodes are not printed.

(1) (4) (6)

"""

if self.root is None:

return "[]"

out, current_level = [], [self.root]

while current_level:

next_level, values = [], []

for node in current_level:

values.append(node.value)

for child in [node.left, node.right]:

if child is not None:

next_level.append(child)

out.append(values)

current_level = next_level

return "\n".join([str(x) for x in out])

def draw(self):

"""Use NetworkX and Matplotlib to visualize the tree."""

if self.root is None:

return

Build the directed graph.

G = nx.DiGraph()

G.add_node(self.root.value)

nodes = [self.root]

while nodes:

current = nodes.pop(0)

for child in [current.left, current.right]:

if child is not None:

G.add_edge(current.value, child.value)

nodes.append(child)

Plot the graph. This requires graphviz_layout (pygraphviz).

nx.draw(G, pos=graphviz_layout(G, prog="dot"), arrows=True,

with_labels=True, node_color="C1", font_size=8)

plt.show()

25

Additional Code: AVL Tree
Use the following class for Problem 4. Note that it inherits from the BST class, so its functionality is

dependent on the insert() method from Problem 2. Note that the remove() method is disabled,

though it is possible for an AVL tree to rebalance itself after removing a node.

class AVL(BST):

"""Adelson-Velsky Landis binary search tree data structure class.

Rebalances after insertion when needed.

"""

def insert(self, data):

"""Insert a node containing the data into the tree, then rebalance."""

BST.insert(self, data) # Insert the data like usual.

n = self.find(data)

while n: # Rebalance from the bottom up.

n = self._rebalance(n).prev

def remove(*args, **kwargs):

"""Disable remove() to keep the tree in balance."""

raise NotImplementedError("remove() is disabled for this class")

def _rebalance(self,n):

"""Rebalance the subtree starting at the specified node."""

balance = AVL._balance_factor(n)

if balance == -2: # Left heavy

if AVL._height(n.left.left) > AVL._height(n.left.right):

n = self._rotate_left_left(n) # Left Left

else:

n = self._rotate_left_right(n) # Left Right

elif balance == 2: # Right heavy

if AVL._height(n.right.right) > AVL._height(n.right.left):

n = self._rotate_right_right(n) # Right Right

else:

n = self._rotate_right_left(n) # Right Left

return n

@staticmethod

def _height(current):

"""Calculate the height of a given node by descending recursively until

there are no further child nodes. Return the number of children in the

longest chain down.

"""

if current is None: # Base case: the end of a branch.

return -1 # Otherwise, descend down both branches.

return 1 + max(AVL._height(current.right), AVL._height(current.left))

@staticmethod

def _balance_factor(n):

return AVL._height(n.right) - AVL._height(n.left)

26 Lab 2. Binary Search Trees

def _rotate_left_left(self, n):

temp = n.left

n.left = temp.right

if temp.right:

temp.right.prev = n

temp.right = n

temp.prev = n.prev

n.prev = temp

if temp.prev:

if temp.prev.value > temp.value:

temp.prev.left = temp

else:

temp.prev.right = temp

if n is self.root:

self.root = temp

return temp

def _rotate_right_right(self, n):

temp = n.right

n.right = temp.left

if temp.left:

temp.left.prev = n

temp.left = n

temp.prev = n.prev

n.prev = temp

if temp.prev:

if temp.prev.value > temp.value:

temp.prev.left = temp

else:

temp.prev.right = temp

if n is self.root:

self.root = temp

return temp

def _rotate_left_right(self, n):

temp1 = n.left

temp2 = temp1.right

temp1.right = temp2.left

if temp2.left:

temp2.left.prev = temp1

temp2.prev = n

temp2.left = temp1

temp1.prev = temp2

n.left = temp2

return self._rotate_left_left(n)

def _rotate_right_left(self, n):

temp1 = n.right

temp2 = temp1.left

27

temp1.left = temp2.right

if temp2.right:

temp2.right.prev = temp1

temp2.prev = n

temp2.right = temp1

temp1.prev = temp2

n.right = temp2

return self._rotate_right_right(n)

28 Lab 2. Binary Search Trees

3 Nearest Neighbor
Search

Lab Objective: The nearest neighbor problem is an optimization problem that arises in applications

such as computer vision, internet marketing, and data compression. The problem can be solved

e�ciently with a k-d tree, a generalization of the binary search tree. In this lab we implement a k-d

tree, use it to solve the nearest neighbor problem, then use that solution as the basis of an elementary

machine learning algorithm.

The Nearest Neighbor Problem
Let X ⊂ Rk be a collection of data, called the training set, and let z ∈ Rk, called the target. The

nearest neighbor search problem is determining the point x∗ ∈ X that is �closest� to z.

For example, suppose you move into a new city with several post o�ces. Since your time is

valuable, you wish to know which post o�ce is closest to your home. The set X could be addresses

or latitude and longitude data for each post o�ce in the city; z would be the data that represents

your new home. The task is to �nd the closest post o�ce in x ∈ X to your home z.

Metrics and Distance
Solving the nearest neighbor problem requires a de�nition for distance between z and elements of X.

In Rk, distance is typically de�ned by the Euclidean metric.

d(x, z) = ‖x− z‖ =

√√√√ k∑
i=1

(xi − zi)2 (3.1)

Here ‖ · ‖ is the standard Euclidean norm, which computes vector length. In other words, d(x, z) is

the length of the straight line from x to z. With this notation, the nearest neighbor search problem

can be written as follows.

x∗ = argmin
x∈X

d(x, z) d∗ = min
x∈X

d(x, z) (3.2)

NumPy and SciPy implement the Euclidean norm (and other norms) in linalg.norm(). This

function accepts vectors or matrices. Use the axis argument to compute the norm along the rows

or columns of a matrix: axis=0 computes the norm of each column, and axis=1 computes the norm

of each row (see the NumPy Visual Guide).

29

30 Lab 3. Nearest Neighbor Search

>>> import numpy as np

>>> from scipy import linalg as la

>>> x0 = np.array([1, 2, 3])

>>> x1 = np.array([6, 5, 4])

Calculate the length of the vectors x0 and x1 using the Euclidean norm.

>>> la.norm(x0)

3.7416573867739413

>>> la.norm(x1)

8.7749643873921226

Calculate the distance between x0 and x1 using the Euclidean metric.

>>> la.norm(x0 - x1)

5.9160797830996161

>>> A = np.array([[1, 2, 3], # or A = np.vstack((x0,x1)).

... [6, 5, 4]])

>>> la.norm(A, axis=0) # Calculate the norm of each column of A.

array([6.08276253, 5.38516481, 5.])

>>> la.norm(A, axis=1) # Calculate the norm of each row of A.

array([3.74165739, 8.77496439]) # This is ||x0|| and ||x1||.

Exhaustive Search
Consider again the post o�ce example. One way to �nd out which post o�ce is closest is to drive

from home to each post o�ce, measuring the distance travelled in each trip. That is, we solve (3.2)

by computing ‖x − z‖ for every point x ∈ X. This strategy is called a brute force or exhaustive

search.

Problem 1. Write a function that accepts a m × k NumPy array X (the training set) and a

1-dimensional NumPy array z with k entries (the target). Each of the m rows of X represents

a point in Rk that is an element of the training set.

Solve (3.2) with an exhaustive search. Return the nearest neighbor x∗ and its Euclidean

distance d∗ from the target z.

(Hint: use array broadcasting and the axis argument to avoid using a loop.)

The complexity of an exhaustive search for X ⊂ Rk with m points is O(km), since (3.1) is

O(k) and there are m norms to compute. This method works, but it is only feasible for relatively

small training sets. Solving the problem with greater e�ciency requires the use of a specialized data

structure.

K-D Trees
A k-d tree is a generalized binary search tree where each node in the tree contains k-dimensional

data. Just as a BST makes searching easy in R, a k-d tree provides a way to e�ciently search Rk.

https://en.wikipedia.org/wiki/K-d_tree

31

A BST creates a partition of R: if a node contains the value x, all of the nodes in its left subtree

contain values that are less than x, and the nodes of its right subtree have values that are greater

than x. Similarly, a k-d tree partitions Rk. Each node is assigned a pivot value i ∈ {0, 1, . . . , k − 1}
corresponding to the depth of the node: the root has i = 0, its children have i = 1, their children

have i = 2, and so on. If a node has i = k − 1, its children have i = 0, their children have i = 1,

and so on. The tree is constructed such that for a node containing x = [x0, x1, . . . , xk−1]T ∈ Rk, if a
node in the left subtree contains y, then yi < xi. Conversely, if a node in the right subtree contains

z, then xi ≤ zi. See Figure 3.1 for an example where k = 3.

[3, 1, 4]

[1, 2, 7]

[2, 0, 3] [2, 4, 5]

[1, 4, 3] [0, 5, 7]

[4, 3, 5]

[6, 1, 4]

[5, 2, 5]

pivot=0

pivot=1

pivot=2

pivot=0

Figure 3.1: A k-d tree with k = 3. The root [3, 1, 4] has an pivot of 0, so [1, 2, 7] is to the left of the

root because 1 < 3, and [4, 3, 5] is to the right since 3 ≤ 4. Similarly, the node [2, 4, 5] has an pivot

of 2, so [1, 4, 3] is to its left since 4 < 5 and [0, 5, 7] is to its right because 5 ≤ 7. The nodes that are

furthest from the root have an pivot of 0 because their parents have an pivot of 2 = k − 1.

Problem 2. Write a KDTNode class whose constructor accepts a single parameter x ∈ Rk. If x
is not a NumPy array (of type np.ndarray), raise a TypeError. Save x as an attribute called

value, and initialize attributes left, right, and pivot as None. The pivot will be assigned

when the node is inserted into the tree, and left and right will refer to child nodes.

Constructing the Tree
Locating Nodes

The find() methods for k-d trees and binary search trees are very similar. Both recursively compare

the values of a target and nodes in the tree, but in a k-d tree, these values must be compared according

to their pivot attribute. Every comparison in the recursive _step() function, implemented below,

compares the data of target and current based on the pivot attribute of current. See Figure 3.2.

class KDT:

"""A k-dimensional tree for solving the nearest neighbor problem.

Attributes:

root (KDTNode): the root node of the tree. Like all other nodes in

32 Lab 3. Nearest Neighbor Search

the tree, the root has a NumPy array of shape (k,) as its value.

k (int): the dimension of the data in the tree.

"""

def __init__(self):

"""Initialize the root and k attributes."""

self.root = None

self.k = None

def find(self, data):

"""Return the node containing the data. If there is no such node in

the tree, or if the tree is empty, raise a ValueError.

"""

def _step(current):

"""Recursively step through the tree until finding the node

containing the data. If there is no such node, raise a ValueError.

"""

if current is None: # Base case 1: dead end.

raise ValueError(str(data) + " is not in the tree")

elif np.allclose(data, current.value):

return current # Base case 2: data found!

elif data[current.pivot] < current.value[current.pivot]:

return _step(current.left) # Recursively search left.

else:

return _step(current.right) # Recursively search right.

Start the recursive search at the root of the tree.

return _step(self.root)

[3, 1, 4]

[1, 2, 7]

[2, 0, 3] [2, 4, 5]

[1, 4, 3] [0, 5, 7]

[4, 3, 5]

[6, 1, 4]

[5, 2, 5]

pivot=0

pivot=1

pivot=2

pivot=0

Figure 3.2: To locate the node containing [1, 4, 3], start by comparing [1, 4, 3] to the root [3, 1, 4].

The root has an pivot of 0, so compare the �rst component of the data to the �rst component of the

root: since 1 < 3, step left. Next, [1, 4, 3] must be to the right of [1, 2, 7] because 2 ≤ 4. Similarly,

[1, 4, 3] must be to the left of [2, 4, 5] as 3 < 5.

33

[5, 5]

A B

���- []

A B

(a) Insert [5, 5] as the root. The root always has an pivot of 0, so nodes to the left of the root contain points

from A = {(x, y) ∈ R2 : x < 5}, and nodes on the right branch have points in B = {(x, y) ∈ R2 : 5 ≤ x}.

[5, 5]

[3, 2]

A B

[8, 4]

C D

���-

A

B

C

D

(b) Insert [3, 2], then [8, 4]. Since 3 < 5, [3, 2] becomes the left child of [5, 5]. Likewise, as 5 ≤ 8, [8, 4] becomes

the right child of [5, 5]. These new nodes have an pivot of 1, so they partition the space vertically: nodes to

the right of [3, 2] contain points from B = {(x, y) ∈ R2 : x < 5, 2 ≤ y}; nodes to the left of [8, 4] hold points

from C = {(x, y) ∈ R2 : 5 ≤ x, y < 8}.

[5, 5]

[3, 2]

A [2, 6]

B C

[8, 4]

D E

���-

A

B C

D

E

(c) Insert [2, 6]. The pivot cycles back to 0 since k = 2, so nodes to the left of [2, 6] have points that lie in

B = {(x, y) ∈ R2 : x < 2, 2 ≤ y} and nodes to the right store points in C = {(x, y) ∈ R2 : 2 ≤ x < 5, 2 ≤ y}.

Figure 3.3: As a k-d tree is constructed (left), it creates a partition of Rk (right) by de�ning separating
hyperplanes that pass through the points. The more points, the �ner the partition.

34 Lab 3. Nearest Neighbor Search

Inserting Nodes

To add a new node to a k-d tree, determine which existing node should be the parent of the new

node by recursively stepping down the tree as in the find() method. Next, assign the new node as

the left or right child of the parent, and set its pivot based on its parent's pivot: if the parent's

pivot is i, the new node's pivot should be i+ 1, or 0 if i = k − 1.

Consider again the k-d tree in Figure 3.2. To insert [2, 3, 4], search the tree for [2, 3, 4] until

hitting an empty slot. In this case, the search steps from the root down to [1, 4, 3], which has an

pivot of 0. Then since 1 ≤ 2, the new node should be to the right of [1, 4, 3]. However, [1, 4, 3] has

no right child, so it becomes the parent of [2, 3, 4]. The pivot of the new node should therefore be

1. See Figure 3.3 for another example.

Problem 3. Write an insert() method for the KDT class that accepts a point x ∈ Rk.

1. If the tree is empty, create a new KDTNode containing x and set its pivot to 0. Assign

the root attribute to the new node and set the k attribute as the length of x. Thereafter,

raise a ValueError if data to be inserted is not in Rk.

2. If the tree is nonempty, create a new KDTNode containing x and �nd the existing node that

should become its parent. Determine whether the new node will be the parent's left or

right child, then link the parent to the new node accordingly. Set the pivot of the new

node based on its parent's pivot.

(Hint: write a recursive function like _step() to �nd and link the parent.)

3. Do not allow duplicates in the tree: if there is already a node in the tree containing x,

raise a ValueError.

To test your method, use the __str__() method provided in the Additional Materials section.

Try constructing the trees in Figures 3.1 and 3.3. Also check that the provided find() method

works as expected.

Nearest Neighbor Search with K-D Trees

Given a target z ∈ Rk and a k-d tree containing a set X ⊂ Rk of m points, the nearest neighbor

problem can be solved by traversing the tree in a manner that is similar to the find() or insert()

methods from the previous section. The advantage of this strategy over an exhaustive search is that

not every x ∈ X has to be compared to z via (3.1); the tree structure makes it possible to rule out

some elements of X without actually computing their distances to z. The complexity is O(k log(m)),

a signi�cant improvement over the O(km) complexity of an exhaustive search.

To begin, set x∗ as the value of the root and compute d∗ = d(x∗, z). Starting at the root, step

down through the tree as if searching for the target z. At each step, determine if the value x of the

current node is closer to z than x∗. If it is, assign x∗ = x and recompute d∗ = d(x∗, z). Continue

this process until reaching a leaf node.

Next, backtrack along the search path and determine if the non-explored branch needs to be

searched. To do this, check that the sphere of radius d∗ centered at z does not intersect with the

separating hyperplane de�ned by the current node. That is, if the separating hyperplane is further

than d∗ from z, then no points on the other side of the hyperplane can possibly be the nearest

neighbor. See Figure 3.4 for an example and Algorithm 3.1 for the details of the procedure.

35

[5, 5]

[3, 2]

[2, 6]

[8, 4]

[7, 7]

���-

(a) Start at the root, setting x∗ = [5, 5]. The sphere of radius d∗ = d(x∗, z) centered at z intersects the

hyperplane x = 5, so (at this point) it is possible that a nearer neighbor lies to the right of the root.

[5, 5]

[3, 2]

[2, 6]

[8, 4]

[7, 7]

���-

(b) If the target z = [3, 2.75] were in the tree, it would be to the left of the root, so step left and examine

x = [3, 2]. Since d(x, z) < d(x∗, z), reassign x∗ = x and recompute d∗. Now the sphere of radius d∗ centered

at z no longer intersects the root's hyperplane, so the nearest neighbor cannot be in the root's right subtree.

[5, 5]

[3, 2]

[2, 6]

[8, 4]

[7, 7]

���-

(c) Continuing the search, step right to check the point x = [2, 6]. In this case d(x, z) > d(x∗, z), meaning

x is not nearer to z than x∗. Since [2, 6] is a leaf node, retrace the search steps up the tree to check the

non-searched branches. However, the sphere around z does not intersect any splitting hyperplanes de�ned

by the tree, so x∗ is guaranteed to be the nearest neighbor.

Figure 3.4: Nearest neighbor search of a k-d tree with k = 2. The target is z = [3, 2.75] and the

nearest neighbor is x∗ = [3, 2] with minimal distance d∗ = 0.75. The tree structure allows the

algorithm to eliminate [8, 4] and [7, 7] from consideration without computing their distance from z.

36 Lab 3. Nearest Neighbor Search

Algorithm 3.1 k-d tree nearest neighbor search

1: procedure Nearest Neighbor Search(z, root)

2: procedure KDSearch(current, nearest, d∗)

3: if current is None then . Base case: dead end.

4: return nearest, d∗

5: x← current.value

6: i← current.pivot

7: if d(x, z) < d∗ then . Check if current is closer to z than nearest.

8: nearest ← current

9: d∗ ← d(x, z)

10: if zi < xi then . Search to the left.

11: nearest, d∗ ← KDSearch(current.left, nearest, d∗)

12: if zi + d∗ ≥ xi then . Search to the right if needed.

13: nearest, d∗ ← KDSearch(current.right, nearest, d∗)

14: else . Search to the right.

15: nearest, d∗ ← KDSearch(current.right, nearest, d∗)

16: if zi − d∗ ≤ xi then . Search to the left if needed.

17: nearest, d∗ ← KDSearch(current.left, nearest, d∗)

18: return nearest, d∗

19: node, d∗ ← KDSearch(root, root, d(root.value, z))

20: return node.value, d∗

Problem 4. Write a method for the KDT class that accepts a target point z ∈ Rk. Use Al-

gorithm 3.1 to solve (3.2). Return the nearest neighbor x∗ (the actual NumPy array, not the

KDTNode) and its distance d∗ from z.

Compare your method to the exhaustive search in Problem 1 and to SciPy's built-in

KDTree class. This structure is essentially a heavily optimized version of the KDT class. To

solve the nearest neighbor problem, initialize the tree with data, then �query� the tree with the

target point. The query() method returns a tuple of the minimum distance and the index of

the nearest neighbor in the data.

>>> from scipy.spatial import KDTree

Initialize the tree with data (in this example, use random data).

>>> data = np.random.random((100,5)) # 100 5-dimensional points.

>>> target = np.random.random(5)

>>> tree = KDTree(data)

Query the tree for the nearest neighbor and its distance from 'target'.

>>> min_distance, index = tree.query(target)

>>> print(min_distance)

0.24929868807

>>> tree.data[index] # Get the actual nearest neighbor.

array([0.26927057, 0.03160271, 0.46830759, 0.26766863, 0.63073275])

37

Achtung!

There are a few caveats to using a k-d tree for the nearest neighbor search problem.

� Constructing the tree takes time. For small enough data sets, an exhaustive search may

be faster than the combined time of constructing and searching a tree. On the other hand,

once the tree is constructed, it can be used for multiple nearest-neighbor queries.

� In the worst case�when the tree is completely unbalanced�the search complexity is

O(km) instead of O(k log(m)). Fortunately, there are algorithms for constructing the

tree intelligently so that it is mostly balanced, and a random insertion order usually

results in a somewhat balanced tree.

K-Nearest Neighbors
The nearest neighbor algorithm provides one way to solve a common machine learning problem.

In supervised learning, a training set X ⊂ D has a corresponding set of labels Y that speci�es a

category for each element of X. For instance, X could contain �nancial data on m individuals, and

Y could be a set of m booleans indicating which individuals have �led for bankruptcy. Supervised

learning algorithms use the training data to construct a function f : D → Y that maps points to their

corresponding label. In other words, the algorithm �learns� enough about the relationship between

X and Y to intelligently label arbitrary elements of D. In the bankruptcy example, a person could

then use their own �nancial data to learn whether or not they look more like someone who �les for

bankruptcy or someone who does not.

A k-nearest neighbors classi�er uses a simple strategy to label an arbitrary z ∈ D: �nd the k

elements of X that are nearest to z (usually in terms of the Euclidean metric) and choose the most

common label from those k elements as the label of z. That is, the points in the k labeled points

that are most like z are allowed to �vote� on how z should be labeled. See Figure 3.5.

Figure 3.5: To classify the center node, determine its k-nearest neighbors and pick the most common

label of the neighbors. If k = 3, the k nearest points are two blues and a yellow, so the center node

is labeled blue. For k = 5, the k nearest points consists of two blues and three yellows, so the center

node is labeled yellow.

Achtung!

The k in k-d tree refers to the dimension of the data housed in the tree, but the k in k-nearest

neighbors refers to the number of neighbors to use in the voting scheme. Unfortunately,

both names are standard.

38 Lab 3. Nearest Neighbor Search

Problem 5. Write a KNeighborsClassifier class with the following methods.

1. The constructor should accept an integer n_neighbors, the number of neighbors to include

in the vote (the k in k-nearest neighbors). Save this value as an attribute.

2. fit(): accept an m× k NumPy array X (the training set) and a 1-dimensional NumPy

array y with m entries (the training labels). As in Problems 1 and 4, each of the m rows

of X represents a point in Rk. Here yi is the label corresponding to row i of X.

Load a SciPy KDTree with the data in X. Save the tree and the labels as attributes.

3. predict(): accept a 1-dimensional NumPy array z with k entries. Query the KDTree for

the n_neighbors elements of X that are nearest to z and return the most common label

of those neighbors. If there is a tie for the most common label (such as if k = 2 in Figure

3.5), choose the alphanumerically smallest label.

(Hint: use scipy.stats.mode(). The default behavior splits ties correctly.)

To get several nearest neighbors from the tree, specify k in KDTree.query().

>>> data = np.random.random((100,5)) # 100 5-dimensional points.

>>> target = np.random.random(5)

>>> tree = KDTree(data)

Query the tree for the 3 nearest neighbors.

>>> distances, indices = tree.query(target, k=3)

>>> print(indices)

[26 30 32]

Note

The format of the KNeighborsClassifier in Problem 5 conforms to the style of scikit-learn

(sklearn), a large machine learning library in Python. In fact, scikit-learn has a class called

sklearn.neighbors.KNeighborsClassifier that is a more robust version of the class from

Problem 5. See http://scikit-learn.org/stable/modules/neighbors.html for more tools

from scikit-learn for solving the nearest neighbor problem in the context of machine learning.

Handwriting Recognition
Computer vision is a challenging area of arti�cial intelligence that focuses on autonomously interpret-

ing images. Perhaps the simplest computer vision problem is that of translating images into text.

Roughly speaking, computers store grayscale images as M × N arrays of pixel brightness values:

0 corresponds to black, and 255 to white. Flattening out such an array yields a vector in RMN .

Given some images of characters with labels (assigned by humans), a k-nearest neighbor classi�er

can intelligently decide what character the image represents.

http://scikit-learn.org/stable/modules/neighbors.html

39

Problem 6. The �le mnist_subset.npz contains part of the MNIST dataset,a a collection of

28× 28 images of handwritten digits and their labels. The data is split into four parts.

� X_train: A 3000 × 728 matrix, the training set. Each of the 3000 rows is a �attened

28× 28 image to be used in training the classi�er.

� y_train: A 1-dimensional NumPy array with 3000 entries. The entries are integers from

0 to 9, the labels corresponding to the images in X_train.

� X_test: A 500× 728 matrix of 500 images to classify.

� y_test: A 1-dimensional NumPy array with 500 entries. These are the labels correspond-

ing to X_test, the �right answers� that the classi�er will try to guess.

The following code uses np.load() to extract the data.

>>> data = np.load("mnist_subset.npz")

>>> X_train = data["X_train"].astype(np.float) # Training data

>>> y_train = data["y_train"] # Training labels

>>> X_test = data["X_test"].astype(np.float) # Test data

>>> y_test = data["y_test"] # Test labels

To visualize one of the images, reshape it as a 28× 28 array and use plt.imshow().

>>> from matplotlib import pyplot as plt

>>> plt.imshow(X_test[0].reshape((28,28)), cmap="gray")

>>> plt.show()

Write a function than accepts an integer n_neighbors. Load a classi�er from Problem 5

with the data X_train and the corresponding labels y_train. Use the classi�er to predict the

labels of each image in X_test. Return the classi�cation accuracy, the percentage of predictions

that match y_test. The accuracy should be at least 90% using 4 nearest neighbors.

aSee http://yann.lecun.com/exdb/mnist/.

Note

The k-nearest neighbors algorithm is not the best machine learning algorithm for this problem,

but it is a good starting point because of its simplicity. In fact, k-nearest neighbors is often

used as a baseline to compare against more complicated machine learning techniques.

http://yann.lecun.com/exdb/mnist/

40 Lab 3. Nearest Neighbor Search

Additional Material
Ball Trees
The nearest neighbor problem can also be solved e�ciently with a ball tree, another space-partitioning

data structure. Instead of separating Rk by hyperplanes, a ball tree uses nested hyperspheres to split

up the space. Since the partitioning scheme is di�erent, a nearest neighbor search through a ball

tree is more e�cient than the k-d tree search for some data sets. See https://en.wikipedia.org/

wiki/Ball_tree for more details.

The Curse of Dimensionality
The curse of dimensionality refers to a phenomena that occurs when dealing with high-dimensional

data: the computational cost of an algorithm increases much more rapidly as the dimension increases

than it does when the number of points increases. This problem occurs in many other areas involving

multi-dimensional data, but it is quite apparent in a nearest neighbor search.

25 27 29 211 213 215

m

10 4

10 3

10 2

10 1
Construction Time
NN Search Time

(a) Fixing k and increasing m leads to consistent

growth in execution time.

25 27 29 211 213 215

k

10 4

10 3

10 2

10 1
Construction Time
NN Search Time

(b) For �xed m, the times takes a sharp upturn

around k = 29 relative to previous growth rates.

Figure 3.6: Construction and nearest neighbor search times for a k-d tree with a m× k training set.

See https://en.wikipedia.org/wiki/Curse_of_dimensionality for more examples. One

way to avoid the curse of dimensionality is via dimension reduction, a process usually based on the

singular value decomposition (SVD) that projects data into a lower-dimensional space.

Tiebreaker Strategies
As mentioned in Problem 5, the majority voting scheme in the k-nearest neighbor algorithm can

often result in a tie. Breaking the tie intelligently is a science unto itself, but here are a few common

strategies.

1. For binary classi�cation (meaning there are only two labels), choose an odd k to avoid a tie in

the �rst place.

2. Redo the search with k − 1 neighbors, repeating as needed until k = 1.

3. Choose the label that appears more frequently in the test set.

4. Choose randomly among the labels that are tied for most common.

https://en.wikipedia.org/wiki/Ball_tree
https://en.wikipedia.org/wiki/Ball_tree
https://en.wikipedia.org/wiki/Curse_of_dimensionality

41

Additional Code
The following code creates a string representation for the KDT class. Use this to test Problem 3.

class KDT:

...

def __str__(self):

"""String representation: a hierarchical list of nodes and their axes.

Example: 'KDT(k=2)

[5,5] [5 5] pivot = 0

/ \ [3 2] pivot = 1

[3,2] [8,4] [8 4] pivot = 1

\ \ [2 6] pivot = 0

[2,6] [7,5] [7 5] pivot = 0'

"""

if self.root is None:

return "Empty KDT"

nodes, strs = [self.root], []

while nodes:

current = nodes.pop(0)

strs.append("{}\tpivot = {}".format(current.value, current.pivot))

for child in [current.left, current.right]:

if child:

nodes.append(child)

return "KDT(k={})\n".format(self.k) + "\n".join(strs)

42 Lab 3. Nearest Neighbor Search

4 Breadth-first Search

Lab Objective: Shortest path problems are an important part of graph theory and network

analysis. Applications include �nding the fastest way to drive between two points on a map, network

routing, genealogy, automated circuit layout, and a variety of other important problems. In this lab we

represent graphs as adjacency dictionaries, implement a shortest path algorithm based on a breadth-

�rst search, and use the NetworkX package to solve a shortest path problem on a large network of

movies and actors.

Adjacency Dictionaries
Computers can represent mathematical graphs in various ways. Graphs with very speci�c structures

are often stored with specialized data structures, such as binary search trees. More general graphs

without structural constraints are usually represented with an adjacency matrix, where each row

and column of the matrix corresponds to a node in the graph, and the entries indicate connections

between nodes. Adjacency matrices are usually implemented in a sparse matrix format since only

the entries corresponding to node connections are nonzero.

Another common graph data structure is an adjacency dictionary, a dictionary with a key for

each node in the graph. The dictionary values are the set of nodes connected to the key node.

Adjacency dictionaries automatically gain the advantages of a sparse matrix format since they only

store information on the actual node connections (the nonzero entries of the adjacency matrix).

A

B C

D

A B C D


A 0 1 0 1

B 1 0 0 1

C 0 0 0 1

D 1 1 1 0

{A : {B, D},
B : {A, D},
C : {D},
D : {A, B, D}}

Figure 4.1: A simple unweighted graph (left), its adjacency matrix (middle), and its adjacency

dictionary (right). The graph is undirected, so the adjacency matrix is symmetric. Note that the

adjacency dictionary also encodes this behavior: since A and B are connected, B is in the set of

values corresponding to the key A, and A is in the set of values corresponding to the key B.

43

44 Lab 4. Breadth-first Search

Hash-based Data Structures

A Python set is an unordered data type with no repeated elements. The set class is implemented

as a hash table, meaning it uses hash values�integers that uniquely identify an object�to organize

its elements. Roughly speaking, in order to access, add, or remove an object x to a set, Python

computes the hash value of x, and that value indicates where x is (or should be) in memory. In

other words, there is only one place in memory that x could be; if it isn't in that place, it isn't in

the set. This implementation results in O(1) lookup, insertion, and removal operations, an enormous

improvement over the O(n) search time for lists and the O(log n) search time for sorted structures

like binary search trees. It is also why set elements are unique.

Method Description

add() Add an element to the set. This has no e�ect if the element is already present.

remove() Remove an element from the set, raising

a KeyError if it is not a member of the set.

discard() Remove an element from the set without raising

an exception if it is not a member of the set.

pop() Remove and return an arbitrary set element.

union() Return all elements that are in either set as a new set.

intersection() Return all elements that are in both sets as a new set.

update() Add all elements of another set in-place.

Table 4.1: Basic methods of the set class.

Initialize a set. Note that repeats are not added.

>>> animals = {"cow", "cat", "dog", "mouse", "cow"}

>>> print(animals)

{'cow', 'dog', 'mouse', 'cat'}

>>> animals.add("horse") # Add an object to the set.

>>> "horse" in animals

True

>>> animals.remove("emu") # Attempt to delete an object from the set,

KeyError: 'emu' # resulting in an exception.

>>> animals.pop() # Delete and return a random object from the set.

'mouse'

>>> print(animals)

{'cat', 'horse', 'dog', 'cow'}

Add all of the elements of another set to this one.

>>> animals.update({"dog", "velociraptor"})

>>> print(animals)

{'velociraptor', 'cat', 'horse', 'dog', 'cow'}

Intersect this set with another one.

>>> animals.intersection({"cat", "cow", "cheetah"})

{'cat', 'cow'}

45

Sets are extremely fast, but they do not support indexing because the elements are unordered.

A Python dict, on the other hand, is a hash-based data structure that stores key-value pairs: the

keys of a dictionary act like a set (unique and unordered, with O(1) lookup), but each key corresponds

to another object, called its value. The keys index the dictionary and allow O(1) lookup of the values.

Method Description

keys() Return a set-like iterator for the dictionary's keys.

values() Return a set-like iterator for the dictionary's values.

items() Return an iterator for the dictionary's key-value pairs.

pop() Remove a speci�ed key and return the corresponding value,

raising a KeyError if the key is not a member of the dictionary.

update() Add or overwrite key-value pairs in-place with those from another dictionary.

Table 4.2: Basic methods of the dict class.

Initialize a dictionary.

>>> grades = {"business": "A", "math": "A+", "visual arts": "B"}

>>> grades["math"]

'A+' # The key "math" maps to the value "A+".

Add a "science" key with corresponding value "A".

>>> grades["science"] = "A"

Remove the "business" key.

>>> grades.pop("business")

'A'

>>> print(grades)

{'math': 'A+', 'visual arts': 'B', 'science': 'A'}

Display the keys, values, and items.

>>> list(grades.keys()), list(grades.values())

(['math', 'visual arts', 'science'], ['A+', 'B', 'A'])

>>> for key, value in grades.items():

... print(key, "=>", value)

...

math => A+

visual arts => B

science => A

Add key-value pairs from another dictionary.

>>> grades.update({"cooking":"A+", "math": "C"})

>>> print(grades)

{'math': 'C', 'visual arts': 'B', 'science': 'A', 'cooking': 'A+'}

Dictionaries are ideal for storing values that need to be accessed often and for representing

one-to-one or one-to-many relationships. Thus, the dict class is a natural choice for implementing

adjacency dictionaries. For example, the following code de�nes the adjacency dictionary for the

graph in Figure 4.1. Note that the dictionary values are sets.

46 Lab 4. Breadth-first Search

>>> adjacency = {'A': {'B', 'D'},

'B': {'A', 'D'},

'C': {'D'},

'D': {'A', 'B', 'C'}}

The nodes of the graph are the dictionary keys.

>>> set(adjacency.keys())

{'B', 'D', 'A', 'C'}

The values are the nodes that the key node is adjacent to.

>>> adjacency['A']

{'B', 'D'} # A is adjacent to B and D.

>>> 'C' in adjacency['B']

False # B and C are not adjacent.

>>> 'C' in adjacency['D']

True # C and D are adjacent.

Achtung!

Elements of a set and keys of a dict must be hashable. Mutable objects�lists, sets and

dictionaries�are not hashable, so they are not allowed as set elements or dictionary keys.

Thus, in order to represent a graph with an adjacency dictionary, each of the node labels

should a string, a number, or some other hashable type.

Problem 1. Consider the following Graph class.

class Graph:

"""A graph object, stored as an adjacency dictionary. Each node in the

graph is a key in the dictionary. The value of each key is a set of

the corresponding node's neighbors.

Attributes:

d (dict): the adjacency dictionary of the graph.

"""

def __init__(self, adjacency={}):

"""Store the adjacency dictionary as a class attribute"""

self.d = dict(adjacency)

def __str__(self):

"""String representation: a view of the adjacency dictionary."""

return str(self.d)

Add the following methods to this class.

47

1. add_node(): Add a node (with no initial edges) if it is not already present.

(Hint: use set() to create an empty set.)

2. add_edge(): Add an edge between two nodes. Add the nodes to the graph if they are

not already present.

3. remove_node(): Remove a node, including all edges adjacent to it. This method should

raise a KeyError if the node is not in the graph.

4. remove_edge(): Remove the edge between two nodes. This method should raise a

KeyError if either node is not in the graph, or if there is no edge between the nodes.

Breadth-first Search
Many common problems that arise in graph theory require �nding the shortest path between two

nodes in a graph. For some highly structured graphs, such as binary search trees, this is a fairly

straightforward problem (in the case of a tree, the shortest path is also the only path). Finding a

path between nodes in a graph of arbitrary structure, however, requires a careful and methodical

approach. The two most common graph search algorithms are depth-�rst search (DFS) and breadth-

�rst search (BFS). The breadth-�rst strategy is almost always better at �nding shortest paths than

the depth-�rst strategy,1 though a DFS can be useful for path problems in certain graphs.

To traverse a graph with a BFS, choose a node to start at, called the source node. First, visit

each of the source node's neighbors. Next, visit each of the source node's neighbors' neighbors. Then

visit each of their neighbors, continuing the process until all nodes have been visited. This strategy

explores all of the nodes closest to the source node before incrementally moving �deeper� (further

from the source node) into the tree.

The implementation of a BFS requires the following data structures to keep track of which

nodes have already been visited and the order in which to visit nodes in future steps.

� A list V : The nodes that have been visited, in visitation order.

� A queue Q: The nodes to be visited, in the order that they were discovered. Recall that a

queue is a limited-access list where data is inserted to one end, but removed from the other

(�rst-in, �rst-out).

� A set M : The nodes that have been visited, or that are marked to be visited. This is the

union of the nodes in V and Q.

To begin the search, add the source node to Q and M . Then, until Q is empty, repeat the following:

1. Pop a node o� of Q; call it the current node.

2. �Visit� the current node by appending it to V .

3. Add the neighbors of the current node that are not in M to Q and M .

The �that are not inM � clause of step 3 prevents nodes from being added to Q more than once. Note

that step 3 could be replaced with �Add the neighbors of the current node that are not in V ∪Q to

Q.� However, lookup in M (a set) is much faster than lookup in V and Q (arrays or linked lists), so

including M greatly speeds up the algorithm.

1See https://xkcd.com/761/.

https://xkcd.com/761/

48 Lab 4. Breadth-first Search

Note

The �rst-in, �rst-out (FIFO) structure of Q enforces the �breadth-�rst� nature of the BFS:

nodes that are marked �rst are visited �rst. Using a a last-in, �rst-out (LIFO) stack for Q

changes the search to a DFS: the next node to visit is the one that was marked last.

A

B C

D

V A B C D

Q A

M A

A

B C

D

V A B C D

Q B D

M A B D

A

B C

D

V A B C D

Q D

M A B D

A

B C

D

V A B D

Q C

M A B D C

Figure 4.2: To start a BFS from node A to node C, put A in the visit queue Q and mark it by

adding it to the set M . Pop A o� the queue and �visit� it by adding A to the visited list V and

the neighboring nodes B and D to Q. Then visit B, but do not add anything to Q because all of

the neighbors of B are already marked. Finally, visit D, at which point the target node C is located

because it is adjacent to D.

Problem 2. Write a method for the Graph class that accepts a source node. Traverse the

graph with a breadth-�rst search until all nodes have been visited. Return the list of nodes in

the order that they were visited. If the source node is not in the graph, raise a KeyError.

(Hint: for Q, use a deque from the collections module, and make sure that nodes are added

to one end but popped o� of the other.)

49

Shortest Paths via BFS
Consider the problem of locating a path between two nodes with a BFS. The nodes that are directly

connected to the source node are all visited before any other nodes; more generally, the nodes that

are n nodes away from the source node are all visited before nodes that are n+ 1 or more nodes from

the source point. Therefore, the search path taken to discover to the target with a BFS must be the

shortest path from the source node to the target node.

Examine again the graph in Figures 4.1 and 4.2. The shortest path from A to C starts at A,

goes to D, and ends at C. During a BFS originating at A, D is placed on the visit queue because it

is one of A's neighbors, and C is placed on the queue because it is one of D's neighbors. Given that

A was the node that visited D, and that D was the node that visited C, the shortest path from A to

C can be constructed by stepping backward along the search path.

To implement this idea, initialize a dictionary before starting the BFS. When a node is marked

and added to the visit queue, add a key-value pair mapping the visited node to the visiting node

(for example, B 7→ A means B was marked while visiting A). When the target node is found, step

through the dictionary until arriving at the source node, recording each step.

A

B C

D

Figure 4.3: In the BFS from Figure 4.2, nodes B and D were marked while visiting node A, and node

C was marked while visiting node D (this is same as reversing the red arrows in Figure 4.2). Thus

the �visit path� from C to A is C→ D→ A, so the shortest path from A to C is [A, D, C].

Problem 3. Add a method to the Graph class that accepts source and target nodes. Begin a

BFS at the source node and proceed until the target is found. Return a list containing the node

values in the shortest path from the source to the target (including the endpoints). If either of

the input nodes are not in the graph, raise a KeyError.

Shortest Paths via NetworkX
NetworkX is a Python package for creating, manipulating, and exploring graphs. Its Graph object

represents a graph with an adjacency dictionary, similar to the class from Problems 1�3, and has

many methods for interpreting information about the graph and its structure. As before, the nodes

must be hashable (a number, string, or another immutable object).

Method Description

add_node() Add a single node to the graph.

add_nodes_from() Add a list of nodes to the graph.

add_edge() Add an edge between two nodes.

add_edges_from() Add a list of edges to the graph.

Table 4.3: Methods of the nx.Graph class for adding nodes and edges.

50 Lab 4. Breadth-first Search

>>> import networkx as nx

Initialize a NetworkX graph from an adjacency dictionary.

>>> G = nx.Graph({'A': {'B', 'D'},

'B': {'A', 'D'},

'C': {'D'},

'D': {'A', 'B', 'C'}})

>>> print(G.nodes()) # Print the nodes.

['A', 'B', 'C', 'D']

>>> print(G.edges()) # Print the edges as tuples.

[('A', 'D'), ('A', 'B'), ('B', 'D'), ('C', 'D')]

>>> G.add_node('E') # Add a new node.

>>> G.add_edge('A', 'F') # Add an edge, which also adds a new node 'F'.

>>> G.add_edges_from([('A', 'C'), ('F', 'G')]) # Add several edges at once.

>>> set(G['A']) # Get the set of nodes neighboring node 'A'.

{'B', 'C', 'D', 'F'}

The Kevin Bacon Problem

The vintage parlor game Six Degrees of Kevin Bacon is played by naming an actor, then trying to

�nd the shortest chain of actors that have worked with each other leading to Kevin Bacon. For

example, Samuel L. Jackson was in the �lm Pulp Fiction (1994) with Frank Whaley, who was in

JFK (1991) with Kevin Bacon. In other words, the goal of the game is to solve a shortest path

problem on a graph that connects actors to the movies that they have been in.

Problem 4. The �le movie_data.txt contains IMDb data for about 137,000 movies. Each

line of the �le represents one movie: the title is listed �rst, then the cast members, with entries

separated by a / character. For example, the line for The Dark Knight (2008) starts with

The Dark Knight (2008)/Christian Bale/Heath Ledger/Aaron Eckhart/...

Any / characters in movie titles have been replaced with the vertical pipe character | (for

example, Frost|Nixon (2008)).

Write a class whose constructor accepts the name of a �le to read. Initialize a set for movie

titles, a set for actor names, and an empty NetworkX Graph, and store them as attributes. Read

the �le line by line, adding the title to the set of movies and the cast members to the set of

actors. Add an edge to the graph between the movie and each cast member.

(Hint: Use the split() method for strings to parse each line.)

It should take no more than 20 seconds to construct the entire graph. Check that there

are 137,018 movies and 930,717 actors. Compare parts of your graph to Figure 4.4.

http://oracleofbacon.org/help.php

51

Kevin
Bacon

Jim
Cummings

Toby
Jones

Jennifer
Lawrence

James
McAvoy

Balto
(1995)

Christopher
Robin (2018)

Frost/Nixon
(2008)

The Hunger
Games (2012)

X-Men: First
Class (2011)

X-Men:
Apocalypse

(2016)

Footloose
(1984)

Figure 4.4: A subset of the graph in movie_data.txt. Each of these actors have a Bacon number of

1 because they have all been in a movie with Kevin Bacon. Every actor in The Hunger Games has

a Bacon number of at most 2 because of the paths through Jennifer Lawrence or Toby Jones.

Note

The movie/actor graph of Problem 4 and Figure 4.4 has an interesting property: actors are

only directly connected to movies, and movies are only directly connected to actors. This kind

of graph is called bipartite because there are two types of nodes, and no node has an edge

connecting it to another node of its type.

Achtung!

NetworkX Graph objects can be visualized with nx.draw() (followed by plt.show()). However,

this visualization tool is only e�ective on relatively small graphs. In fact, graph visualization in

general remains a challenging and ongoing area of research. Because of the size of the dataset,

do not attempt to visualize the graph in Problem 4 with nx.draw().

The Six Degrees of Kevin Bacon game poses an interesting question: can any actor be linked to

Kevin Bacon, and if so, in how many steps? The game hypothesizes, �Yes, within 6 steps� (hence the

title). More precisely, let the Bacon number of an actor be the number of steps from that actor to

Kevin Bacon, only counting actors. For example, since Samuel L. Jackson was in a �lm with Frank

Whaley, who was in a �lm with Kevin Bacon, Samuel L. Jackson has a Bacon number of 2. Actors

who have been in a movie with Kevin Bacon have a Bacon number of 1, and actors with no path to

Kevin Bacon have a Bacon number of ∞. The game asserts that the largest Bacon number is 6.

NetworkX is equipped with a variety of graph analysis tools, including a few for computing

paths between nodes (and, therefore, Bacon numbers). To compute a shortest path between nodes u

and v, nx.shortest_path() starts one BFS from u and another from v, switching o� between the

two searches until they both discover a common node. This approach is called a bidirectional BFS

and is typically faster than a regular, one-sided BFS.

52 Lab 4. Breadth-first Search

Function Description

has_path() Return True if there is a path between two speci�ed nodes.

shortest_path() Return one shortest path between nodes.

shortest_path_length() Return the length of the shortest path between nodes.

all_shortest_paths() Yield all shortest paths between nodes.

Table 4.4: NetworkX functions for path problems. Each accepts a Graph, then a pair of nodes.

>>> G = nx.Graph({'A': {'B', 'D'},

'B': {'A', 'D'},

'C': {'D'},

'D': {'A', 'B', 'C'}})

Compute the shortest path between 'A' and 'D'.

>>> nx.has_path(G, 'A', 'C')

True

>>> nx.shortest_path(G, 'A', 'C')

['A', 'D', 'C']

>>> nx.shortest_path_length(G, 'A', 'C')

2

Compute all possible shortest paths between two nodes.

>>> G.add_edge('B', 'C')

>>> list(nx.all_shortest_paths(G, 'A', 'C'))

[['A', 'D', 'C'], ['A', 'B', 'C']]

When the second node is omitted from these functions, the shortest paths

from the given node to EVERY node are computed and returned as a dictionary.

>>> nx.shortest_path(G, 'A')

{'A': ['A'], 'D': ['A', 'D'], 'B': ['A', 'B'], 'C': ['A', 'D', 'C']}

>>> nx.shortest_path_length(G, 'A') # Path lengths are defined by the

{'A': 0, 'D': 1, 'B': 1, 'C': 2} # number of edges, not nodes.

Problem 5. Write a method for your class from Problem 4 that accepts two actors' names.

Use NetworkX to compute the shortest path between the actors and the degrees of separation

between the two actors (if one of the actors is "Kevin Bacon", this is the Bacon number of

the other actor). Note that this number is di�erent than the number of entries in the actual

shortest path list, since movies are just intermediate steps between actors.

The idea of a Bacon number provides a few ways to analyze the connectivity of the Hollywood

network. For example, the distribution of all Bacon numbers describes how close Kevin Bacon

is to actually knowing all of the actors in Hollywood Someone with a lower average number�for

instance, the average Jackson number, for Samuel L. Jackson�is, on average, �more connected with

Hollywood� than Kevin Bacon. The actor with the lowest average number is sometimes called the

center of the Hollywood universe.

53

Problem 6. Write a method for your class from Problem 4 that accepts one actor's name.

Calculate the shortest path lengths of every actor in the collection to the speci�ed actor (not

including movies). Use plt.hist() to plot the distribution of path lengths and return the

average path length.

(Hint: Use a NetworkX function to compute all path lengths simultaneously; this is signi�cantly

faster than calling your method from Problem 5 repeatedly. Also, use the keyword argument

bins=[i-.5 for i in range(8)] in plt.hist() to get the histogram bins to correspond to

integers nicely.)

As an aside, the proli�c Paul Erd®s is the Kevin Bacon equivalent in the mathematical com-

munity. Someone with an Erd®s number of 2 co-authored a paper with someone who co-authored a

paper with Paul Erd®s. Having an Erd®s number of 1 or 2 is considered quite an achievement (see

https://xkcd.com/599/).

https://en.wikipedia.org/wiki/Erd%C5%91s_number
https://xkcd.com/599/

54 Lab 4. Breadth-first Search

Additional Material
Other Hash-based Structures
The standard library has a few specialized alternatives to regular sets and dictionaries.

� frozenset: an immutable version of the usual set class. Frozen sets cannot be altered after

creation and therefore lack methods like add(), pop(), and remove(), but they can be placed

in other sets and used as dictionary keys.

� collections.defaultdict: a dictionary with default values. For instance, defaultdict(set)

creates a dictionary that automatically uses an empty set as the value whenever a non-present

key is used for indexing. See https://docs.python.org/3/library/collections.html for

examples.

� collections.OrderedDict: a dictionary that remembers insertion order. For example, the

popitem() method returns the most recently added key-value pair.

Depth-first Search
A depth-�rst search (DFS) takes the opposite approach of a BFS. Instead of checking all neighbors

of a single node before moving on, it checks the �rst neighbor, then their �rst neighbor, then their

�rst neighbor, and so on until reaching a leaf node. The algorithm then backtracks to the previous

node and checks its second neighbor. While a DFS is rarely useful for �nding shortest paths, it is a

common strategy for solving recursively structured problems, such as mazes or Sudoku puzzles.

Consider adding a keyword argument to your method from Problem 2 that speci�es whether

to use a BFS (the default) or a DFS. To change from a BFS to a DFS, change the visit queue Q to

a stack. You may be able to implement the change in a single line of code.

The Center of the Hollywood Universe
Computing the center of the universe in a graph amounts to solving Problem 6 for every node in

the graph. This is computationally expensive, but since each average number is independent of the

others, the problem is a good candidate for parallel programming, which divides the computational

workload between multiple processes. Even with parallelism, however, computing the center of the

Hollywood universe may require signi�cant computational time and resources.

Shortest Paths on Weighted Graphs
The graphs presented in this lab are unweighted, meaning all edges have the same importance. A

weighted graph assigns a weight to each edge, which can usually be thought of as the distance between

the two adjacent nodes. The shortest path problem becomes much more complicated on weighted

graphs, and requires additions to the plain BFS. The standard approach is Dijkstra's algorithm,

which is implemented as nx.dijkstra_path(). Another approach, the Bellman-Ford algorithm, is

implemented as nx.bellman_ford_path().

https://docs.python.org/3/library/collections.html#defaultdict-examples

5 Markov Chains

Lab Objective: A Markov chain is a collection of states with speci�ed probabilities for transi-

tioning from one state to another. They are characterized by the fact that the future behavior of the

system depends only on its current state. In this lab we learn to construct, analyze, and interact with

Markov chains, then use a Markov-based approach to simulate natural language.

State Space Models
Many systems can be described by a �nite number of states. For example, a board game where

players move around the board based on dice rolls can be modeled by a Markov chain. Each space

represents a state, and a player is said to be in a state if their piece is currently on the corresponding

space. In this case, the probability of moving from one space to another only depends on the player's

current location; where the player was on a previous turn does not a�ect their current turn.

Markov chains with a �nite number of states have an associated transition matrix that stores

the information about the possible transitions between the states in the chain. The (i, j)th entry of

the matrix gives the probability of moving from state j to state i. Thus, each of the columns of

the transition matrix sum to 1.

Note

A transition matrix where the columns sum to 1 is called column stochastic (or left stochastic).

The rows of a row stochastic (or right stochastic) transition matrix each sum to 1 and the (i, j)th

entry of the matrix is the probability of moving from state i to state j. Both representations are

common, but in this lab we exclusively use column stochastic transition matrices for consistency.

Consider a very simple weather model in which the weather tomorrow depends only on the

weather today. For now, we consider only two possible weather states: hot and cold. Suppose that

if today is hot, then the probability that tomorrow is also hot is 0.7, and that if today is cold, the

probability that tomorrow is also cold is 0.4. By assigning �hot� to the 0th row and column, and

�cold� to the 1st row and column, this Markov chain has the following transition matrix.

55

56 Lab 5. Markov Chains

hot today cold today[]
hot tomorrow 0.7 0.6

cold tomorrow 0.3 0.4

The 0th column of the matrix says that if it is hot today, there is a 70% chance that tomorrow will

be hot (0th row) and a 30% chance that tomorrow will be cold (1st row). The 1st column says if it

is cold today, then there is a 60% chance of heat and a 40% chance of cold tomorrow.

Markov chains can be represented by a state diagram, a type of directed graph. The nodes in

the graph are the states, and the edges indicate the state transition probabilities. The Markov chain

described above has the following state diagram.

hot cold0.7

0.3

0.4

0.6

Problem 1. De�ne a MarkovChain class whose constructor accepts an n×n transition matrix

A and, optionally, a list of state labels. If A is not column stochastic, raise a ValueError.

Construct a dictionary mapping the state labels to the row/column index that they correspond

to in A (given by order of the labels in the list), and save A, the list of labels, and this dictionary

as attributes. If there are no state labels given, use the labels
[
0 1 . . . n− 1

]
.

For example, for the weather model described above, the transition matrix is

A =

[
0.7 0.6

0.3 0.4

]
,

the list of state labels is ["hot", "cold"], and the dictionary mapping labels to indices is

{"hot":0, "cold":1}. This Markov chain could be also represented by the transition matrix

Ã =

[
0.4 0.3

0.6 0.7

]
,

the labels ["cold", "hot"], and the resulting dictionary {"cold":0, "hot":1}.

Simulating State Transitions
Simulating the weather model described above requires a programmatic way of choosing between

the outgoing transition probabilities of each state. For example, if it is cold today, we could �ip a

weighted coin that lands on tails 60% of the time (guess tomorrow is hot) and heads 40% of the

time (guess tomorrow is cold) to predict the weather tomorrow. The Bernoulli distribution with

parameter p = 0.4 simulates this behavior: 60% of draws are 0, and 40% of draws are a 1.

A binomial distribution is the sum several Bernoulli draws: one binomial draw with parameters

n and p indicates the number of successes out of n independent experiments, each with probability

p of success. In other words, n is the number of times to �ip the coin, and p is the probability that

the coin lands on heads. Thus, a binomial draw with n = 1 is a Bernoulli draw.

57

NumPy does not have a function dedicated to drawing from a Bernoulli distribution; instead,

use the more general np.random.binomial() with n = 1 to make a Bernoulli draw.

>>> import numpy as np

Draw from the Bernoulli distribution with p = .5 (flip one fair coin).

>>> np.random.binomial(n=1, p=.5)

0 # The coin flip resulted in tails.

Draw from the Bernoulli distribution with p = .3 (flip one weighted coin).

>>> np.random.binomial(n=1, p=.3)

0 # Also tails.

For the weather model, if the �cold� state corresponds to row and column 1 in the transition

matrix, p should be the probability that tomorrow is cold. So, if today is cold, select p = 0.4; if

today is hot, set p = 0.3. Then draw from the binomial distribution with n = 1 and the selected p.

If the result is 0, transition to the �hot� state; if the result is 1, stay in the �cold� state.

Using Bernoulli draws to determine state transitions works for Markov chains with two states,

but larger Markov chains require draws from a categorical distribution, a multivariate generalization

of the Bernoulli distribution. A draw from a categorical distribution with parameters (p1, p2, . . . , pk)

satisfying
∑k
i=1 pi = 1 indicates which of k outcomes occurs. If k = 2, a draw simulates a coin

�ip (a Bernoulli draw); if k = 6, a draw simulates rolling a six-sided die. Just as the Bernoulli

distribution is a special case of the binomial distribution, the categorical distribution is a special case

of the multinomial distribution which indicates how many times each of the k outcomes occurs in n

repeated experiments. Use np.random.multinomial() with n = 1 to make a categorical draw.

Draw from the categorical distribution (roll a fair four-sided die).

>>> np.random.multinomial(1, np.array([1./4, 1./4, 1./4, 1./4]))

array([0, 0, 0, 1]) # The roll resulted in a 3.

Draw from another categorical distribution (roll a weighted four-sided die).

>>> np.random.multinomial(1, np.array([.5, .3, .2, 0]))

array([0, 1, 0, 0]) # The roll resulted in a 1.

Consider a four-state weather model with the transition matrix

hot mild cold freezing


hot 0.5 0.3 0.1 0

mild 0.3 0.3 0.3 0.3

cold 0.2 0.3 0.4 0.5

freezing 0 0.1 0.2 0.2

.

If today is hot, the probabilities of transitioning to each state are given by the �hot� column of

the transition matrix. Therefore, to choose a new state, draw from the categorical distribution with

parameters (0.5, 0.3, 0.2, 0). The result
[
0 1 0 0

]
indicates a transition to the state corresponding

to the 1st row and column (tomorrow is mild), while the result
[
0 0 1 0

]
indicates a transition to

the state corresponding to the 2nd row and column (tomorrow is cold). In other words, the position

of the 1 tells which column of the matrix to use as the parameters for the next categorical draw.

58 Lab 5. Markov Chains

Problem 2. Write a method for the MarkovChain class that accepts a single state label. Use

the label-to-index dictionary to determine the column of A that corresponds to the provided

state label, then draw from the corresponding categorical distribution to choose a state to

transition to. Return the corresponding label of the new state (not its index).

(Hint: np.argmax() may be useful.)

Problem 3. Add the following methods to the MarkovChain class.

� walk(): Accept a state label and an interger N . Starting at the speci�ed state, use your

method from Problem 2 to transition from state to state N − 1 times, recording the state

label at each step. Return the list of N state labels, including the initial state.

� path(): Accept labels for an initial state and an end state. Beginning at the initial state,

transition from state to state until arriving at the speci�ed end state, recording the state

label at each step. Return the list of state labels, including the initial and �nal states.

Test your methods on the two-state and four-state weather models described previously.

General State Distributions
For a Markov chain with n states, the probability of being in each state can be encoded by a n-vector

x, called a state distribution vector. The entries of x must be nonnegative and sum to 1, and the

ith entry xi of x is the probability of being in state i. For example, the state distribution vector

x =
[
0.8 0.2

]T
corresponding to the 2-state weather model indicates an 80% chance that today is

hot and a 20% chance that today is cold. On the other hand, the vector x =
[
0 1

]T
implies that

today is, with 100% certainty, cold.

If A is a transition matrix for a Markov chain with n states and x is a corresponding state

distribution vector, then Ax is also a state distribution vector. In fact, if xk is the state distribution

vector corresponding to a certain time k, then xk+1 = Axk contains the probabilities of being in each

state after allowing the system to transition again. For the weather model, this means that if there

is an 80% chance that it will be hot 5 days from now, written x5 =
[
0.8 0.2

]T
, then since

x6 = Ax5 =

[
0.7 0.6

0.3 0.4

] [
0.8

0.2

]
=

[
0.68

0.32

]
,

there is a 68% chance that 6 days from now will be a hot day.

Convergent Transition Matrices

Given an initial state distribution vector x0, de�ning xk+1 = Axk yields the signi�cant relation

xk = Axk−1 = A(Axk−2) = A(A(Axx−3)) = · · · = Akx0.

59

This indicates that the (i, j)th entry of Ak is the probability of transition from state j to state

i in k steps. For the transition matrix of the 2-state weather model, a pattern emerges in Ak for even

small values of k:

A =

[
0.7 0.6

0.3 0.4

]
, A2 =

[
0.67 0.66

0.33 0.34

]
, A3 =

[
0.667 0.666

0.333 0.334

]
.

As k →∞, the entries of Ak converge, written

lim
k→∞

Ak =

[
2/3 2/3

1/3 1/3

]
. (5.1)

In addition, for any initial state distribution vector x0 = [a, b]T (meaning a, b ≥ 0 and a+ b = 1),

lim
k→∞

xk = lim
k→∞

Akx0 =

[
2/3 2/3

1/3 1/3

] [
a

b

]
=

[
2(a+ b)/3

(a+ b)/3

]
=

[
2/3

1/3

]
.

Thus, xk → x =
[
2/3 1/3

]T
as k → ∞, regardless of the initial state distribution x0. So,

according to this model, no matter the weather today, the probability that it is hot a week from now

is approximately 66.67%. In fact, approximately 2 out of 3 days in the year should be hot.

Steady State Distributions

The state distribution x =
[
2/3 1/3

]T
has another important property:

Ax =

[
7/10 3/5

3/10 2/5

] [
2/3

1/3

]
=

[
14/30 + 3/15

6/30 + 2/15

]
=

[
2/3

1/3

]
= x.

Any x satisfying Ax = x is called a steady state distribution or a stable �xed point of A. In other

words, a steady state distribution is an eigenvector of A corresponding to the eigenvalue λ = 1.

Every �nite Markov chain has at least one steady state distribution. If some power Ak of

A has all positive (nonzero) entries, then the steady state distribution is unique.1 In this case,

limk→∞Ak is the matrix whose columns are all equal to the unique steady state distribution, as

in (5.1). Under these circumstances, the steady state distribution x can be found by iteratively

calculating xk+1 = Axk, as long as the initial vector x0 is a state distribution vector.

Achtung!

Though every Markov chain has at least one steady state distribution, the procedure described

above fails if Ak fails to converge. For instance, consider the transition matrix

A =

 0 0 1

0 1 0

1 0 0

 , Ak =

{
A if k is odd

I if k is even.

In this case as k →∞, Ak oscillates between two di�erent matrices.

Furthermore, the steady state distribution is not always unique; the transition matrix

de�ned above, for example, has in�nitely many.

1This is a consequence of the Perron-Frobenius theorem, which is presented in detail in Volume 1.

60 Lab 5. Markov Chains

Problem 4. Write a method for the MarkovChain class that accepts a convergence tolerance

tol and a maximum number of iterations maxiter. Generate a random state distribution vector

x0 and calculate xk+1 = Axk until ‖xk−1−xk‖1 < tol, where A is the transition matrix saved

in the constructor. If k exceeds maxiter, raise a ValueError to indicate that Ak does not

converge. Return the approximate steady state distribution x of A.

To test your function, generate a random transition matrix A. Verify that Ax = x and

that the columns of Ak approach x as k → ∞. To compute Ak, use NumPy's (very e�cient)

algorithm for computing matrix powers.

>>> A = np.array([[.7, .6],[.3, .4]])

>>> np.linalg.matrix_power(A, 10) # Compute A^10.

array([[0.66666667, 0.66666667],

[0.33333333, 0.33333333]])

Finally, use your method to validate the results of Problem 3: for the two-state and four-state

weather models,

1. Calculate the steady state distribution corresponding to the transition matrix.

2. Run a weather simulation for a large number of days using walk() and verify that the

results match the steady state distribution (for example, approximately 2/3 of the days

should be hot for the two-state model).

Note

Problem 4 is a special case of the power method, an algorithm for calculating an eigenvector

of a matrix corresponding to the eigenvalue of largest magnitude. The general power method,

together with a discussion of its convergence conditions, is discussed in Volume 1.

Using Markov Chains to Simulate English

One of the original applications of Markov chains was to study natural languages, meaning spoken

or written languages like English or Russian [VHL06]. In the early 20th century, Markov used his

chains to model how Russian switched from vowels to consonants. By mid-century, they had been

used as an attempt to model English. It turns out that plain Markov chains are, by themselves,

insu�cient to model or produce very good English. However, they can approach a fairly good model

of bad English, with sometimes amusing results.

61

By nature, a Markov chain is only concerned with its current state, not with previous states.

A Markov chain simulating transitions between English words is therefore completely unaware of

context or even of previous words in a sentence. For example, if a chain's current state is the word

�continuous,� the chain may say that the next word in a sentence is more likely to be �function�

rather than �raccoon.� However the phrase �continuous function� may be gibberish in the context of

the rest of the sentence.

Generating Random Sentences

Consider the problem of generating English sentences that are similar to the text contained in a

speci�c �le, called the training set. The goal is to construct a Markov chain whose states and

transition probabilities represent the vocabulary and�hopefully�the style of the source material.

There are several ways to approach this problem, but one simple strategy is to assign each unique

word in the training set to a state, then construct the transition probabilities between the states

based on the ordering of the words in the training set. To indicate the beginning and end of a

sentence requires two extra states: a start state, $tart, marking the beginning of a sentence; and a

stop state, $top, marking the end. The start state should only transitions to words that appear at

the beginning of a sentence in the training set, and only words that appear at the end a sentence in

the training set should transition to the stop state.

Consider the following small training set, paraphrased from Dr. Seuss [Gei60].

I am Sam Sam I am.

Do you like green eggs and ham?

I do not like them, Sam I am.

I do not like green eggs and ham.

There are 15 unique words in this training set, including punctuation (so �ham?� and �ham.�

are counted as distinct words) and capitalization (so �Do� and �do� are also di�erent):

I am Sam am. Do you like green

eggs and ham? do not them, ham.

With start and stop states, the transition matrix should be 17× 17. Each state must be assigned a

row and column index in the transition matrix, for example,

$tart I am Sam . . . ham. $top

0 1 2 3 . . . 15 16

The (i, j)th entry of the transition matrix A should be the probability that word j is followed by

word i. For instance, the word �Sam� is followed by the words �Sam� once and �I� twice in the

training set, so the state corresponding to �Sam� (index 3) should transition to the state for �Sam�

with probability 1/3, and to the state for �I� (index 1) with probability 2/3. That is, A3,3 = 1/3,

A1,3 = 2/3, and Ai,3 = 0 for i /∈ {1, 3}. Similarly, the start state should transition to the state for

�I� with probability 3/4, and to the state for �Do� with probability 1/4; the states for �am.�, �ham?�,

and �ham.� should each transition to the stop state.

62 Lab 5. Markov Chains

To construct the transition matrix, parse the training set and add 1 to Ai,j every time word j

is followed by word i, in this case arriving at the matrix

$tart I am Sam ham. $top



$tart 0 0 0 0 . . . 0 0

I 3 0 0 2 . . . 0 0

am 0 1 0 0 . . . 0 0

Sam 0 0 1 1 . . . 0 0
...

...
...

...
. . .

...
...

ham. 0 0 0 0 . . . 0 0

$top 0 0 0 0 . . . 1 0

.

To avoid a column of zeros, set Aj,j = 1 where j is the index of the stop state (so the stop state

always transitions to itself). Next, divide each column by its sum so that each column sums to 1:

$tart I am Sam ham. $top



$tart 0 0 0 0 . . . 0 0

I 3/4 0 0 2/3 . . . 0 0

am 0 1/5 0 0 . . . 0 0

Sam 0 0 1 1/3 . . . 0 0
...

...
...

...
. . .

...
...

ham. 0 0 0 0 . . . 0 0

$top 0 0 0 0 . . . 1 1

.

The 3/4 indicates that 3 out of 4 times, the sentences in the training set start with the word

�I�. Similarly, the 2/3 and 1/3 says that �Sam� is followed by �I� twice and by �Sam� once in the

training set. Note that �am� (without a period) always transitions to �Sam� and that �ham.� (with

a period) always transitions the stop state.

The entire procedure of creating the transition matrix for the Markov chain with words from a

�le as states is summarized below.

Algorithm 5.1 Convert a training set of sentences into a Markov chain.

1: procedure MakeTransitionMatrix(filename)

2: Read the training set from the �le filename.

3: Get the set of unique words in the training set (the state labels).

4: Add labels "$tart" and "$top" to the set of states labels.

5: Initialize an appropriately sized square array of zeros to be the transition matrix.

6: for each sentence in the training set do

7: Split the sentence into a list of words.

8: Prepend "$tart" and append "$top" to the list of words.

9: for each consecutive pair (x, y) of words in the list of words do

10: Add 1 to the entry of the transition matrix that corresponds to

transitioning from state x to state y.

11: Make sure the stop state transitions to itself.

12: Normalize each column by dividing by the column sums.

63

Problem 5. Write a class called SentenceGenerator that inherits from the MarkovChain

class. The constructor should accept a �lename (the training set). Read the �le and build

a transition matrix from its contents as described in Algorithm 5.1. Save the same attributes

as the constructor of MarkovChain does so that inherited methods work correctly. Assume that

the training set has one complete sentence written on each line.

(Hint: if the contents of the �le are in the string s, then s.split() is the list of words and

s.split('n') is the list of sentences.)

Note

The Markov chains that result from the procedure in Problem 5 have a few interesting structural

characteristics. The stop state is a sink, meaning it only transitions to itself. Because of this,

and since every node has a path to the stop state, any traversal of the chain will end up in

the stop state forever. The stop state is therefore called an absorbing state, and the chain as a

whole is called an absorbing Markov chain. Furthermore, the steady state is the vector with a

1 in the entry corresponding to the stop state and 0s everywhere else.

Problem 6. Add a method to the SentenceGenerator class called babble(). Use the path()

method from Problem 3 to generate a random sentence based on the training document. That

is, generate a path from the start state to the stop state, remove the "$tart" and "$top" labels

from the path, and join the resulting list together into a single, space-separated string.

For example, your SentenceGenerator class should be able to create random sentences

that sound somewhat like Yoda speaking.

>>> yoda = SentenceGenerator("yoda.txt")

>>> for _ in range(3):

... print(yoda.babble())

...

Impossible to my size, do not!

For eight hundred years old to enter the dark side of Congress there is.

But beware of the Wookiees, I have.

64 Lab 5. Markov Chains

Additional Material
Other Applications of Markov Chains
Markov chains are a useful way to study many probabilistic phenomena, so they have a wide variety

of applications. The following are just a few that are covered in other parts of this lab manual series.

� PageRank: Google's PageRank algorithm uses a Markov chain-based approach to rank web

pages. The main idea is to use the entries of the steady state vector as a measure of importance

for the corresponding states. For example, the steady state x =
[
2/3 1/3

]T
for the two-state

weather model means that the hot state is �more important� (occurs more frequently) than the

cold state. See the PageRank lab in Volume 1.

� MCMC Sampling: A Monte Carlo Markov Chain (MCMC) method constructs a Markov

chain whose steady state is a probability distribution that is di�cult to sample from directly.

This provides a way to sample from nontrivial or abstract distributions. Many MCMC methods

are used in various �elds, from machine learning to physics. See the Volume 3 lab on the

Metropolis-Hastings algorithm.

� Hidden Markov Models: The Markov chain simulations in this lab use an initial condition

(a state distribution vector x0) and known transition probabilities to make predictions forward

in time. Converseyl, a hidden Markov model (HMM) assumes that a given set of observations

are the result of a Markov process, then uses those observations to infer the corresponding tran-

sition probabilities. Hidden Markov models are used extensively in modern machine learning,

especially for speech and language processing. See the Volume 3 lab on Speech Recognition.

Large Training Sets
The approach in Problems 5 and 6 begins to fail as the training set grows larger. For example, a

single Shakespearean play may not be large enough to cause memory problems, but The Complete

Works of William Shakespeare certainly will.

To accommodate larger data sets, consider use a sparse matrix from scipy.sparse for the

transition matrix instead of a regular NumPy array. Speci�cally, construct the transition matrix as a

lil_matrix (which is easy to build incrementally), then convert it to the csc_matrix format (which

supports fast column operations). Ensure that the process still works on small training sets, then

proceed to larger training sets. How are the resulting sentences di�erent if a very large training set

is used instead of a small training set?

Variations on the English Model
Choosing a di�erent state space for the English Markov model produces di�erent results. Consider

modifying the SentenceGenerator class so that it can determine the state space in a few di�erent

ways. The following ideas are just a few possibilities.

� Let each punctuation mark have its own state. In the Dr. Seuss training set, instead of having

two states for the words �ham?� and �ham.�, there would be three states: �ham�, �?�, and �.�,

with �ham� transitioning to both punctuation states.

� Model paragraphs instead of sentences. Add a $tartParagraph state that always transitions to

$tartSentence and a $topParagraph state that is sometimes transitioned to by $topSentence.

65

� Let the states be individual letters instead of individual words. Be sure to include a state for

the spaces between words.

� Construct the state space so that the next state depends on both the current and previous

states. This kind of Markov chain is called a Markov chain of order 2. This way, every set of

three consecutive words in a randomly generated sentence should be part of the training set,

as opposed to only every consecutive pair of words coming from the set.

� Instead of generating random sentences from a single source, simulate a random conversation

between n people. Construct a Markov chain Mi, for each person, i = 1, . . . , n, then create a

Markov chain C describing the conversation transitions from person to person; in other words,

the states of C are the Mi. To create the conversation, generate a random sentence from the

�rst person using M1. Then use C to determine the next speaker, generate a random sentence

using their Markov chain, and so on.

Natural Language Processing Tools
The Markov model of Problems 5 and 6 is a natural language processing application. Python's nltk

module (natural language toolkit) has many tools for parsing and analyzing text for these kinds of

problems [BL04]. For example, nltk.sent_tokenize() reads a single string and splits it up into

sentences. This could be useful, for example, in making the SentenceGenerator class compatible

with �les that do not have one sentence per line.

>>> from nltk import sent_tokenize

>>> with open("yoda.txt", 'r') as yoda:

... sentences = sent_tokenize(yoda.read())

...

>>> print(sentences)

['Away with your weapon!',

'I mean you no harm.',

'I am wondering - why are you here?',

...

The nltk module is not part of the Python standard library. For instructions on downloading,

installing, and using nltk, visit http://www.nltk.org/.

http://www.nltk.org/

66 Lab 5. Markov Chains

6 The Discrete Fourier
Transform

Lab Objective: The analysis of periodic functions has many applications in pure and applied

mathematics, especially in settings dealing with sound waves. The Fourier transform provides a way

to analyze such periodic functions. In this lab, we introduce how to work with digital audio signals

in Python, implement the discrete Fourier transform, and use the Fourier transform to detect the

frequencies present in a given sound wave. We strongly recommend completing the exercises in a

Jupyter Notebook.

Digital Audio Signals
Sound waves have two important characteristics: frequency, which determines the pitch of the sound,

and intensity or amplitude, which determines the volume of the sound. Computers use digital audio

signals to approximate sound waves. These signals have two key components: sample rate, which

relates to the frequency of sound waves, and samples, which measure the amplitude of sound waves

at a speci�c instant in time.

To see why the sample rate is necessary, consider an array with samples from a sound wave. The

sound wave can be arbitrarily stretched or compressed to make a variety of sounds. If compressed,

the sound becomes shorter and has a higher pitch. Similarly, the same set of samples with a lower

sample rate becomes stretched and has a lower pitch.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time (seconds)

30000

20000

10000

0

10000

20000

30000

Sa
m

pl
es

(a) The plot of tada.wav.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time (seconds)

30000

20000

10000

0

10000

20000

30000

Sa
m

pl
es

(b) Compressed plot of tada.wav.

Figure 6.1: Plots of the same set of samples from a sound wave with varying sample rates. The plot

on the left is the plot of the samples with the original sample rate. The sample rate of the plot on

the right has been doubled, resulting in a compression of the actual sound when played back.

67

68 Lab 6. The Discrete Fourier Transform

Given the rate at which a set of samples is taken, the wave can be reconstructed exactly as

it was recorded. In most applications, this sample rate is measured in Hertz (Hz), the number of

samples taken per second. The standard rate for high quality audio is 44100 equally spaced samples

per second, or 44.1 kHz.

Wave File Format

One of the most common audio �le formats across operating systems is the wave format, also called

wav after its �le extension. SciPy has built-in tools to read and create wav �les. To read a wav �le,

use scipy.io.wavfile.read(). This function returns the signal's sample rate and its samples.

Read from the sound file.

>>> from scipy.io import wavfile

>>> rate, samples = wavfile.read("tada.wav")

Sound waves can be visualized by plotting time against the amplitude of the sound, as in Figure

6.1. The amplitude of the sound at a given time is just the value of the sample at that time. Since

the sample rate is given in samples per second, the length of the sound wave in seconds is found by

dividing the number of samples by the sample rate:

num samples

sample rate
=

num samples

num samples/second
= second. (6.1)

Problem 1. Write a SoundWave class for storing digital audio signals.

1. The constructor should accept an integer sample rate and an array of samples. Store each

input as an attribute.

2. Write a method that plots the stored sound wave. Use (6.1) to correctly label the x-axis

in terms of seconds, and set the y-axis limits to [−32768, 32767] (the reason for this is

discussed in the next section).

Use SciPy to read tada.wav, then instantiate a corresponding SoundWave object and display

its plot. Compare your plot to Figure 6.1a.

Scaling

To write to a wav �le, use scipy.io.wavfile.write(). This function accepts the name of the �le

to write to, the sample rate, and the array of samples as parameters.

>>> import numpy as np

Write a 2-second random sound wave sampled at a rate of 44100 Hz.

>>> samples = np.random.randint(-32768, 32767, 88200, dtype=np.int16)

>>> wavfile.write("white_noise.wav", 44100, samples)

69

For scipy.io.wavfile.write() to correctly create a wav �le, the samples must be one of four

numerical datatypes: 32-bit �oating point (np.float32), 32-bit integers (np.int32), 16-bit integers

(np.int16), or 8-bit unsigned integers (np.uint8). If samples of a di�erent type are passed into the

function, it may still write a �le, but the sound will likely be distorted in some way. In this lab, we

only work with 16-bit integer samples, unless otherwise speci�ed.

A 16-bit integer is an integer between −32768 and 32767, inclusive. If the elements of an array

of samples are not all within this range, the samples must be scaled before writing to a �le: multiply

the samples by 32767 (the largest number in the 16-bit range) and divide by the largest sample

magnitude. This ensures the most accurate representation of the sound and sets it to full volume.

np.int16

((
original samples

max(|original samples|)

)
× 32767

)
= scaled samples (6.2)

Because 16-bit integers can only store numbers within a certain range, it is important to multiply

the original samples by the largest number in the 16-bit range after dividing by the largest sample

magnitude. Otherwise, the results of the multiplication may be outside the range of integers that

can be represented, causing over�ow errors. Also, samples may sometimes contain complex values,

especially after some processing. Make sure to scale and export only the real part (use the real

attribute of the array).

Note

The IPython API includes a tool for embedding sounds in a Jupyter Notebook. The function

IPython.display.Audio() accepts either a �le name or a sample rate (rate) and an array of

samples (data); calling the function generates an interactive music player in the Notebook.

Achtung!

Turn the volume down before listening to any of the sounds in this lab.

70 Lab 6. The Discrete Fourier Transform

Problem 2. Add a method to the SoundWave class that accepts a �le name and a boolean

force. Write to the speci�ed �le using the stored sample rate and the array of samples. If the

array of samples does not have np.int16 as its data type, or if force is True, scale the samples

as in (6.2) before writing the �le.

Use your method to create two new �les that contains the same sound as tada.wav: one

without scaling, and one with scaling (use force=True). Use IPython.display.Audio() to

display tada.wav and the new �les. All three �les should sound identical, except the scaled �le

should be louder than the other two.

Generating Sounds
Sinusoidal waves correspond to pure frequencies, like a single note on the piano. Recall that the

function sin(x) has a period of 2π. To create a speci�c tone for 1 second, we sample from the

sinusoid with period 1,

f(x) = sin(2πxk),

where k is the desired frequency. According to (6.1), generating a sound that lasts for s seconds at

a sample rate r requires rs equally spaced samples in the interval [0, s].

Problem 3. Write a function that accepts �oats k and s. Create a SoundWave instance con-

taining a tone with frequency k that lasts for s seconds. Use a sample rate of r = 44100.

The following table shows some frequencies that correspond to common notes. Octaves

of these notes are obtained by doubling or halving these frequencies.

Note Frequency (Hz)

A 440

B 493.88

C 523.25

D 587.33

E 659.25

F 698.46

G 783.99

A 880

Use your function to generate an A tone lasting for 2 seconds.

Problem 4. Digital audio signals can be combined by addition or concatenation. Adding

samples overlays tones so they play simultaneously; concatenated samples plays one set of

samples after the other with no overlap.

1. Implement the __add__() magic method for the SoundWave class so that if A and B

are SoundWave instances, A + B creates a new SoundWave object whose samples are the

element-wise sum of the samples from A and B. Raise a ValueError if the sample arrays

from A and B are not the same length.

71

Use your method to generate a three-second A minor chord (A, C, and E together).

2. Implement the __rshift__() magic methoda for the SoundWave class so that if A and B

are SoundWave instances, A >> B creates a new SoundWave object whose samples are the

concatenation of the samples from A, then the samples from B. Raise a ValueError if the

sample rates from the two objects are not equal.

(Hint: np.concatenate(), np.hstack(), and/or np.append() may be useful.)

Use your method to generate the arpeggio A→ C→ E, where each pitch lasts one second.

Consider using these two methods to produce elementary versions of some simple tunes.

aThe >> operator is a bitwise shift operator and is usually reserved for operating on binary numbers.

The Discrete Fourier Transform
As with the chords generated above, all sound waves are sums of varying amounts of di�erent fre-

quencies (pitches). In the case of the discrete samples f =
[
f0 f1 · · · fn−1

]T
that we have worked

with thus far, each fi gives information about the amplitude of the sound wave at a speci�c instant

in time. However, sometimes it is useful to �nd out what frequencies are present in the sound wave

and in what amount.

We can write the sound wave sample as a sum

f =

n−1∑
k=0

ckwn
(k), (6.3)

where {w(k)
n }n−1

k=0 , called the discrete Fourier basis, represents various frequencies. The coe�cients

ck represent the amount of each frequency present in the sound wave.

The discrete Fourier transform (DFT) is a linear transformation that takes f and �nds the

coe�cients c =
[
c0 c1 · · · cn−1

]T
needed to write f in this frequency basis. Later in the lab, we

will convert the index k to a value in Hertz to �nd out what frequency ck corresponds to.

Because the sample f was generated by taking n evenly spaced samples of the sound wave, we

generate the basis {w(k)
n }n−1

k=0 by taking n evenly spaced samples of the frequencies represented by

the oscillating functions {e−2πikt/n}n−1
k=0 . (Note that i =

√
−1, the imaginary unit, is represented as

1j in Python). This yields

w(k)
n =

[
ω0
n ω−kn · · · ω

−(n−1)k
n

]T
, (6.4)

where ωn = e2πi/n.

The DFT is then represented by the change of basis matrix

Fn =
1

n

[
w0
n w1

n w2
n · · · wn−1

n

]
=

1

n



1 1 1 · · · 1

1 ω−1
n ω−2

n · · · ω
−(n−1)
n

1 ω−2
n ω−4

n · · · ω
−2(n−1)
n

...
...

...
. . .

...

1 ω
−(n−1)
n ω

−2(n−1)
n · · · ω

−(n−1)2

n

 , (6.5)

and we can take the DFT of f by calculating

c = Fnf . (6.6)

72 Lab 6. The Discrete Fourier Transform

Note that the DFT depends on the number of samples n, since the discrete Fourier basis we use

depends on the number of samples taken. The larger n is, the closer the frequencies approximated

by the DFT will be to the actual frequencies present in the sound wave.

Achtung!

There are several di�erent conventions for de�ning the DFT. For example, instead of (6.6),

scipy.fftpack.fft() uses the formula

c = nFnf ,

where Fn is as given (6.5). Denoting this version of the DFT as F̂nf = ĉ, we have nFn = F̂n
and nc = ĉ. The conversion is easy, but it is very important to be aware of which convention

a particular implementation of the DFT uses.

Problem 5. Write a function that accepts an array f of samples. Use 6.6 to calculate the

coe�cients c of the DFT of f . Include the 1/n scaling in front of the sum.

Test your implementation on small, random arrays against scipy.fftpack.fft(), scaling

your output c to match SciPy's output ĉ. Once your function is working, try to optimize it so

that the entire array of coe�cients is calculated in the one line.

(Hint: Use array broadcasting.)

The Fast Fourier Transform

Calculating the DFT of a vector of n samples using only (6.6) is at leastO(n2), which is incredibly slow

for realistic sound waves. Fortunately, due to its inherent symmetry, the DFT can be implemented

as a recursive algorithm by separating the computation into even and odd indices. This method of

calculating the DFT is called the fast Fourier transform (FFT) and runs in O(n log n) time.

Algorithm 6.1 The fast Fourier transform for arrays with 2a entries for some a ∈ N.
1: procedure simple_fft(f , N)

2: procedure split(g)

3: n← size(g)

4: if n ≤ N then

5: return nFng . Use the function from Problem 5 for small enough g.

6: else

7: even ← SPLIT(g::2) . Get the DFT of every other entry of g, starting from 0.

8: odd ← SPLIT(g1::2) . Get the DFT of every other entry of g, starting from 1.

9: z← zeros(n)

10: for k = 0, 1, . . . , n− 1 do . Calculate the exponential parts of the sum.

11: zk ← e−2πik/n

12: m← n // 2 . Get the middle index for z (// is integer division).

13: return [even + z:m�odd, even + zm:�odd] . Concatenate two arrays of length m.

14: return SPLIT(f) / size(f)

73

Note that the base case in lines 4�5 of Algorithm 6.1 results from setting n = 1 in (6.6), yielding

the single coe�cient c0 = g0. The � in line 13 indicates the component-wise product

f � g =
[
f0g0 f1g1 · · · fn−1gn−1

]T
,

which is also called the Hadamard product of f and g.

This algorithm performs signi�cantly better than the naïve implementation of the DFT, but

the simple version described in Algorithm 6.1 only works if the number of original samples is exactly

a power of 2. SciPy's FFT routines avoid this problem by padding the sample array with zeros until

the size is a power of 2, then executing the remainder of the algorithm from there. Of course, SciPy

also uses various other tricks to further speed up the computation.

Problem 6. Write a function that accepts an array f of n samples where n is a power of 2.

Use Algorithm 6.1 to calculate the DFT of f .

(Hint: eliminate the loop in lines 10�11 with np.arange() and array broadcasting, and use

np.concatenate() or np.hstack() for the concatenation in line 13.)

Test your implementation on random arrays against scipy.fftpack.fft(), scaling your

output c to match SciPy's output ĉ. Time your function from Problem 5, this function, and

SciPy's function on an array with 8192 entries.

(Hint: Use %time in Jupyter Notebook to time a single line of code.)

Visualizing the DFT

The graph of the DFT of a sound wave is useful in a variety of applications. While the graph of

the sound in the time domain gives information about the amplitude (volume) of a sound wave at a

given time, the graph of the DFT shows which frequencies (pitches) are present in the sound wave.

Plotting a sound's DFT is referred to as plotting in the frequency domain.

As a simple example, the single-tone notes generated by the function in Problem 3 contain only

one frequency. For instance, Figure 6.2a graphs the DFT of an A tone. However, this plot shows two

frequency spikes, despite there being only one frequency present in the actual sound. This is due to

symmetries inherent to the DFT; for frequency detection, the second half of the plot can be ignored

as in Figure 6.2b.

74 Lab 6. The Discrete Fourier Transform

0 10000 20000 30000 40000
Frequency (Hz)

0

10000

20000

30000

40000
M

ag
ni

tu
de

(a) The DFT of an A tone with symmetries.

0 5000 10000 15000 20000
Frequency (Hz)

0

10000

20000

30000

40000

M
ag

ni
tu

de

(b) The DFT of an A tone without symmetries.

Figure 6.2: Plots of the DFT with and without symmetries. Notice that the x-axis of the symmetrical

plot on the left goes up to 44100 (the sample rate of the sound wave) while the x-axis of the non-

symmetric plot on the right goes up to only 22050 (half the sample rate). Also notice that the spikes

occur at 440 Hz and 43660 Hz (which is 44100− 440).

The DFT of a more complicated sound wave has many frequencies, each of which corresponds to

a di�erent tone present in the sound wave. The magnitude of the coe�cients indicates a frequency's

in�uence in the sound wave; a greater magnitude means that the frequency is more in�uential.

0 2000 4000 6000 8000 10000
Frequency (Hz)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

M
ag

ni
tu

de

1e7

Figure 6.3: The discrete Fourier transform of tada.wav. Each spike in the graph corresponds to a

frequency present in the sound wave. Since the sample rate of tada.wav is 22050 Hz, the plot of its

DFT without symmetries only goes up to 11025 Hz, half of its sample rate.

75

Plotting Frequencies
Since the DFT represents the frequency domain, the x-axis of a plot of the DFT should be in terms

of Hertz, which has units 1/s. In other words, to plot the magnitudes of the Fourier coe�cients

against the correct frequencies, we must convert the frequency index k of each ck to Hertz. This can

be done by multiplying the index by the sample rate and dividing by the number of samples:

k

num samples
× num samples

second
=

k

second
. (6.7)

In other words, kr/n = v, where r is the sample rate, n is the number of samples, and v is the

resulting frequency.

Problem 7. Modify your SoundWave plotting method from Problem 1 so that it accepts a

boolean defaulting to False. If the boolean is True, take the DFT of the stored samples and

plot�in a new subplot�the frequencies present on the x-axis and the magnitudes of those

frequencies (use np.abs() to compute the magnitude) on the y-axis. Only display the �rst half

of the plot (as in Figures 6.2b and 6.2b), and use (6.7) to adjust the x-axis so that it correctly

shows the frequencies in Hertz. Use SciPy to calculate the DFT.

Display the DFT plots of the A tone and the A minor chord from Problem 4. Compare

your results to Figures 6.2a and 6.4.

0 5000 10000 15000 20000
Frequency (Hz)

0

10000

20000

30000

40000

M
ag

ni
tu

de

Figure 6.4: The DFT of the A minor chord.

If the frequencies present in a sound are already known before plotting its DFT, the plot may

be interesting, but little new information is actually revealed. Thus, the main applications of the

DFT involve sounds in which the frequencies present are unknown. One application in particular is

sound �ltering, which will be explored in greater detail in a subsequent lab. The �rst step in �ltering

a sound is determining the frequencies present in that sound by taking its DFT.

Consider the DFT of the A minor chord in Figure 6.4. This graph shows that there are three

main frequencies present in the sound. To determine what those frequencies are, �nd which indices

of the array of DFT coe�cients have the three largest values, then scale these indices the same way

as in (6.7) to translate the indices to frequencies in Hertz.

76 Lab 6. The Discrete Fourier Transform

Problem 8. The �le mystery_chord.wav contains an unknown chord. Use the DFT and the

frequency table in Problem 3 to determine the individual notes that are present in the sound.

(Hint: np.argsort() may be useful.)

7 Convolution and
Filtering

Lab Objective: The Fourier transform reveals information in the frequency domain about signals

and images that might not be apparent in the usual time (sound) or spatial (image) domain. In this

lab, we use the discrete Fourier transform to e�ciently convolve sound signals and �lter out some

types of unwanted noise from both sounds and images. This lab is a continuation of the Discrete

Fourier Transform lab and should be completed in the same Jupyter Notebook.

Convolution
Mixing two sounds signals�a common procedure in signal processing and analysis�is usually done

through a discrete convolution. Given two periodic sound sample vectors f and g of length n, the

discrete convolution of f and g is a vector of length n where the kth component is given by

(f ∗ g)k =

n−1∑
j=0

fk−jgj , k = 0, 1, 2, . . . , n− 1. (7.1)

Since audio needs to be sampled frequently to create smooth playback, a recording of a song can

contain tens of millions of samples; even a one-minute signal has 2, 646, 000 samples if it is recorded

at the standard rate of 44, 100 samples per second (44, 100 Hz). The naïve method of using the sum

in (7.1) n times is O(n2), which is often too computationally expensive for convolutions of this size.

Fortunately, the discrete Fourier transform (DFT) can be used compute convolutions e�ciently.

The �nite convolution theorem states that the Fourier transform of a convolution is the element-wise

product of Fourier transforms:

Fn(f ∗ g) = n(Fnf)� (Fng). (7.2)

In other words, convolution in the time domain is equivalent to component-wise multiplication in the

frequency domain. Here Fn is the DFT on Rn, ∗ is discrete convolution, and � is component-wise

multiplication. Thus, the convolution of f and g can be computed by

f ∗ g = nF−1
n ((Fnf)� (Fng)), (7.3)

where F−1
n is the inverse discrete Fourier transform (IDFT). The fast Fourier transform (FFT) puts

the cost of (7.3) at O(n log n), a huge improvement over the naïve method.

77

78 Lab 7. Convolution and Filtering

Note

Although individual samples are real numbers, results of the IDFT may have small complex

components due to rounding errors. These complex components can be safely discarded by

taking only the real part of the output of the IDFT.

>>> import numpy

>>> from scipy.fftpack import fft, ifft # Fast DFT and IDFT functions.

>>> f = np.random.random(2048)

>>> f_dft_idft = ifft(fft(f)).real # Keep only the real part.

>>> np.allclose(f, f_dft_idft) # Check that IDFT(DFT(f)) = f.

True

Achtung!

SciPy uses a di�erent convention to de�ne the DFT and IDFT than this and the previous lab,

resulting in a slightly di�erent form of the convolution theorem. Writing SciPy's DFT as F̂n
and its IDFT as F̂−1

n , we have F̂n = nFn, so (7.3) becomes

f ∗ g = F̂−1
n ((F̂nf)� (F̂ng)), (7.4)

without a factor of n. Use (7.4), not (7.3), when using fft() and ifft() from scipy.fftpack.

Circular Convolution
The de�nition (7.1) and the identity (7.3) require f and g to be periodic vectors. However, the

convolution f ∗g can always be computed by simply treating each vector as periodic. The convolution

of two raw sample vectors is therefore called the periodic or circular convolution. This strategy mixes

sounds from the end of each signal with sounds at the beginning of each signal.

Problem 1.

Implement the __mul__() magic method for the SoundWave class so that if A and B are

SoundWave instances, A * B creates a new SoundWave object whose samples are the circu-

lar convolution of the samples from A and B. If the samples from A and B are not the same

length, append zeros to the shorter array to make them the same length before convolving. Use

scipy.fftpack and (7.4) to compute the convolution, and raise a ValueError if the sample

rates from A and B are not equal.

A circular convolution creates an interesting e�ect on a signal when convolved with a

segment of white noise: the sound loops seamlessly from the end back to the beginning. To

see this, generate two seconds of white noise (at the same sample rate as tada.wav) with the

following code.

79

>>> rate = 22050 # Create 2 seconds of white noise at a given rate.

>>> white_noise = np.random.randint(-32767, 32767, rate*2, dtype=np.int16)

Next, convolve tada.wav with the white noise. Finally, use the >> operator to append the

convolution result to itself. This �nal signal sounds the same from beginning to end, even

though it is the concatenation of two signals.

Linear Convolution

Although circular convolutions can give interesting results, most common sound mixtures do not

combine sounds at the beginning of one signal with sounds at the end of another. Whereas circular

convolution assumes that the samples represent a full period of a periodic function, linear convolution

aims to combine non-periodic discrete signals in a way that prevents the beginnings and endings from

interacting. Given two samples with lengths n and m, the simplest way to achieve this is to pad both

samples with zeros so that they each have length n+m− 1, compute the convolution of these larger

arrays, and take the �rst n+m− 1 entries of that convolution.

Problem 2.

Implement the __pow__() magic method for the SoundWave class so that if A and B are

SoundWave instances, A ** B creates a new SoundWave object whose samples are the linear

convolution of the samples from A and B. Raise a ValueError if the sample rates from A and

B are not equal.

Because scipy.fftpack performs best when the length of the inputs is a power of 2, start

by computing the smallest 2a such that 2a ≥ n + m − 1, where a ∈ N and n and m are the

number of samples from A and B, respectively. Append zeros to each sample so that they each

have 2a entries, then compute the convolution of these padded samples using (7.4). Use only

the �rst n+m− 1 entries of this convolution as the samples of the returned SoundWave object.

To test your method, read CGC.wav and GCG.wav. Time (separately) the convolution of

these signals with SoundWave.__pow__() and with scipy.signal.fftconvolve(). Compare

the results by listening to the original and convolved signals.

Problem 3. Clapping in a large room with an echo produces a sound that resonates in the

room for up to several seconds. This echoing sound is referred to as the impulse response of

the room, and is a way of approximating the acoustics of a room. When the sound of a single

instrument in a carpeted room is convolved with the impulse response from a concert hall, the

new signal sounds as if the instrument is being played in the concert hall.

The �le chopin.wav contains a short clip of a piano being played in a room with little or no

echo, and balloon.wav is a recording of a balloon being popped in a room with a substantial

echo (the impulse). Use your method from Problem 2 or scipy.signal.fftconvolve() to

compute the linear convolution of chopin.wav and balloon.wav.

80 Lab 7. Convolution and Filtering

Filtering Frequencies with the DFT
The DFT also provides a way to clean a signal by altering some of its frequencies. Consider

noisy1.wav, a noisy recording of a short voice clip. The time-domain plot of the signal only shows

that the signal has a lot of static. On the other hand, the signal's DFT suggests that the static may

be the result of some concentrated noise between about 1250�2600 Hz. Removing these frequencies

could result in a much cleaner signal.

0 1 2 3 4 5 6 7 8
Time (seconds)

30000

20000

10000

0

10000

20000

30000

Sa
m

pl
es

0 2000 4000 6000 8000 10000
Frequency (Hz)

0.0

0.5

1.0

1.5

2.0

2.5

M
ag

ni
tu

de

1e7

Figure 7.1: The time-domain plot (left) and DFT (right) of noisy1.wav.

To implement this idea, recall that the kth entry of the DFT array c = Fnf corresponds to the

frequency v = kr/n in Hertz, where r is the sample rate and n is the number of samples. Hence,

the DFT entry ck corresponding to a given frequency v in Hertz has index k = vn/r, rounded to an

integer if needed. In addition, since the DFT is symmetric, cn−k also corresponds to this frequency.

This suggests a strategy for �ltering out an unwanted interval of frequencies [vlow, vhigh] from a signal:

1. Compute the integer indices klow and khigh corresponding to vlow and vhigh, respectively.

2. Set the entries of the signal's DFT from klow to khigh and from n − khigh to n − klow to zero,

e�ectively removing those frequencies from the signal.

3. Take the IDFT of the modi�ed DFT to obtain the cleaned signal.

Using this strategy to �lter noisy1.wav results in a much cleaner signal. However, any �good�

frequencies in the a�ected range are also removed, which may decrease the overall sound quality.

The goal, then, is to remove only as many frequencies as necessary.

0 1 2 3 4 5 6 7 8
Time (seconds)

30000

20000

10000

0

10000

20000

30000

Sa
m

pl
es

0 2000 4000 6000 8000 10000
Frequency (Hz)

0.0

0.2

0.4

0.6

0.8

M
ag

ni
tu

de

1e7

Figure 7.2: The time-domain plot (left) and DFT (right) of noisy1.wav after being cleaned.

81

Problem 4. Add a method to the SoundWave class that accepts two frequencies vlow and vhigh
in Hertz. Compute the DFT of the stored samples and zero out the frequencies in the range

[vlow, vhigh] (remember to account for the symmetry DFT). Take the IDFT of the altered array

and store it as the sample array.

Test your method by cleaning noisy1.wav, then clean noisy2.wav, which also has some

arti�cial noise that obscures the intended sound.

(Hint: plot the DFT of noisy2.wav to determine which frequencies to eliminate.)

A digital audio signal made of a single sample vector with is called monoaural or mono. When

several sample vectors with the same sample rate and number of samples are combined into a matrix,

the overall signal is called stereophonic or stereo. This allows multiple speakers to each play one

channel�one of the original sample vectors�simultaneously. �Stereo� usually means there are two

channels, but there may be any number of channels (5.1 surround sound, for instance, has �ve).

Most stereo sounds are read as n×m matrices, where n is the number of samples and m is the

number of channels (i.e., each column is a channel). However, some functions, including Jupyter's

embedding tool IPython.display.Audio(), receive stereo signals as m× n matrices (each row is a

channel). Be aware that both conventions are common.

Problem 5. During the 2010 World Cup in South Africa, large plastic horns called vuvuzelas

were blown excessively throughout the games. Broadcasting organizations faced di�culties with

their programs due to the incessant noise level. Eventually, audio �ltering techniques were used

to cancel out the sound of the vuvuzela, which has a frequency of around 200�500 Hz.

The �le vuvuzela.wava is a stereo sound with two channels. Use your function from

Problem 4 to clean the sound clip by �ltering out the vuvuzela frequencies in each channel.

Recombine the two cleaned samples.

aSee https://www.youtube.com/watch?v=g_0NoBKWCT8.

The Two-dimensional Discrete Fourier Transform

The DFT can be easily extended to any number of dimensions. Computationally, the problem reduces

to performing the usual one-dimensional DFT iteratively along each of the dimensions. For example,

to compute the two-dimensional DFT of an m × n matrix, calculate the usual DFT of each of the

n columns, then take the DFT of each of the m rows of the resulting matrix. Calculating the two-

dimensional IDFT is done in a similar fashion, but in reverse order: �rst calculate the IDFT of the

rows, then the IDFT of the resulting columns.

>>> from scipy.fftpack import fft2, ifft2

>>> A = np.random.random((10,10))

>>> A_dft = fft2(A) # Calculate the 2d DFT of A.

>>> A_dft_ifft = ifft2(A_dft).real # Calculate the 2d IDFT.

>>> np.allclose(A, A_dft_ifft)

True

https://www.youtube.com/watch?v=g_0NoBKWCT8

82 Lab 7. Convolution and Filtering

Just as the one-dimensional DFT can be used to remove noise in sounds, its two-dimensional

counterpart can be used to remove �noise� in images. The procedure is similar to the �ltering

technique in Problems 4 and 5: take the two-dimensional DFT of the image matrix, modify certain

entries of the DFT matrix to remove unwanted frequencies, then take the IDFT to get a cleaner

version of the original image. This strategy makes the fairly strong assumption that the noise in

the image is periodic and corresponds to certain frequencies. While this may seem like an unlikely

scenario, it does actually occur in many digital images�for an example, try taking a picture of a

computer screen with a digital camera.

(a) The original blurry image. (b) The DFT of the original image.

(c) The improved image. (d) The DFT of the improved image.

Figure 7.3: To remove noise from an image, take the DFT of the image and replace the abnormalities

with values more consistent with the rest of the DFT. Notice that the new image is less noisy, but

only slightly. This is because only some of the abnormalities in the DFT were changed; in order to

further decrease the noise, we would need to further alter the DFT.

83

To begin cleaning an image with the DFT, take the two-dimensional DFT of the image matrix.

Identify spikes�abnormally high frequency values that may be causing the noise�in the image DFT

by plotting the log of the magnitudes of the Fourier coe�cients. With cmap="gray", spikes show up

as bright spots. See Figures 7.3a�7.3b.

Read the image.

>>> import imageio

>>> im = imageio.read("noisy_face.png")

Plot the log magnitude of the image's DFT.

>>> im_dft = fft2(image)

>>> plt.imshow(np.log(np.abs(im_dft)), cmap="gray")

>>> plt.show()

Instead of setting spike frequencies to zero (as was the case for sounds), replace them with

values that are similar to those around them. There are many ways to do this, but one convention

is to simply �patch� each spike by setting portions of the DFT matrix to some set value, such as the

mean of the DFT array. See Figure 7.3d.

Once the spikes have been covered, take the IDFT of the modi�ed DFT to get a (hopefully

cleaner) image. Notice that Figure 7.3c still has noise present, but it is a slight improvement over the

original. However, it often su�ces to remove some of the noise, even if it is not possible to remove

it all with this method.

Problem 6. The �le license_plate.png contains a noisy image of a license plate. The bottom

right corner of the plate has is a sticker with information about the month and year that the

vehicle registration was renewed. However, in its current state, the year is not clearly legible.

Use the two-dimensional DFT to clean up the image enough so that the year in the bottom

right corner is legible. This may require a little trial and error.

84 Lab 7. Convolution and Filtering

8 Introduction to
Wavelets

Lab Objective: Wavelets are used to sparsely represent information. This makes them useful in

a variety of applications. We explore both the one- and two-dimensional discrete wavelet transforms

using various types of wavelets. We then use a Python package called PyWavelets for further wavelet

analysis including image cleaning and image compression.

Wavelet Functions
Wavelets families are sets of orthogonal functions (wavelets) designed to decompose nonperiodic,

piecewise continuous functions. These families have four types of wavelets: mother, daughter, father,

and son functions. Father and son wavelets contain information related to the general movement of

the function, while mother and daughter wavelets contain information related to the details of the

function. The father and mother wavelets are the basis of a family of wavelets. Son and daughter

wavelets are just scaled translates of the father and mother wavelets, respectively.

Haar Wavelets
The Haar Wavelet family is one of the most widely used wavelet families in wavelet analysis. This

set includes the father, mother, son, and daughter wavelets de�ned below. The Haar father (scaling)

function is given by

ϕ(x) =

{
1 if 0 ≤ x < 1

0 otherwise.

The Haar son wavelets are scaled and translated versions of the father wavelet:

ϕjk(x) = ϕ(2jx− k) =

{
1 if k

2j ≤ x < k+1
2j

0 otherwise.

The Haar mother wavelet function is de�ned as

ψ(x) =


1 if 0 ≤ x < 1

2

−1 if 1
2 ≤ x < 1

0 otherwise.

The Haar daughter wavelets are scaled and translated versions of the mother wavelet

ψjk = ψ(2jx− k)

85

86 Lab 8. Introduction to Wavelets

Wavelet Decompositions

Information (such as a mathematical function or signal) can be stored and analyzed by considering

its wavelet decomposition. A wavelet decomposition is a linear combination of wavelets. For example,

a mathematical function f can be approximated as a combination of Haar son and daughter wavelets

as follows:

f(x) =

∞∑
k=−∞

akϕm,k(x) +

∞∑
k=−∞

bm,kψm,k(x) + · · ·+
∞∑

k=−∞

bn,kψn,k(x)

where m < n, and all but a �nite number of the ak and bj,k terms are nonzero. The ak terms are

often referred to as approximation coe�cients while the bj,k terms are known as detail coe�cients.

The approximation coe�cients typically capture the broader, more general features of a signal while

the detail coe�cients capture smaller details and noise.

A wavelet decomposition can be done with any family of wavelet functions. Depending on the

properties of the wavelet and the function (or signal) f , f can be approximated to an arbitrary level

of accuracy. Each arbitrary wavelet family has a mother wavelet ψ and a father wavelet ϕ which are

the basis of the family. A countably in�nite set of wavelet functions (daughter and son wavelets) can

be generated using dilations and shifts of the �rst two functions where m, k ∈ Z:

ψm,k(x) = ψ(2mx− k)

ϕm,k(x) = ϕ(2mx− k).

The Discrete Wavelet Transform

The mapping from a function to a sequence of wavelet coe�cients is called the discrete wavelet

transform. The discrete wavelet transform is analogous to the discrete Fourier transform. Now,

instead of using trigonometric functions, di�erent families of basis functions are used.

In the case of �nitely-sampled signals and images, there exists an e�cient algorithm for com-

puting the wavelet decomposition. Commonly used wavelets have associated high-pass and low-pass

�lters which are derived from the wavelet and scaling functions, respectively.

When the low-pass �lter is convolved with the sampled signal, low frequency (also known as

approximation) information is extracted. This is similar to turning up the bass on a speaker, which

extracts the low frequencies of a sound wave. This �lter highlights the overall (slower-moving) pattern

without paying too much attention to the high frequency details and extracts the approximation

coe�cients.

When the high-pass �lter is convolved with the sampled signal, high frequency information (also

known as detail) is extracted. This is similar to turning up the treble on a speaker, which extracts

the high frequencies of a sound wave. This �lter highlights the small changes found in the signal and

extracts the detail coe�cients.

The two primary operations of the algorithm are the discrete convolution and downsampling,

denoted ∗ and DS, respectively. First, a signal is convolved with both �lters. The resulting arrays

will be twice the size of the original signal because the frequency of the sample will have changed

by a factor of 2. To remove this redundant information, the resulting arrays are downsampled. In

the context of this lab, a �lter bank is the combined process of convolving with a �lter, and then

downsampling. The result will be an array of approximation coe�cients A and an array of detail

coe�cients D. This process can be repeated on the new approximation to obtain another layer of

approximation and detail coe�cients. See Figure 8.1.

87

A common lowpass �lter is the averaging �lter. Given an array x, the averaging �lter produces

an array y where yn is the average of xn and xn−1. In other words, the averaging �lter convolves an

array with the array L =
[

1
2

1
2

]
. This �lter preserves the main idea of the data. The corresponding

highpass �lter is the distance �lter. Given an array x, the distance �lter produces an array y where

yn is the distance between xn and xn−1. In other words, the di�erence �lter convolves an array with

the array H =
[
− 1

2
1
2

]
. This �lter preserves the details of the data.

For the Haar Wavelet, we will use the lowpass and highpass �lters mentioned. In order for

this �lters to have inverses, the �lters must be normalized (for more on why this is, see Additional

Materials). The resulting lowpass and highpass �lters for the Haar Wavelets are the following:

L =
[√

2
2

√
2

2

]
H =

[
−
√

2
2

√
2

2

]

Aj

Lo

Hi

Aj+1

Dj+1

Key: = convolve = downsample

Figure 8.1: The one-dimensional discrete wavelet transform implemented as a �lter bank.

As noted earlier, the key mathematical operations of the discrete wavelet transform are con-

volution and downsampling. Given a �lter and a signal, the convolution can be obtained using

scipy.signal.fftconvolve().

>>> from scipy.signal import fftconvolve

>>> # Initialize a filter.

>>> L = np.ones(2)/np.sqrt(2)

>>> # Initialize a signal X.

>>> X = np.sin(np.linspace(0,2*np.pi,16))

>>> # Convolve X with L.

>>> fftconvolve(X, L)

[-1.84945741e-16 2.87606238e-01 8.13088984e-01 1.19798126e+00

1.37573169e+00 1.31560561e+00 1.02799937e+00 5.62642704e-01

7.87132986e-16 -5.62642704e-01 -1.02799937e+00 -1.31560561e+00

-1.37573169e+00 -1.19798126e+00 -8.13088984e-01 -2.87606238e-01

-1.84945741e-16]

88 Lab 8. Introduction to Wavelets

The convolution operation alone gives redundant information, so it is downsampled to keep

only what is needed. The array will be downsampled by a factor of 2, which means keeping only

every other entry:

>>> # Downsample an array X.

>>> sampled = X[1::2] # Keeps odd entries

Both the approximation and detail coe�cients are computed in this manner. The approximation

uses the low-pass �lter while the detail uses the high-pass �lter. Implementation of a �lter bank is

found in Algorithm 8.1.

Algorithm 8.1 The one-dimensional discrete wavelet transform. X is the signal to be transformed,

L is the low-pass �lter, H is the high-pass �lter and n is the number of �lter bank iterations.

1: procedure dwt(X,L,H, n)

2: A0 ← X . Initialization.

3: for i = 0 . . . n− 1 do

4: Di+1 ← DS(Ai ∗H) . High-pass �lter and downsample.

5: Ai+1 ← DS(Ai ∗ L) . Low-pass �lter and downsample.

6: return An, Dn, Dn−1, . . . , D1.

Problem 1. Write a function that calculates the discrete wavelet transform using Algorithm

8.1. The function should return a list of one-dimensional NumPy arrays in the following form:

[An, Dn, . . . , D1].

Test your function by calculating the Haar wavelet coe�cients of a noisy sine signal with

n = 4:

domain = np.linspace(0, 4*np.pi, 1024)

noise = np.random.randn(1024)*.1

noisysin = np.sin(domain) + noise

coeffs = dwt(noisysin, L, H, 4)

Plot the original signal with the approximation and detail coe�cients and verify that they

match the plots in Figure 8.2.

(Hint: Use array broadcasting).

89

X

A4

D4

D3

D2

D1

Figure 8.2: A level four wavelet decomposition of a signal. The top panel is the original signal, the

next panel down is the approximation, and the remaining panels are the detail coe�cients. Notice

how the approximation resembles a smoothed version of the original signal, while the details capture

the high-frequency oscillations and noise.

Inverse Discrete Wavelet Transform
The process of the discrete wavelet transform is reversible. Using modi�ed �lters, a set of detail and

approximation coe�cients can be manipulated and combined to recreate a signal. The Haar wavelet

�lters for the inverse transformation are found by reversing the operations for each �lter. The Haar

inverse �lters are given below:

L−1 =
[√

2
2

√
2

2

]
H−1 =

[√
2

2 −
√

2
2

]
The �rst row refers to the inverse high-pass �lter and the second row refers to the inverse low-pass

�lter.

Suppose the wavelet coe�cients An and Dn have been computed. An−1 can be recreated

by tracing the schematic in Figure 8.1 backwards: An and Dn are �rst upsampled, and then are

convolved with the inverse low-pass and high-pass �lters, respectively. In the case of the Haar

wavelet, upsampling involves doubling the length of an array by inserting a 0 at every other position.

To complete the operation, the new arrays are convolved and added together to obtain An−1.

>>> # Upsample the coefficient arrays A and D.

>>> up_A = np.zeros(2*A.size)

>>> up_A[::2] = A

>>> up_D = np.zeros(2*D.size)

>>> up_D[::2] = D

>>> # Convolve and add, discarding the last entry.

>>> A = fftconvolve(up_A, L)[:-1] + fftconvolve(up_D, H)[:-1]

This process is continued with the newly obtained approximation coe�cients and with the next

detail coe�cients until the original signal is recovered.

90 Lab 8. Introduction to Wavelets

Problem 2. Write a function that performs the inverse wavelet transform. The function should

accept a list of arrays (of the same form as the output of Problem 1), a reverse low-pass �lter,

and a reverse high-pass �lter. The function should return a single array, which represents the

recovered signal.

Note that the input list of arrays has length n + 1 (consisting of An together with

Dn, Dn−1, . . . , D1), so your code should perform the process given above n times.

To test your function, �rst perform the inverse transform on the noisy sine wave that you

created in the �rst problem. Then, compare the original signal with the signal recovered by

your inverse wavelet transform function using np.allclose().

Achtung!

Although Algorithm 8.1 and the preceding discussion apply in the general case, the code imple-

mentations apply only to the Haar wavelet. Because of the nature of the discrete convolution,

when convolving with longer �lters, the signal to be transformed needs to undergo a di�erent

type of lengthening in order to avoid information loss during the convolution. As such, the

functions written in Problems 1 and 2 will only work correctly with the Haar �lters and would

require modi�cations to be compatible with more wavelets.

The Two-dimensional Wavelet Transform

The generalization of the wavelet transform to two dimensions is similar to one dimensional trans-

forms. Again, the two primary operations used are convolution and downsampling. The main

di�erence in the two-dimensional case is the number of convolutions and downsamples per iteration.

First, the convolution and downsampling are performed along the rows of an array. This results in

two new arrays, as in the one dimensional case. Then, convolution and downsampling are performed

along the columns of the two new arrays. This results in four �nal arrays that make up the new

approximation and detail coe�cients. See Figure 8.3.

When implemented as an iterative �lter bank, each pass through the �lter bank yields one

set of approximation coe�cients plus three sets of detail coe�cients. More speci�cally, if the two-

dimensional array X is the input to the �lter bank, the arrays LL, LH, HL, and HH are obtained.

LL is a smoothed approximation of X (similar to An in the one-dimensional case), and the other

three arrays contain detail coe�cients that capture high-frequency oscillations in vertical, horizontal,

and diagonal directions. The arrays LL, LH, HL, and HH are known as subbands. Any or all of

the subbands can be fed into a �lter bank to further decompose the signal into additional subbands.

This decomposition can be represented by a partition of a rectangle, called a subband pattern. The

subband pattern for one pass of the �lter bank is shown in Figure 8.4, with an example of an image

decomposition given in Figure 8.5.

91

LLj

Lo

Hi

Hi

Lo

Hi

Lo LLj+1

LHj+1

HLj+1

HHj+1

rows columns

Key: = convolve = downsample

Figure 8.3: The two-dimensional discrete wavelet transform implemented as a �lter bank.

X

LL LH

HL HH

Figure 8.4: The subband pattern for one step in the 2-dimensional wavelet transform.

92 Lab 8. Introduction to Wavelets

Figure 8.5: Subbands for the mandrill image after one pass through the �lter bank. Note how the

upper left subband (LL) is an approximation of the original Mandrill image, while the other three

subbands highlight the stark vertical, horizontal, and diagonal changes in the image.

Original image source: http://sipi.usc.edu/database/.

The wavelet coe�cients obtained from a two-dimensional wavelet transform are used to ana-

lyze and manipulate images at di�ering levels of resolution. Images are often sparsely represented

by wavelets; that is, most of the image information is captured by a small subset of the wavelet

coe�cients. This is a key fact for wavelet-based image compression and will be discussed in further

detail later in the lab.

The PyWavelets Module
PyWavelets is a Python package designed for wavelet analysis. Although it has many other uses,

in this lab it will primarily be used for image manipulation. PyWavelets can be installed using the

following command:

$ pip install PyWavelets

http://sipi.usc.edu/database/

93

PyWavelets provides a simple way to calculate the subbands resulting from one pass through

the �lter bank. The following code demonstrates how to �nd the approximation and detail subbands

of an image.

>>> from imageio import imread

>>> import pywt # The PyWavelets package.

The True parameter produces a grayscale image.

>>> mandrill = imread('mandrill1.png', True)

Use the Daubechies 4 wavelet with periodic extension.

>>> lw = pywt.dwt2(mandrill, 'db4', mode='per')

The function pywt.dwt2() calculates the subbands resulting from one pass through the �lter

bank. The second positional argument speci�es the type of wavelet to be used in the transform. The

mode keyword argument sets the extension mode, which determines the type of padding used in the

convolution operation. For the problems in this lab, always use mode='per', which is the periodic

extension. The function dwt2() returns a list. The �rst entry of the list is the LL, or approximation,

subband. The second entry of the list is a tuple containing the remaining subbands, LH, HL, and

HH (in that order).

PyWavelets supports a number of di�erent wavelets which are divided into di�erent classes

known as families. The supported families and their wavelet instances can be listed by executing the

following code:

>>> # List the available wavelet families.

>>> print(pywt.families())

['haar', 'db', 'sym', 'coif', 'bior', 'rbio', 'dmey', 'gaus', 'mexh', 'morl', '←↩
cgau', 'shan', 'fbsp', 'cmor']

>>> # List the available wavelets in a given family.

>>> print(pywt.wavelist('coif'))

['coif1', 'coif2', 'coif3', 'coif4', 'coif5', 'coif6', 'coif7', 'coif8', 'coif9←↩
', 'coif10', 'coif11', 'coif12', 'coif13', 'coif14', 'coif15', 'coif16', '←↩
coif17']

Di�erent wavelets have di�erent properties; the most suitable wavelet is dependent on the

speci�c application. For example, the morlet wavelet is closely related to human hearing and vision.

Note that not all of these families work with the function pywt.dwt2(), because they are continuous

wavelets. Choosing which wavelet is used is partially based on the properties of a wavelet, but since

many wavelets share desirable properties, the best wavelet for a particular application is often not

known without some type of testing.

Note

The numerical value in a wavelets name refers to the �lter length. This value is multiplied by

the standard �lter length of the given wavelet, resulting in the new �lter length. For example,

coif1 has �lter length 6 and coif2 has �lter length 12.

94 Lab 8. Introduction to Wavelets

Problem 3. Explore the two-dimensional wavelet transform by completing the following:

1. Save a picture of a raccoon with the following code

>>> from scipy.misc import face

>>> racoon = face(True)

2. Plot the subbands of raccoon as described above (using the Daubechies 4 wavelet with

periodic extension). Compare this with the subbands of the mandrill image shown in

Figure 8.5.

3. Compare the subband patterns of the haar, symlet, and coi�et wavelets of the raccoon

picture by plotting the subbands after one pass through the �lter bank. The haar subband

should have more detail than the symlet subband, and the symlet subband should have

more detail than the coi�et wavelet.

The function pywt.wavedec2() is similar to pywt.dwt2(), but it also includes a keyword ar-

gument, level, which speci�es the number of times to pass an image through the �lter bank. It

will return a list of subbands, the �rst of which is the �nal approximation subband, while the

remaining elements are tuples which contain sets of detail subbands (LH, HL, and HH). If

level is not speci�ed, the number of passes through the �lter bank will be the maximum level

where the decomposition is still useful. The function pywt.waverec2() accepts a list of sub-

band patterns (like the output of pywt.wavedec2() or pywt.dwt2()), a name string denoting the

wavelet, and a keyword argument mode for the extension mode. It returns a reconstructed im-

age using the reverse �lter bank. When using this function, be sure that the wavelet and mode

match the deconstruction parameters. PyWavelets has many other useful functions including dwt

(), idwt() and idwt2() which can be explored further in the documentation for PyWavelets,

https://pywavelets.readthedocs.io/en/latest/index.html.

Applications
Noise Reduction

Noise in an image is de�ned as unwanted visual artifacts that obscure the true image. Images acquire

noise from a variety of sources, including cameras, data transfer, and image processing algorithms.

This section will focus on reducing a particular type of noise in images called Gaussian white noise.

Gaussian white noise causes every pixel in an image to be perturbed by a small amount. Many

types of noise, including Gaussian white noise, are very high-frequency. Since many images are

relatively sparse in high-frequency domains, noise in an image can be safely removed from the high

frequency subbands while minimally distorting the true image. A basic, but e�ective, approach to

reducing Gaussian white noise in an image is thresholding. Thresholding can be done in two ways,

referred to as hard and soft thresholding.

Given a positive threshold value τ , hard thresholding sets every detail coe�cient whose mag-

nitude is less than τ to zero, while leaving the remaining coe�cients untouched. Soft thresholding

also zeros out all coe�cients of magnitude less than τ , but in addition maps the remaining positive

coe�cients β to β − τ and the remaining negative coe�cients α to α+ τ .

https://pywavelets.readthedocs.io/en/latest/index.html

95

Once the coe�cients have been thresholded, the inverse wavelet transform is used to recover

the denoised image. The threshold value is generally a function of the variance of the noise, and in

real situations, is not known. In fact, noise variance estimation in images is a research area in its

own right, but that goes beyond the scope of this lab.

Problem 4. Write two functions that accept a list of wavelet coe�cients in the usual form,

as well as a threshold value. Each function returns the thresholded wavelet coe�cients (also

in the usual form). The �rst function should implement hard thresholding and the second

should implement soft thresholding. While writing these two functions, remember that only

the detail coe�cients are thresholded, so the �rst entry of the input coe�cient list should remain

unchanged.

To test your functions, perform hard and soft thresholding on noisy_darkhair.png and

plot the resulting images together. When testing your function, use the Daubechies 4 wavelet

and four sets of detail coe�cients (level=4 when using wavedec2()). For soft thresholding use

τ = 20, and for hard thresholding use τ = 40.

Image Compression

Transform methods based on Fourier and wavelet analysis play an important role in image compres-

sion; for example, the popular JPEG image compression standard is based on the discrete cosine

transform. The JPEG2000 compression standard and the FBI Fingerprint Image database, along

with other systems, take the wavelet approach.

The general framework for compression is as follows. First, the image to be compressed under-

goes some form of preprocessing, depending on the particular application. Next, the discrete wavelet

transform is used to calculate the wavelet coe�cients, and these are then quantized, i.e. mapped to

a set of discrete values (for example, rounded to the nearest integer). The quantized coe�cients are

then passed through an entropy encoder (such as Hu�man Encoding), which reduces the number

of bits required to store the coe�cients. What remains is a compact stream of bits that can be

saved or transmitted much more e�ciently than the original image. The steps above are nearly all

invertible (the only exception being quantization), allowing the original image to be almost perfectly

reconstructed from the compressed bitstream. See Figure 8.6.

Image Pre-Processing Wavelet Decomposition

Quantization Entropy Coding Bit Stream

Figure 8.6: Wavelet Image Compression Schematic

96 Lab 8. Introduction to Wavelets

WSQ: The FBI Fingerprint Image Compression Algorithm

The Wavelet Scalar Quantization (WSQ) algorithm is among the �rst successful wavelet-based image

compression algorithms. It solves the problem of storing millions of �ngerprint scans e�ciently while

meeting the law enforcement requirements for high image quality. This algorithm is capable of

achieving compression ratios in excess of 10-to-1 while retaining excellent image quality; see Figure

8.7. This section of the lab steps through a simpli�ed version of this algorithm by writing a Python

class that performs both the compression and decompression. Di�erences between this simpli�ed

algorithm and the complete algorithm are found in the Additional Material section at the end of this

lab. Most of the methods of the class have already been implemented. The following problems will

detail the methods you will need to implement yourself.

(a) Uncompressed (b) 12:1 compressed (c) 26:1 compressed

Figure 8.7: Fingerprint scan at di�erent levels of compression. Original image source: http://www.

nist.gov/itl/iad/ig/wsq.cfm.

WSQ: Preprocessing

Preprocessing in this algorithm ensures that roughly half of the new pixel values are negative, while

the other half are positive, and all fall in the range [−128, 128]. The input to the algorithm is a

matrix of nonnegative 8-bit integer values giving the grayscale pixel values for the �ngerprint image.

The image is processed by the following formula:

M ′ =
M −m

s
,

where M is the original image matrix, M ′ is the processed image, m is the mean pixel value, and

s = max{max(M) −m,m − min(M)}/128 (here max(M) and min(M) refer to the maximum and

minimum pixel values in the matrix).

Problem 5. Implement the preprocessing step as well as its inverse by implementing the class

methods pre_process() and post_process(). Each method accepts a NumPy array (the

image) and returns the processed image as a NumPy array. In the pre_process() method,

calculate the values of m and s given above and store them in the class attributes _m and _s.

http://www.nist.gov/itl/iad/ig/wsq.cfm
http://www.nist.gov/itl/iad/ig/wsq.cfm

97

WSQ: Calculating the Wavelet Coefficients

The next step in the compression algorithm is decomposing the image into subbands of wavelet

coe�cients. In this implementation of the WSQ algorithm, the image is decomposed into �ve sets

of detail coe�cients (level=5) and one approximation subband, as shown in Figure 8.8. Each of

these subbands should be placed into a list in the same ordering as in Figure 8.8 (another way

to consider this ordering is the approximation subband followed by each level of detail coe�cients

[LL5, LH5, HL5, HH5, LH4, HL4, . . . ,HH1]).

Problem 6. Implement the class method decompose(). This function should accept an image

to decompose and should return a list of ordered subbands. Use the function pywt.wavedec2()

with the 'coif1' wavelet to obtain the subbands. These subbands should then be ordered in

a single list as described above.

Implement the inverse of the decomposition by writing the class method recreate().

This function should accept a list of 16 subbands (ordered like the output of decompose()) and

should return a reconstructed image. Use pywt.waverec2() to reconstruct an image from the

subbands. Note that you will need to adjust the accepted list in order to adhere to the required

input for waverec2().

0 1
2 3 4

5 6
7

8 9

10

11 12

13

14 15

Figure 8.8: Subband Pattern for simpli�ed WSQ algorithm.

98 Lab 8. Introduction to Wavelets

WSQ: Quantization

Quantization is the process of mapping each wavelet coe�cient to an integer value and is the main

source of compression in the algorithm. By mapping the wavelet coe�cients to a relatively small set

of integer values, the complexity of the data is reduced, which allows for e�cient encoding of the

information in a bit string. Further, a large portion of the wavelet coe�cients will be mapped to 0 and

discarded completely. The fact that �ngerprint images tend to be very nearly sparse in the wavelet

domain means that little information is lost during quantization. Care must be taken, however, to

perform this quantization in a manner that achieves good compression without discarding so much

information that the image cannot be accurately reconstructed.

Given a wavelet coe�cient a in subband k, the corresponding quantized coe�cient p is given

by

p =


⌊
a−Zk/2
Qk

⌋
+ 1, a > Zk/2

0, −Zk/2 ≤ a ≤ Zk/2⌈
a+Zk/2
Qk

⌉
− 1, a < −Zk/2,

where Zk and Qk are dependent on the subband. They determine how much compression is achieved.

If Qk = 0, all coe�cients are mapped to 0.

Selecting appropriate values for these parameters is a tricky problem in itself, and relies on

heuristics based on the statistical properties of the wavelet coe�cients. The methods that calculate

these values have already been initialized.

Quantization is not a perfectly invertible process. Once the wavelet coe�cients have been

quantized, some information is permanently lost. However, wavelet coe�cients âk in subband k can

be roughly reconstructed from the quantized coe�cients p using

âk =


(p− C)Qk + Zk/2, p > 0

0, p = 0

(p+ C)Qk − Zk/2, p < 0,

where C is a new dequanitization parameter. This process is called dequantization. Again, if Qk = 0,

âk = 0 should be returned.

Problem 7. Implement the quantization step by writing the quantize() method of your class.

This method should accept a NumPy array of coe�cients and the quantization parameters Qk
and Zk. The function should return a NumPy array of the quantized coe�cients.

Also implement the dequantize() method of your class using the formula given above.

This function should accept the same parameters as quantize() as well as a parameter C which

defaults to .44. The function should return a NumPy array of dequantized coe�cients.

(Hint: Masking and array slicing will help keep your code short and fast when implement-

ing both of these methods. Remember the case for Qk = 0. Test your functions by comparing

the output of your functions to a hand calculation on a small matrix.)

99

WSQ: The Rest

The remainder of the compression and decompression methods have already been implemented in

the WSQ class. The following discussion explains the basics of what happens in those methods.

Once all of the subbands have been quantized, they are divided into three groups. The �rst group

contains the smallest ten subbands (positions zero through nine), while the next two groups contain

the three subbands of next largest size (positions ten through twelve and thirteen through �fteen,

respectively). All of the subbands of each group are then �attened and concatenated with the other

subbands in the group. These three arrays of values are then mapped to Hu�man indices. Since

the wavelet coe�cients for �ngerprint images are typically very sparse, special indices are assigned

to lists of sequential zeros of varying lengths. This allows large chunks of information to be stored

as a single index, greatly aiding in compression. The Hu�man indices are then assigned a bit string

representation through a Hu�man map.

Python does not natively include all of the tools necessary to work with bit strings, but the

Python package bitstring does have these capabilities. Download bitstring using the following com-

mand:

$ pip install bitstring

Import the package with the following line of code:

>>> import bitstring as bs

WSQ: Calculating the Compression Ratio

The methods of compression and decompression are now fully implemented. The �nal task is to

verify how much compression has taken place. The compression ratio is the ratio of the number of

bits in the original image to the number of bits in the encoding. Assuming that each pixel of the

input image is an 8-bit integer, the number of bits in the original image is just eight times the number

of pixels (the number of pixels in the original source image is stored in the class attribute _pixels).

The number of bits in the encoding can be calculated by adding up the lengths of each of the three

bit strings stored in the class attribute _bitstrings.

Problem 8. Implement the method get_ratio() by calculating the ratio of compression. The

function should not accept any parameters and should return the compression ratio.

Your compression algorithm is now complete! You can test your class with the following

code. The compression ratio should be approximately 18.

Try out different values of r between .1 to .9.

r = .5

finger = imread('uncompressed_finger.png', True)

wsq = WSQ()

wsq.compress(finger, r)

print(wsq.get_ratio())

new_finger = wsq.decompress()

plt.subplot(211)

plt.imshow(finger, cmap=plt.cm.Greys_r)

100 Lab 8. Introduction to Wavelets

plt.subplot(212)

plt.imshow(np.abs(new_finger), cmap=plt.cm.Greys_r)

plt.show()

101

Additional Material

Haar Wavelet Transform

The Haar Wavelet Transform is a general matrix transform used to convolve Haar Wavelets. It

is found by combining the convolution matrices for a lowpass and highpass �lter such that one is

directly on top of the other. The lowpass �lter is taking the average of every two elements in an

array and the highpass �lter is taking the di�erence of every two elements in an array. Redundant

information given in the new matrix is then removed via downsampling. However, in order for the

transform matrix to have the property AT = A−1, the columns of the matrix must be normalized.

Thus, each column is normalized (and subsequently the �lters) and the resulting matrix is the Haar

Wavelet Transform.

For more on the Haar Wavelet Transform, see Discrete Wavelet Transformations: An Elemen-

tary Approach with Applications by Patrick J. Van Fleet.

WSQ Algorithm

The o�cial standard for the WSQ algorithm is slightly di�erent from the version implemented in

this lab. One of the largest di�erences is the subband pattern that is used in the o�cial algorithm;

this pattern is demonstrated in Figure 8.9. The pattern used may seem complicated and somewhat

arbitrary, but it is used because of the relatively good empirical results when used in compression.

This pattern can be obtained by performing a single pass of the 2-dimensional �lter bank on the

image then passing each of the resulting subbands through the �lter bank resulting in 16 total

subbands. This same process is then repeated with the LL, LH and HL subbands of the original

approximation subband creating 46 additional subbands. Finally, the subband corresponding to the

top left of Figure 8.9 should be passed through the 2-dimensional �lter bank a single time.

As in the implementation given above, the subbands of the o�cial algorithm are divided into

three groups. The subbands 0 through 18 are grouped together, as are 19 through 51 and 52 through

63. The o�cial algorithm also uses a wavelet specialized for image compression that is not included

in the PyWavelets distribution. There are also some slight modi�cations made to the implementation

of the discrete wavelet transform that do not drastically a�ect performance.

102 Lab 8. Introduction to Wavelets

0
2
1
3 4

5 6

7

9

8

10

7

9

8

10

11

13

12

14

15

17

16

18

19

21

20

22

27

29

28

30

23

25

24

26

31

33

32

34

35

37

36

38

43

45

44

46

39

41

40

42

47

49

48

50

51

60

62

61

63

56

58

57

59

52

54

53

55

Figure 8.9: True subband pattern for WSQ algorithm.

9 Polynomial
Interpolation

Lab Objective: Learn and compare three methods of polynomial interpolation: standard Lagrange

interpolation, Barycentric Lagrange interpolation and Chebyshev interpolation. Explore Runge's phe-

nomenon and how the choice of interpolating points a�ect the results. Use polynomial interpolation

to study air polution by approximating graphs of particulates in air.

Polynomial Interpolation
Polynomial interpolation is the method of �nding a polynomial that matches a function at speci�c

points in its range. More precisely, if f(x) is a function on the interval [a, b] and p(x) is a poly-

nomial then p(x) interpolates the function f(x) at the points x0, x1, . . . , xn if p(xj) = f(xj) for all

j = 0, 1, . . . , n. In this lab most of the discussion is focused on using interpolation as a means of

approximating functions or data, however, polynomial interpolation is useful in a much wider array

of applications.

Given a function f(x) and a set of unique points {xi}ni=0, it can be shown that there exists

a unique interpolating polynomial p(x). That is, there is one and only one polynomial of degree n

that interpolates f(x) through those points. This uniqueness property is why, for the remainder of

this lab, an interpolating polynomial is referred to as the interpolating polynomial. One approach to

�nding the unique interpolating polynomial of degree n is Lagrange interpolation.

Lagrange interpolation
Given a set {xi}ni=1 of n points to interpolate, a family of n basis functions with the following property

is constructed:

Lj(xi) =

{
0 if i 6= j

1 if i = j
.

The Lagrange form of this family of basis functions is

Lj(x) =

n∏
k=1,k 6=j

(x− xk)

n∏
k=1,k 6=j

(xj − xk)

(9.1)

103

104 Lab 9. Polynomial Interpolation

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(a) Interpolation using 5 equally spaced points.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(b) Interpolation using 11 equally spaced points.

Figure 9.1: Interpolations of Runge's function f(x) = 1
1+25x2 with equally spaced interpolating

points.

Each of these Lagrange basis functions is a polynomial of degree n−1 and has the necessary properties

as given above.

Problem 1. De�ne a function lagrange() that will be used to construct and evaluate an

interpolating polynomial on a domain of x values. The function should accept two NumPy

arrays of length n which contain the x and y values of the interpolating points as well as a

NumPy array of values of length m at which the interpolating polynomial will be evaluated.

Within lagrange(), write a subroutine that will evaluate each of the n Lagrange basis

functions at every point in the domain. It may be helpful to follow these steps:

1. Compute the denominator of each Lj (as in Equation 9.1) .

2. Using the previous step, evaluate Lj at all points in the computational domain (this will

give you m values for each Lj .)

3. Combine the results into an n×m NumPy array, consisting of each of the n Lj evaluated

at each of the m points in the domain.

You may �nd the functions np.product() and np.delete() to be useful while writing

this method.

Lagrange interpolation is completed by combining the Lagrange basis functions with the y-

values of the function to be interpolated yi = f(xi) in the following manner:

p(x) =

n∑
j=1

yjLj(x) (9.2)

This will create the unique interpolating polynomial.

105

Since polynomials are typically represented in their expanded form with coe�cients on each of

the terms, it may seem like the best option when working with polynomials would be to use Sympy, or

NumPy's poly1d class to compute the coe�cients of the interpolating polynomial individually. This

is rarely the best approach, however, since expanding out the large polynomials that are required can

quickly lead to instability (especially when using large numbers of interpolating points). Instead, it

is usually best just to leave the polynomials in unexpanded form (which is still a polynomial, just not

a pretty-looking one), and compute values of the polynomial directly from this unexpanded form.

Evaluate the polynomial (x-2)(x+1) at 10 points without expanding the ←↩
expression.

>>> pts = np.arange(10)

>>> (pts - 2) * (pts + 1)

array([2, 0, 0, 2, 6, 12, 20, 30, 42, 56])

In the given example, there would have been no instability if the expression had actually been

expanded but in the case of a large polynomial, stability issues can dominate the computation.

Although the coe�cients of the interpolating polynomials will not be explicitly computed in this lab,

polynomials are still being used, albeit in a di�erent form.

Problem 2. Complete the implementation of lagrange().

Evaluate the interpolating polynomial at each point in the domain by combining the y

values of the interpolation points and the evaluated Lagrange basis functions from Problem

1 as in Equation 9.2. Return the �nal array of length m that consists of the interpolating

polynomial evaluated at each point in the domain.

You can test your function by plotting Runge's function f(x) = 1
1+25x2 and your interpo-

lating polynomial on the same plot for di�erent values of n equally spaced interpolating values

then comparing your plot to the plots given in Figure 9.1.

The Lagrange form of polynomial interpolation is useful in some theoretical contexts and is

easier to understand than other methods, however, it has some serious drawbacks that prevent it

from being a useful method of interpolation. First, Lagrange interpolation is O(n2) where other

interpolation methods are O(n2) (or faster) at startup but only O(n) at run-time, Second, Lagrange

interpolation is an unstable algorithm which causes it to return innacurate answers when larger num-

bers of interpolating points are used. Thus, while useful in some situations, Lagrange interpolation

is not desirable in most instances.

Barycentric Lagrange interpolation

Barycentric Lagrange interpolation is simple variant of Lagrange interpolation that performs much

better than plain Lagrange interpolation. It is essentially just a rearrangement of the order of

operations in Lagrange multiplication which results in vastly improved perfomance, both in speed

and stability.

Barycentric Lagrange interpolation relies on the observation that each basis function Lj can be

rewritten as

Lj(x) =
w(x)

(x− xj)
wj

106 Lab 9. Polynomial Interpolation

where

w(x) =

n∏
j=1

(x− xj)

and

wj =
1∏n

k=1,k 6=j(xj − xk)
.

The wj 's are known as the barycentric weights.

Using the previous equations, the interpolating polynomial can be rewritten

p(x) = w(x)

n∑
j=1

wjyj
x− xj

which is the �rst barycentric form. The computation of w(x) can be avoided by �rst noting that

1 = w(x)

n∑
j=1

wj
x− xj

which allows the interpolating polynomial to be rewriten as

p(x) =

n∑
j=1

wjyj
x− xj

n∑
j=1

wj
x− xj

This form of the Lagrange interpolant is known as the second barycentric form which is the form

used in Barycentric Lagrange interpolation. So far, the changes made to Lagrange interpolation have

resulted in an algorithm that is O(n) once the barycentric weights (wj) are known. The following

adjustments will improve the algorithm so that it is numerically stable and later discussions will

allow for the quick addition of new interpolating points after startup.

The second barycentric form makes it clear that any factors that are common to the wk can

be ignored (since they will show up in both the numerator and denominator). This allows for an

important improvement to the formula that will prevent over�ow error in the arithmetic. When com-

puting the barycentric weights, each element of the product
∏n
k=1,k 6=j(xj − xk) should be multiplied

by C−1, where 4C is the width of the interval being interpolated (C is known as the capacity of

the interval). In e�ect, this scales each barycentric weight by C1−n which helps to prevent over�ow

during computation. Thus, the new barycentric weights are given by

wj =
1∏n

k=1,k 6=j [(xj − xk)/C]
.

Once again, this change is possible since the extra factor C1−n is cancelled out in the �nal product.

This process is summed up in the following code:

Given a NumPy array xint of interpolating x-values, calculate the weights.

>>> n = len(xint) # Number of interpolating points.

>>> w = np.ones(n) # Array for storing barycentric weights.

Calculate the capacity of the interval.

>>> C = (np.max(xint) - np.min(xint)) / 4

107

>>> shuffle = np.random.permutation(n-1)

>>> for j in range(n):

>>> temp = (xint[j] - np.delete(xint, j)) / C

>>> temp = temp[shuffle] # Randomize order of product.

>>> w[j] /= np.product(temp)

The order of temp was randomized so that the arithmetic does not over�ow due to poor ordering

(if standard ordering is used, over�ow errors can be encountered since all of the points of similar

magnitude are multiplied together at once). When these two �xes are combined, the Barycentric

Algorithm becomes numerically stable.

Problem 3. Create a class that performs Barycentric Lagrange interpolation. The constructor

of your class should accept two NumPy arrays which contain the x and y values of the interpo-

lation points. Store these arrays as attributes. In the constructor, compute the corresponding

barycentric weights and store the resulting array as a class attribute. Be sure that the relative

ordering of the arrays remains unchanged.

Implement the __call__() method so that it accepts a NumPy array of values at which

to evaluate the interpolating polynomial and returns an array of the evaluated points. Your

class can be tested in the same way as the Lagrange function written in Problem 2

Achtung!

As currently explained and implemented, the Barycentric class from Problem 3 will fail when

a point to be evaluated exactly matches one of the x-values of the interpolating points. This

happens because a divide by zero error is encountered in the �nal step of the algorithm. The

�x for this, although not required here, is quite easy: keep track of any problem points and

replace the �nal computed value with the corresponding y-value (since this is a point that is

exactly interpolated). If you do not implement this �x, just be sure not to pass in any points

that exactly match your interpolating values.

Another advantage of the barycentric method is that it allows for the addition of new interpolat-

ing points in O(n) time. Given a set of existing barycentric weights {wj}nj=1 and a new interpolating

point xi, the new barycentric weight is given by

wi =
1∏n

k=1(xi − xk)
.

In addition to calculating the new barycentric weight, all existing weights should be updated as

follows wj =
wj

xj−xi .

108 Lab 9. Polynomial Interpolation

Problem 4. Include a method in the class written in Problem 3 that allows for the addition of

new interpolating points by updating the barycentric weights. Your function should accept two

NumPy arrays which contain the x and y values of the new interpolation points. Update and

store the old weights then extend the class attribute arrays that store the weights, and the x

and y values of the interpolation points with the new data. When updating all class attributes,

make sure to maintain the same relative order.

The implementation outlined here calls for the y-values of the interpolating points to be known

during startup, however, these values are not needed until run-time This allows the y-values to be

changed without having to recompute the barycentric weights. This is an additional advantage of

Barycentric Lagrange interpolation.

Scipy’s Barycentric Lagrange class
Scipy includes a Barycentric interpolator class. This class includes the same functionality as the class

described in Problems 3 and 4 in addition to the ability to update the y-values of the interpolation

points. The following code will produce a �gure similar to Figure 9.1b.

>>> from scipy.interpolate import BarycentricInterpolator

>>> f = lambda x: 1/(1+25 * x**2) # Function to be interpolated.

Obtain the Chebyshev extremal points on [-1,1].

>>> n = 11

>>> pts = np.linspace(-1, 1, n)

>>> domain = np.linspace(-1, 1, 200)

>>> poly = BarycentricInterpolator(pts[:-1])

>>> poly.add_xi(pts[-1]) # Oops, forgot one of the points.

>>> poly.set_yi(f(pts)) # Set the y values.

>>> plt.plot(domain, f(domain))

>>> plt.plot(domain, poly.eval(domain))

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.2

0.0

0.2

0.4

0.6

0.8

1.0

(a) Polynomial using 5 Chebyshev roots.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

(b) Polynomial using 11 Chebyshev roots.

Figure 9.2: Example of overcoming Runge's phenomenon by using Chebyshev nodes for

interpolating values. Plots made using Runge's function f(x) = 1
1+25x2 . Compare with Figure 9.1

109

Chebyshev Interpolation

Chebyshev Nodes

As has been mentioned previously, the Barycentric version of Lagrange interpolation is a stable

process that does not accumulate large errors, even with extreme inputs. However, polynomial

interpolation itself is, in general, an ill-conditioned problem. Thus, even small changes in the in-

terpolating values can give drastically di�erent interpolating polynomials. In fact, poorly chosen

interpolating points can result in a very bad approximation of a function. As more points are added,

this approximation can worsen. This increase in error is called Runge's phenomenon.

The set of equally spaced points is an example of a set of points that may seem like a reasonable

choice for interpolation but in reality produce very poor results. Figure 9.1 gives an example of

this using Runge's function. As the number of interpolating points increases, the quality of the

approximation deteriorates, especially near the endpoints.

Although polynomial interpolation has a great deal of potential error, a good set of interpolating

points can result in fast convergence to the original function as the number of interpolating points

is increased. One such set of points is the Chebyshev extremal points which are related to the

Chebyshev polynomials (to be discussed shortly). The n + 1 Chebyshev extremal points on the

interval [a, b] are given by the formula yj = 1
2 (a+ b+(b−a) cos(jπn)) for j = 0, 1, . . . , n. These points

are shown in Figure 9.3. One important feature of these points is that they are clustered near the

endpoints of the interval, this is key to preventing Runge's phenomenon.

Problem 5. Write a function that de�nes a domain x of 400 equally spaced points on the

interval [−1, 1]. For n = 22, 23, . . . , 28, repeat the following experiment.

1. Interpolate Runge's function f(x) = 1/(1+25x2) with n equally spaced points over [−1, 1]

using SciPy's BarycentricInterpolator class, resulting in an approximating function f̃ .

Compute the absolute error ‖f(x)− f̃(x)‖∞ of the approximation using la.norm() with

ord=np.inf.

2. Interpolate Runge's function with n + 1 Chebyshev extremal points, also via SciPy, and

compute the absolute error.

Plot the errors of each method against the number of interpolating points n in a log-log plot.

To verify that your �gure make sense, try plotting the interpolating polynomials with the

original function for a few of the larger values of n.

110 Lab 9. Polynomial Interpolation

Figure 9.3: The Chebyshev extremal points. The n points where the Chebyshev polynomial of degree

n reaches its local extrema. These points are also the projection onto the x-axis of n equally spaced

points around the unit circle.

Chebyshev Polynomials
The Chebyshev roots and Chebyshev extremal points are closely related to a set of polynomials

known as the Chebyshev polynomials. The �rst two Chebyshev polynomials are de�ned as T0(x) = 1

and T1(x) = x. The remaining polynomials are de�ned by the recursive algorithm Tn+1(x) =

2xTn(x) − Tn−1(x). The Chebyshev polynomials form a complete basis for the polynomials in R
which means that for any polynomial p(x), there exists a set of unique coe�cients {ak}nk=0 such that

p(x) =

n∑
k=0

akTk.

Finding the Chebyshev representation of an interpolating polynomial is a slow process (domi-

nated by matrix multiplication or solving a linear system), but when the interpolating values are the

Chebyshev extrema, there exists a fast algorithm for computing the Chebyshev coe�cients of the

interpolating polynomial. This algorithm is based on the Fast Fourier transform which has temporal

complexity O(n log n). Given the n + 1 Chebyshev extremal points yj = cos(jπn) for j = 0, 1, . . . , n

and a function f , the unique n-degree interpolating polynomial p(x) is given by

p(x) =

n∑
k=0

akTk

where

ak = γk< [DFT (f(y0), f(y1), . . . , f(y2n−1))]k .

Note that although this formulation includes yj for j > n, there are really only n+ 1 distinct values

being used since yn−k = yn+k. Also, < denotes the real part of the Fourier transform and γk is

de�ned as

γk =

{
1 k ∈ {0, n}
2 otherwise.

111

Problem 6. Write a function that accepts a function f and an integer n. Compute the n+ 1

Chebyshev coe�cients for the degree n interpolating polynomial of f using the Fourier transform

(np.real() and np.fft.fft() will be helpful). When using NumPy's fft() function, multiply

every entry of the resulting array by the scaling factor 1
2n to match the derivation given above.

Validate your function with np.polynomial.chebyshev.poly2cheb(). The results should

be exact for polynomials.

Define f(x) = -3 + 2x^2 - x^3 + x^4 by its (ascending) coefficients.

>>> f = lambda x: -3 + 2*x**2 - x**3 + x**4

>>> pcoeffs = [-3, 0, 2, -1, 1]

>>> ccoeffs = np.polynomial.chebyshev.poly2cheb(pcoeffs)

The following callable objects are equivalent to f().

>>> fpoly = np.polynomial.Polynomial(pcoeffs)

>>> fcheb = np.polynomial.Chebyshev(ccoeffs)

Lagrange vs. Chebyshev
As was previously stated, Barycentric Lagrange interpolation is O(n2) at startup and O(n) at runtime

while Chebyshev interpolation is O(n log n). This improved speed is one of the greatest advantages

of Chebyshev interpolation. Chebyshev interpolation is also more accurate than Barycentric inter-

polation, even when using the same points. Despite these signi�cant advantages in accuracy and

temporal complexity, Barycentric Lagrange interpolation has one very important advantage over

Chebyshev interpolation: Barycentric interpolation can be used on any set of interpolating points

while Chebyshev is restricted to the Chebyshev nodes. In general, because of their better accuracy,

the Chebyshev nodes are more desirable for interpolation, but there are situations when the Cheby-

shev nodes are not available or when speci�c points are needed in an interpolation. In these cases,

Chebyshev interpolation is not possible and Barycentric Lagrange interpolation must be used.

Utah Air Quality
The Utah Department of Environmental Quality has air quality stations throughout the state of

Utah that measure the concentration of particles found in the air. One particulate of particular

interest is PM2.5 which is a set of extremely �ne particles known to cause tissue damage to the

lungs. The �le airdata.npy has the hourly concentration of PM2.5 in micrograms per cubic meter

for a particular measuring station in Salt Lake County for the year 2016. The given data presents

a fairly smooth function which can be reasonably approximated by an interpolating polynomial.

Although Chebyshev interpolation would be preferable (because of its superior speed and accuracy),

it is not possible in this case because the data is not continous and the information at the Chebyshev

nodes is not known. In order to get the best possible interpolation, it is still preferable to use points

close to the Chebyshev extrema with Barycentric interpolation. The following code will take the

n+1 Chebyshev extrema and �nd the closest match in the non-continuous data found in the variable

data then calculate the barycentric weights.

>>> fx = lambda a, b, n: .5*(a+b + (b-a) * np.cos(np.arange(n+1) * np.pi / n))

112 Lab 9. Polynomial Interpolation

>>> a, b = 0, 366 - 1/24

>>> domain = np.linspace(0, b, 8784)

>>> points = fx(a, b, n)

>>> temp = np.abs(points - domain.reshape(8784, 1))

>>> temp2 = np.argmin(temp, axis=0)

>>> poly = barycentric(domain[temp2], data[temp2])

Problem 7. Write a function that interpolates the given data along the whole interval at the

closest approximations to the n + 1 Chebyshev extremal nodes. The function should accept

n, perform the Barycentric interpolation then plot the original data and the approximating

polynomial on the same domain on two separate subplots. Your interpolating polynomial

should give a fairly good approximation starting at around 50 points. Note that beyond about

200 points, the given code will break down since it will attempt to return multiple of the same

points causing a divide by 0 error. If you did not perform the �x suggested in the ACHTUNG box,

make sure not to pass in any points that exactly match the interpolating values.

113

Additional Material
The Clenshaw Algorithm is a fast algorithm commonly used to evaluate a polynomial given its

representation in Chebyshev coe�cients. This algorithm is based on the recursive relation between

Chebyshev polynomials and is the algorithm used by NumPy's polynomial.chebyshev module.

Algorithm 9.1 Accepts an array x of points at which to evaluate the polynomial and an array

a = [a0, a1, . . . , an−1] of Chebyshev coe�cients.

1: procedure ClenshawRecursion(x, a)

2: un+1 ← 0

3: un ← 0

4: k ← n− 1

5: while k ≥ 1 do

6: uk ← 2xuk+1 − uk+2 + ak
7: k ← k − 1

8: return a0 + xu1 − u2

114 Lab 9. Polynomial Interpolation

10 Gaussian Quadrature

Lab Objective: Learn the basics of Gaussian quadrature and its application to numerical inte-

gration. Build a class to perform numerical integration using Legendre and Chebyshev polynomials.

Compare the accuracy and speed of both types of Gaussian quadrature with the built-in Scipy package.

Perform multivariate Gaussian quadrature.

Legendre and Chebyshev Gaussian Quadrature
It can be shown that for any class of orthogonal polynomials p ∈ R[x; 2n + 1] with corresponding

weight function w(x), there exists a set of points {xi}ni=0 and weights {wi}ni=0 such that∫ b

a

p(x)w(x)dx =

n∑
i=0

p(xi)wi.

Since this relationship is exact, a good approximation for the integral∫ b

a

f(x)w(x)dx

can be expected as long as the function f(x) can be reasonably interpolated by a polynomial at the

points xi for i = 0, 1, . . . , n. In fact, it can be shown that if f(x) is 2n + 1 times di�erentiable, the

error of the approximation will decrease as n increases.

Gaussian quadrature can be performed using any basis of orthonormal polynomials, but the

most commonly used are the Legendre polynomials and the Chebyshev polynomials. Their weight

functions are wl(x) = 1 and wc(x) = 1√
1−x2

, respectively, both de�ned on the open interval (−1, 1).

Problem 1. De�ne a class for performing Gaussian quadrature. The constructor should accept

an integer n denoting the number of points and weights to use (this will be explained later)

and a label indicating which class of polynomials to use. If the label is not either "legendre"

or "chebyshev", raise a ValueError; otherwise, store it as an attribute.

The weight function w(x) will show up later in the denominator of certain computations.

De�ne the reciprocal function w(x)−1 = 1/w(x) as a lambda function and save it as an attribute.

115

116 Lab 10. Gaussian Quadrature

Calculating Points and Weights
All sets of orthogonal polynomials {uk}nk=0 satisfy the three-term recurrence relation

u0 = 1, u1 = x− α1, uk+1 = (x− αk)uk − βkuk−1

for some coe�cients {αk}nk=1 and {βk}nk=1. For the Legendre polynomials, they are given by

αk = 0, βk =
k2

4k2 − 1
,

and for the Chebyshev polynomials, they are

αk = 0, βk =

{
1
2 if k = 1
1
4 otherwise.

Given these values, the corresponding Jacobi matrix is de�ned as follows.

J =



α1

√
β1 0 . . . 0√

β1 α2

√
β2 . . . 0

0
√
β2 α3

. . . 0
...

. . .
. . .

...

0 . . .
√
βn−1

0 . . .
√
βn−1 αn


According to the Golub-Welsch algorithm,1 the n eigenvalues of J are the points xi to use in Gaussian

quadrature, and the corresponding weights are given by wi = µw(R)v2
i,0 where vi,0 is the �rst entry of

the ith eigenvector and µw(R) =
∫∞
−∞ w(x)dx is the measure of the weight function. Since the weight

functions for Legendre and Chebyshev polynomials have compact support on the interval (−1, 1),

their measures are given as follows.

µwl(R) =

∫ ∞
−∞

wl(x)dx =

∫ 1

−1

1dx = 2 µwc(R) =

∫ ∞
−∞

wc(x)dx =

∫ 1

−1

1√
1− x2

dx = π

Problem 2. Write a method for your class from Problem 1 that accepts an integer n. Construct

the n×n Jacobi matrix J for the polynomial family indicated in the constructor. Use SciPy to

compute the eigenvalues and eigenvectors of J , then compute the points {xi}ni=1 and weights

{wi}ni=1 for the quadrature. Return both the array of points and the array weights.

Test your method by checking your points and weights against the following values using
the Legendre polynomials with n = 5.

xi − 1
3

√
5 + 2

√
10
7
− 1

3

√
5− 2

√
10
7

0 1
3

√
5− 2

√
10
7

1
3

√
5 + 2

√
10
7

wi
322− 13

√
70

900

322 + 13
√
70

900

128

225

322 + 13
√
70

900

322− 13
√
70

900

1See http://gubner.ece.wisc.edu/gaussquad.pdf for a complete treatment of the Golub-Welsch algorithm, in-
cluding the computation of the recurrence relation coe�cients for arbitrary orthogonal polynomials.

http://gubner.ece.wisc.edu/gaussquad.pdf

117

Finally, modify the constructor of your class so that it calls your new function and stores

the resulting points and weights as attributes.

Integrating with Given Weights and Points

Now that the points and weights have been obtained, they can be used to approximate the integrals

of di�erent functions. For a given function f(x) with points xi and weights wi,∫ 1

−1

f(x)w(x)dx ≈
n∑
i=1

f(xi)wi.

There are two problems with the preceding formula. First, the weight function is part of the integral

being approximated, and second, the points obtained are only found on the interval (−1, 1) (in the

case of the Legendre and Chebyshev polynomials). To solve the �rst problem, de�ne a new function

g(x) = f(x)/w(x) so that ∫ 1

−1

f(x)dx =

∫ 1

−1

g(x)w(x)dx ≈
n∑
i=1

g(xi)wi. (10.1)

The integral of f(x) on [−1, 1] can thus be approximated with the inner product wTg(x), where

g(x) = [g(x1), . . . , g(xn)]T and w = [w1, . . . , wn]T.

Problem 3. Write a method for your class that accepts a callable function f . Use (10.1) and

the stored points and weights to approximate of the integral of f on the interval [−1, 1].

(Hint: Use w(x)−1 from Problem 1 to compute g(x) without division.)

Test your method with examples that are easy to compute by hand and by comparing

your results to scipy.integrate.quad().

>>> import numpy as np

>>> from scipy.integrate import quad

Integrate f(x) = 1 / sqrt(1 - x**2) from -1 to 1.

>>> f = lambda x: 1 / np.sqrt(1 - x**2)

>>> quad(f, -1, 1)[0]

3.141592653589591

Note

Since the points and weights for Gaussian quadrature do not depend on f , they only need to be

computed once and can then be reused to approximate the integral of any function. The class

structure in Problems 1�4 takes advantage of this fact, but scipy.integrate.quad() does not.

If a larger n is needed for higher accuracy, however, the computations must be repeated to get

a new set of points and weights.

118 Lab 10. Gaussian Quadrature

Shifting the Interval of Integration
Since the weight functions for the Legendre and Chebyshev polynomials have compact support on

the interval (−1, 1), all of the quadrature points are found on that interval as well. To integrate a

function on an arbitrary interval [a, b] requires a change of variables. Let

u =
2x− b− a
b− a

so that u = −1 when x = a and u = 1 when x = b. Then

x =
b− a

2
u+

a+ b

2
and dx =

b− a
2

du,

so the transformed integral is given by∫ b

a

f(x)dx =
b− a

2

∫ 1

−1

f

(
b− a

2
u+

a+ b

2

)
du.

By de�ning a new function h(x) as

h(x) = f

(
(b− a)

2
x+

(a+ b)

2

)
,

the integral of f can be approximated by integrating h over [−1, 1] with (10.1). This results in the

�nal quadrature formula∫ b

a

f(x)dx =
b− a

2

∫ 1

−1

h(x)dx =
b− a

2

∫ 1

−1

g(x)w(x)dx ≈ b− a
2

n∑
i=1

g(xi)wi, (10.2)

where now g(x) = h(x)/w(x).

Problem 4. Write a method for your class that accepts a callable function f and bounds of

integration a and b. Use (10.2) to approximate the integral of f from a to b.

(Hint: De�ne h(x) and use your method from Problem 3.)

Problem 5. The standard normal distribution has the following probability density function.

f(x) =
1√
2π
e−x

2/2

This function has no symbolic antiderivative, so it can only be integrated numerically. The

following code gives an �exact� value of the integral of f(x) from −∞ to a speci�ed value.

>>> from scipy.stats import norm

>>> norm.cdf(1) # Integrate f from -infty to 1.

0.84134474606854293

>>> norm.cdf(1) - norm.cdf(-1) # Integrate f from -1 to 1.

0.68268949213708585

119

Write a function that uses scipy.stats to calculate the �exact� value

F =

∫ 2

−3

f(x)dx.

Then repeat the following experiment for n = 5, 10, 15, . . . , 50.

1. Use your class from Problems 1�4 with the Legendre polynomials to approximate F using

n points and weights. Calculate and record the error of the approximation.

2. Use your class with the Chebyshev polynomials to approximate F using n points and

weights. Calculate and record the error of the approximation.

Plot the errors against the number of points and weights n, using a log scale for the y-axis.

Finally, plot a horizontal line showing the error of scipy.integrate.quad() (which doesn't

depend on n).

Multivariate Quadrature
The extension of Gaussian quadrature to higher dimensions is fairly straightforward. The same set

of points {zi}ni=1 and weights {wi}ni=1 can be used in each direction, so the only di�erence from 1-D

quadrature is how the function is shifted and scaled. To begin, let h : R2 → R and de�ne g : R2 → R
by g(x, y) = h(x, y)/(w(x)w(y)) so that∫ 1

−1

∫ 1

−1

h(x, y)dx dy. =

∫ 1

−1

∫ 1

−1

g(x, y)w(x)w(y)dx dy ≈
n∑
i=1

n∑
j=1

wiwjg(zi, zj). (10.3)

To integrate f : R2 → R over an arbitrary box [a1, b1]× [a2, b2], set

h(x, y) = f

(
b1 − a1

2
x+

a1 + b1
2

,
b2 − a2

2
y +

a2 + b2
2

)
so that ∫ b2

a2

∫ b1

a1

f(x)dx dy =
(b1 − a1)(b2 − a2)

4

∫ 1

−1

∫ 1

−1

h(x, y)dx dy. (10.4)

Combining (10.3) and (10.4) gives the �nal 2-D Gaussian quadrature formula. Compare it to (10.2).∫ b2

a2

∫ b1

a1

f(x)dx dy ≈ (b1 − a1)(b2 − a2)

4

n∑
i=1

n∑
j=1

wiwjg(zi, zj) (10.5)

Problem 6. Write a method for your class that accepts a function f : R2 → R (which actually

accepts two separate arguments, not one array with two elements) and bounds of integration

a1, a2, b1, and b2. Use (10.5) to compute the double integral∫ b2

a2

∫ b1

a1

f(x)dx dy.

Validate your method by comparing it scipy.integrate.nquad(). Note carefully that

this function has slightly di�erent syntax for the bounds of integration.

120 Lab 10. Gaussian Quadrature

>>> from scipy.integrate import nquad

Integrate f(x,y) = sin(x) + cos(y) over [-10,10] in x and [-1,1] in y.

>>> f = lambda x, y: np.sin(x) + np.cos(y)

>>> nquad(f, [[-10, 10], [-1, 1]])[0]

33.658839392315855

Note

Although Gaussian quadrature can obtain reasonable approximations in lower dimensions, it

quickly becomes intractable in higher dimensions due to the curse of dimensionality. In other

words, the number of points and weights required to obtain a good approximation becomes

so large that Gaussian quadrature become computationally infeasible. For this reason, high-

dimensional integrals are often computed via Monte Carlo methods, numerical integration tech-

niques based on random sampling. However, quadrature methods are generally signi�cantly

more accurate in lower dimensions than Monte Carlo methods.

11 One-dimensional
Optimization

Lab Objective: Most mathematical optimization problems involve estimating the minimizer(s) of

a scalar-valued function. Many algorithms for optimizing functions with a high-dimensional domain

depend on routines for optimizing functions of a single variable. There are many techniques for

optimization in one dimension, each with varying degrees of precision and speed. In this lab, we

implement the golden section search method, Newton's method, and the secant method, then apply

them to the backtracking problem.

Golden Section Search
A function f : [a, b] → R satis�es the unimodal property if it has exactly one local minimum and is

monotonic on either side of the minimizer. In other words, f decreases from a to its minimizer x∗,

then increases up to b (see Figure 11.1). The golden section search method optimizes a unimodal

function f by iteratively de�ning smaller and smaller intervals containing the unique minimizer x∗.

This approach is especially useful if the function's derivative does not exist, is unknown, or is very

costly to compute.

By de�nition, the minimizer x∗ of f must lie in the interval [a, b]. To shrink the interval around

x∗, we test the following strategically chosen points.

ã = b− b− a
ϕ

b̃ = a+
b− a
ϕ

Here ϕ = 1+
√

5
2 is the golden ratio. At each step of the search, [a, b] is re�ned to either [a, b̃] or [ã, b],

called the golden sections, depending on the following criteria.

If f(ã) < f(b̃), then since f is unimodal, it must be increasing in a neighborhood of b̃. The

unimodal property also guarantees that f must be increasing on [b̃, b] as well, so x∗ ∈ [a, b̃] and we

set b = b̃. By similar reasoning, if f(ã) > f(b̃), then x∗ ∈ [ã, b] and we set a = ã. If, however,

f(ã) = f(b̃), then the unimodality of f does not guarantee anything about where the minimizer lies.

Assuming either x∗ ∈ [a, b̃] or x∗ ∈ [ã, b] allows the iteration to continue, but the method is no longer

guaranteed to converge to the local minimum.

At each iteration, the length of the search interval is divided by ϕ. The method therefore con-

verges linearly, which is somewhat slow. However, the idea is simple and each step is computationally

inexpensive.

121

122 Lab 11. One-dimensional Optimization

a x∗ ã b̃ b

f(ã)

f(b̃)

Figure 11.1: The unimodal f : [a, b] → R can be minimized with a golden section search. For the

�rst iteration, f(ã) < f(b̃), so x∗ ∈ [a, b̃]. New values of ã and b̃ are then calculated from this new,

smaller interval.

Algorithm 11.1 The Golden Section Search

1: procedure golden_section(f , a, b, tol, maxiter)

2: x0 ← (a+ b)/2 . Set the initial minimizer approximation as the interval midpoint.

3: ϕ = (1 +
√

5)/2

4: for i = 1, 2, . . . , maxiter do . Iterate only maxiter times at most.

5: c← (b− a)/ϕ

6: ã← b− c
7: b̃← a+ c

8: if f(ã) ≤ f(b̃) then . Get new boundaries for the search interval.

9: b← b̃

10: else

11: a← ã

12: x1 ← (a+ b)/2 . Set the minimizer approximation as the interval midpoint.

13: if |x0 − x1| < tol then

14: break . Stop iterating if the approximation stops changing enough.

15: x0 ← x1

16: return x1

Problem 1. Write a function that accepts a function f : R → R, interval limits a and b, a

stopping tolerance tol, and a maximum number of iterations maxiter. Use Algorithm 11.1 to

implement the golden section search. Return the approximate minimizer x∗, whether or not

the algorithm converged (true or false), and the number of iterations computed.

Test your function by minimizing f(x) = ex − 4x on the interval [0, 3], then plotting the

function and the computed minimizer together. Also compare your results to SciPy's golden

section search, scipy.optimize.golden().

123

>>> from scipy import optimize as opt

>>> import numpy as np

>>> f = lambda x : np.exp(x) - 4*x

>>> opt.golden(f, brack=(0,3), tol=.001)

1.3862578679031485 # ln(4) is the minimizer.

Newton’s Method

Newton's method is an important root-�nding algorithm that can also be used for optimization.

Given f : R→ R and a good initial guess x0, the sequence (xk)∞k=1 generated by the recursive rule

xk+1 = xk −
f(xk)

f ′(xk)

converges to a point x̄ satisfying f(x̄) = 0. The �rst-order necessary conditions from elementary

calculus state that if f is di�erentiable, then its derivative evaluates to zero at each of its local

minima and maxima. Therefore using Newton's method to �nd the zeros of f ′ is a way to identify

potential minima or maxima of f . Speci�cally, starting with an initial guess x0, set

xk+1 = xk −
f ′(xk)

f ′′(xk)
(11.1)

and iterate until |xk − xk−1| is satisfactorily small. Note that this procedure does not use the actual

function f at all, but it requires many evaluations of its �rst and second derivatives. As a result,

Newton's method converges in few iterations, but it can be computationally expensive.

Each step of (11.1) can be thought of approximating the objective function f by a quadratic

function q and �nding its unique extrema. That is, we �rst approximate f with its second-degree

Taylor polynomial centered at xk.

q(x) = f(xk) + f ′(xk)(x− xk) +
1

2
f ′′(xk)(x− xk)2

This quadratic function satis�es q(xk) = f(xk) and matches f fairly well close to xk. Thus the

optimizer of q is a reasonable guess for an optimizer of f . To compute that optimizer, solve q′(x) = 0.

0 = q′(x) = f ′(xk) + f ′′(xk)(x− xk) =⇒ x = xk −
f ′(xk)

f ′′(xk)

This agrees with (11.1) using xk+1 for x. See Figure 11.2.

124 Lab 11. One-dimensional Optimization

xk xk + 1

f(x)

q(x)

Figure 11.2: A quadratic approximation of f at xk. The minimizer xk+1 of q is close to the minimizer

of f .

Newton's method for optimization works well to locate minima when f ′′(x) > 0 on the entire

domain. However, it may fail to converge to a minimizer if f ′′(x) ≤ 0 for some portion of the domain.

If f is not unimodal, the initial guess x0 must be su�ciently close to a local minimizer x∗ in order

to converge.

Problem 2. Let f : R → R. Write a function that accepts f ′, f ′′, a starting point x0, a

stopping tolerance tol, and a maximum number of iterations maxiter. Implement Newton's

method using (11.1) to locate a local optimizer. Return the approximate optimizer, whether or

not the algorithm converged, and the number of iterations computed.

Test your function by minimizing f(x) = x2 + sin(5x) with an initial guess of x0 = 0.

Compare your results to scipy.optimize.newton(), which implements the root-�nding version

of Newton's method.

>>> df = lambda x : 2*x + 5*np.cos(5*x)

>>> d2f = lambda x : 2 - 25*np.sin(5*x)

>>> opt.newton(df, x0=0, fprime=d2f, tol=1e-10, maxiter=500)

-1.4473142236328096

Note that other initial guesses can yield di�erent minima for this function.

The Secant Method
The second derivative of an objective function is not always known or may be prohibitively expen-

sive to evaluate. The secant method solves this problem by numerically approximating the second

derivative with a di�erence quotient.

f ′′(x) ≈ f ′(x+ h)− f ′(x)

h

125

Selecting x = xk and h = xk−1 − xk gives the following approximation.

f ′′(xk) ≈ f ′(xk + xk−1 − xk)− f ′(xk)

xk−1 − xk
=
f(xk)− f ′(xk−1)

xk − xk−1
(11.2)

Inserting (11.2) into (11.1) results in the complete secant method formula.

xk+1 = xk −
xk − xk−1

f ′(xk)− f ′(xk−1)
f ′(xk) =

xk−1f
′(xk)− xkf ′(xk−1)

f ′(xk)− f ′(xk−1)
(11.3)

Notice that this recurrence relation requires two previous points (both xk and xk−1) to calculate the

next estimate. This method converges superlinearly�slower than Newton's method, but faster than

the golden section search�with convergence criteria similar to Newton's method.

Problem 3. Write a function that accepts a �rst derivative f ′, starting points x0 and x1, a

stopping tolerance tol, and a maximum of iterations maxiter. Use (11.3) to implement the

Secant method. Try to make as few computations as possible by only computing f ′(xk) once

for each k. Return the minimizer approximation, whether or not the algorithm converged, and

the number of iterations computed.

Test your code with the function f(x) = x2 + sin(x) + sin(10x) and with initial guesses

of x0 = 0 and x1 = −1. Plot your answer with the graph of the function. Also compare your

results to scipy.optimize.newton(); without providing the fprime argument, this function

uses the secant method. However, it still only takes in one initial condition, so it may converge

to a di�erent local minimum than your function.

>>> df = lambda x: 2*x + np.cos(x) + 10*np.cos(10*x)

>>> opt.newton(df, x0=0, tol=1e-10, maxiter=500)

-3.2149595174761636

Descent Methods
Consider now a function f : Rn → R. Descent methods, also called line search methods, are opti-

mization algorithms that create a convergent sequence (xk)∞k=1 by the following rule.

xk+1 = xk + αkpk (11.4)

Here αk ∈ R is called the step size and pk ∈ Rn is called the search direction. The choice of pk is

usually what distinguishes an algorithm; in the one-dimensional case (n = 1), pk = f ′(xk)/f ′′(xk)

results in Newton's method, and using the approximation in (11.2) results in the secant method.

To be e�ective, a descent method must also use a good step size αk. If αk is too large, the

method may repeatedly overstep the minimum; if αk is too small, the method may converge extremely

slowly. See Figure 11.3.

126 Lab 11. One-dimensional Optimization

x0x1

Figure 11.3: If the step size αk is too large, a descent method may repeatedly overstep the minimizer.

Given a search direction pk, the best step size αk minimizes the function φk(α) = f(xk +αpk).

Since f is scalar-valued, φk : R → R, so any of the optimization methods discussed previously can

be used to minimize φk. However, computing the best αk at every iteration is not always practical.

Instead, some methods use a cheap routine to compute a step size that may not be optimal, but which

is good enough. The most common approach is to �nd an αk that satis�es the Wolfe conditions:

f(xk + αkpk) ≤ f(xk) + c1αkDf(xk)Tpk (11.5)

−Df(xk + αkpk)Tpk ≤ −c2Df(xk)Tpk (11.6)

where 0 < c1 < c2 < 1 (for the best results, choose c1 << c2). The condition (11.5) is also called

the Armijo rule and ensures that the step decreases f . However, this condition is not enough on its

own. By Taylor's theorem,

f(xk + αkpk) = f(xk) + αkDf(xk)Tpk +O(α2
k).

Thus, a very small αk will always satisfy (11.5) since Df(xk)Tpk < 0 (as pk is a descent direction).

The condition (11.6), called the curvature condition, ensures that the αk is large enough for the

algorithm to make signi�cant progress.

It is possible to �nd an αk that satis�es the Wolfe conditions, but that is far from the minimizer

of φk(α). The strong Wolfe conditions modify (11.6) to ensure that αk is near the minimizer.

|Df(xk + αkpk)Tpk| ≤ c2|Df(xk)Tpk|

The Armijo�Goldstein conditions provide another alternative to (11.6):

f(xk) + (1− c)αkDf(xk)Tpk ≤ f(xk + αkpk) ≤ f(xk) + cαkDf(xk)Tpk,

where 0 < c < 1. These conditions are very similar to the Wolfe conditions (the right inequality is

(11.5)), but they do not require the calculation of the directional derivative Df(xk + αkpk)Tpk.

127

Backtracking

A backtracking line search is a simple strategy for choosing an acceptable step size αk: start with an

fairly large initial step size α, then repeatedly scale it down by a factor ρ until the desired conditions

are satis�ed. The following algorithm only requires α to satisfy (11.5). This is usually su�cient, but

if it �nds α's that are too small, the algorithm can be modi�ed to satisfy (11.6) or one of its variants.

Algorithm 11.2 Backtracking using the Armijo Rule

1: procedure backtracking(f , Df , xk, pk, α, ρ, c)

2: Dfp ← Df(xk)Tpk . Compute these values only once.

3: fx ← f(xk)

4: while
(
f(xk + αpk) > fx + cαDfp

)
do

5: α← ρα
return α

Problem 4. Write a function that accepts a function f : Rn → R, its derivativeDf : Rn → Rn,
an approximate minimizer xk, a search direction pk, an initial step length α, and parameters ρ

and c. Implement the backtracking method of Algorithm 11.2. Return the computed step size.

The functions f and Df should both accept 1-D NumPy arrays of length n. For example,

if f(x, y, z) = x2 + y2 + z2, then f and Df could be de�ned as follows.

>>> f = lambda x: x[0]**2 + x[1]**2 + x[2]**2

>>> Df = lambda x: np.array([2*x[0], 2*x[1], 2*x[2]])

SciPy's scipy.optimize.linesearch.scalar_search_armijo() �nds an acceptable step

size using the Armijo rule. It may not give the exact answer as your implementation since it

decreases α di�erently, but the answers should be similar.

>>> from scipy.optimize import linesearch

>>> from autograd import numpy as anp

>>> from autograd import grad

Get a step size for f(x,y,z) = x^2 + y^2 + z^2.

>>> f = lambda x: x[0]**2 + x[1]**2 + x[2]**2

>>> x = anp.array([150., .03, 40.]) # Current minimizer guesss.

>>> p = anp.array([-.5, -100., -4.5]) # Current search direction.

>>> phi = lambda alpha: f(x + alpha*p) # Define phi(alpha).

>>> dphi = grad(phi)

>>> alpha, _ = linesearch.scalar_search_armijo(phi, phi(0.), dphi(0.))

128 Lab 11. One-dimensional Optimization

12 Gradient Descent
Methods

Lab Objective: Iterative optimization methods choose a search direction and a step size at each

iteration. One simple choice for the search direction is the negative gradient, resulting in the method of

steepest descent. While theoretically foundational, in practice this method is often slow to converge.

An alternative method, the conjugate gradient algorithm, uses a similar idea that results in much

faster convergence in some situations. In this lab we implement a method of steepest descent and two

conjugate gradient methods, then apply them to regression problems.

The Method of Steepest Descent
Let f : Rn → R with �rst derivative Df : Rn → Rn. The following iterative technique is a common

template for methods that aim to compute a local minimizer x∗ of f .

xk+1 = xk + αkpk (12.1)

Here xk is the kth approximation to x∗, αk is the step size, and pk is the search direction. Newton's

method and its relatives follow this pattern, but they require the calculation (or approximation)

of the inverse Hessian matrix Df2(xk)−1 at each step. The following idea is a simpler and less

computationally intensive approach than Newton and quasi-Newton methods.

The derivativeDf(x)T (often called the gradient of f at x, sometimes notated∇f(x)) is a vector

that points in the direction of greatest increase of f at x. It follows that the negative derivative

−Df(x)T points in the direction of steepest decrease at x. The method of steepest descent chooses

the search direction pk = −Df(xk)T at each step of (12.1), resulting in the following algorithm.

xk+1 = xk − αkDf(xk)T (12.2)

Setting αk = 1 for each k is often su�cient for Newton and quasi-Newton methods. However,

a constant choice for the step size in (12.2) can result in oscillating approximations or even cause the

sequence (xk)∞k=1 to travel away from the minimizer x∗. To avoid this problem, the step size αk can

be chosen in a few ways.

� Start with αk = 1, then set αk = αk
2 until f(xk − αkDf(xk)T) < f(xk), terminating the

iteration if αk gets too small. This guarantees that the method actually descends at each step

and that αk satis�es the Armijo rule, without endangering convergence.

129

130 Lab 12. Gradient Descent Methods

� At each step, solve the following one-dimensional optimization problem.

αk = argmin
α

f(xk − αDf(xk)T)

Using this choice is called exact steepest descent. This option is more expensive per iteration

than the above strategy, but it results in fewer iterations before convergence.

Problem 1. Write a function that accepts an objective function f : Rn → R, its derivative
Df : Rn → Rn, an initial guess x0 ∈ Rn, a convergence tolerance tol defaulting to 1e−5,

and a maximum number of iterations maxiter defaulting to 100. Implement the exact method

of steepest descent, using a one-dimensional optimization method to choose the step size (use

opt.minimize_scalar() or your own 1-D minimizer). Iterate until ‖Df(xk)‖∞ < tol or k >

maxiter. Return the approximate minimizer x∗, whether or not the algorithm converged (True

or False), and the number of iterations computed.

Test your function on f(x, y, z) = x4 +y4 +z4 (easy) and the Rosenbrock function (hard).

It should take many iterations to minimize the Rosenbrock function, but it should converge

eventually with a large enough choice of maxiter.

The Conjugate Gradient Method
Unfortunately, the method of steepest descent can be very ine�cient for certain problems. Depending

on the nature of the objective function, the sequence of points can zig-zag back and forth or get stuck

on �at areas without making signi�cant progress toward the true minimizer.

Gradient Descent, 28903 iterations

Figure 12.1: On this surface, gradient descent takes an extreme number of iterations to converge to

the minimum because it gets stuck in the �at basins of the surface.

Unlike the method of steepest descent, the conjugate gradient algorithm chooses a search direc-

tion that is guaranteed to be a descent direction, though not the direction of greatest descent. These

directions are using a generalized form of orthogonality called conjugacy.

131

Let Q be a square, positive de�nite matrix. A set of vectors {x0,x1, . . . ,xm} is called Q-

conjugate if each distinct pair of vectors xi,xj satisfy xT
i Qxj = 0. A Q-conjugate set of vectors is

linearly independent and can form a basis that diagonalizes the matrix Q. This guarantees that an

iterative method to solve Qx = b only require as many steps as there are basis vectors.

Solve a positive de�nite system Qx = b is valuable in and of itself for certain problems, but it

is also equivalent to minimizing certain functions. Speci�cally, consider the quadratic function

f(x) =
1

2
xTQx− bTx + c.

Because Df(x)T = Qx− b, minimizing f is the same as solving the equation

0 = Df(x)T = Qx− b ⇒ Qx = b,

which is the original linear system. Note that the constant c does not a�ect the minimizer, since if

x∗ minimizes f(x) it also minimizes f(x) + c.

Using the conjugate directions guarantees an iterative method to converge on the minimizer

because each iteration minimizes the objective function over a subspace of dimension equal to the

iteration number. Thus, after n steps, where n is the number of conjugate basis vectors, the algorithm

has found a minimizer over the entire space. In certain situations, this has a great advantage over

gradient descent, which can bounce back and forth. This comparison is illustrated in Figure 12.2.

Additionally, because the method utilizes a basis of conjugate vectors, the previous search direction

can be used to �nd a conjugate projection onto the next subspace, saving computational time.

Gradient Descent, 90 iterations
Conjugate Gradient, 2 iterations

Figure 12.2: Paths traced by Gradient Descent (orange) and Conjugate Gradient (red) on a quadratic

surface. Notice the zig-zagging nature of the Gradient Descent path, as opposed to the Conjugate

Gradient path, which �nds the minimizer in 2 steps.

132 Lab 12. Gradient Descent Methods

Algorithm 12.1

1: procedure Conjugate Gradient(x0, Q, b, tol)

2: r0 ← Qx0 − b

3: d0 ← −r0

4: k ← 0

5: while ‖rk‖ ≥ tol, k < n do

6: αk ← rTkrk/d
T
kQdk

7: xk+1 ← xk + αkdk
8: rk+1 ← rk + αkQdk
9: βk+1 ← rTk+1rk+1/r

T
krk

10: dk+1 ← −rk+1 + βk+1dk
11: k ← k + 1.

return xk+1

The points xk are the successive approximations to the minimizer, the vectors dk are the

conjugate descent directions, and the vectors rk (which actually correspond to the steepest descent

directions) are used in determining the conjugate directions. The constants αk and βk are used,

respectively, in the line search, and in ensuring the Q-conjugacy of the descent directions.

Problem 2. Write a function that accepts an n×n positive de�nite matrix Q, a vector b ∈ Rn,
an initial guess x0 ∈ Rn, and a stopping tolerance. Use Algorithm 12.1 to solve the system

Qx = b. Continue the algorithm until ‖rk‖ is less than the tolerance, iterating no more than

n times. Return the solution x, whether or not the algorithm converged in n iterations or less,

and the number of iterations computed.

Test your function on the simple system

Q =

[
2 0

0 4

]
, b =

[
1

8

]
,

which has solution x∗ =
[

1
2 , 2
]T
. This is equivalent to minimizing the quadratic function

f(x, y) = x2 + 2y2 − x− 8y; check that your function from Problem 1 gets the same solution.

More generally, you can generate a random positive de�nite matrix Q for testing by setting

setting Q = ATA for any A of full rank.

>>> import numpy as np

>>> from scipy import linalg as la

Generate Q, b, and the initial guess x0.

>>> n = 10

>>> A = np.random.random((n,n))

>>> Q = A.T @ A

>>> b, x0 = np.random.random((2,n))

>>> x = la.solve(Q, b) # Use your function here.

>>> np.allclose(Q @ x, b)

True

133

Non-linear Conjugate Gradient
The algorithm presented above is only valid for certain linear systems and quadratic functions, but

the basic strategy may be adapted to minimize more general convex or non-linear functions. Though

the non-linear version does not have guaranteed convergence as the linear formulation does, it can

still converge in less iterations than the method of steepest descent. Modifying the algorithm for

more general functions requires new formulas for αk, rk, and βk.

� The scalar αk is simply the result of performing a line-search in the given direction dk and is

thus de�ned αk = argmin
α

f(xk + αdk).

� The vector rk in the original algorithm was really just the gradient of the objective function,

so now de�ne rk = Df(xk)T.

� The constants βk can be de�ned in various ways, and the most correct choice depends on the

nature of the objective function. A well-known formula, attributed to Fletcher and Reeves, is

βk = Df(xk)Df(xk)T/Df(xk−1)Df(xk−1)T.

Algorithm 12.2

1: procedure Non-Linear Conjugate Gradient(f , Df , x0, tol, maxiter)

2: r0 ← −Df(x0)T

3: d0 ← r0

4: α0 ← argmin
α

f(x0 + αd0)

5: x1 ← x0 + α0d0

6: k ← 1

7: while ‖rk‖ ≥ tol, k < maxiter do

8: rk ← −Df(xk)T

9: βk = rTkrk/r
T
k−1rk−1

10: dk ← rk + βkdk−1.

11: αk ← argmin
α

f(xk + αdk).

12: xk+1 ← xk + αkdk.

13: k ← k + 1.

Problem 3. Write a function that accepts a convex objective function f , its derivative Df ,

an initial guess x0, a convergence tolerance defaultin to 1e−5, and a maximum number of

iterations defaultin to 100. Use Algorithm 12.2 to compute the minimizer x∗ of f . Return the

approximate minimizer, whether or not the algorithm converged, and the number of iterations

computed.

Compare your function to SciPy's opt.fmin_cg().

>>> opt.fmin_cg(opt.rosen, np.array([10, 10]), fprime=opt.rosen_der)

Optimization terminated successfully.

Current function value: 0.000000

Iterations: 44

Function evaluations: 102 # Much faster than steepest descent!

Gradient evaluations: 102

134 Lab 12. Gradient Descent Methods

array([1.00000007, 1.00000015])

Regression Problems

A major use of the conjugate gradient method is solving linear least squares problems. Recall that

a least squares problem can be formulated as an optimization problem:

x∗ = min
x
‖Ax− b‖2,

where A is an m × n matrix with full column rank, x ∈ Rn, and b ∈ Rm. The solution can be

calculated analytically, and is given by

x∗ = (ATA)−1ATb.

In other words, the minimizer solves the linear system

ATAx = ATb. (12.3)

Since A has full column rank, it is invertible, ATA is positive de�nite, and for any non-zero vector

z, Az 6= 0. Therefore, zTATAz = ‖Az‖2 > 0. As ATA is positive de�nite, conjugate gradient can be

used to solve Equation 12.3.

Linear least squares is the mathematical underpinning of linear regression. Linear regression

involves a set of real-valued data points {y1, . . . , ym}, where each yi is paired with a corresponding

set of predictor variables {xi,1, xi,2, . . . , xi,n} with n < m. The linear regression model posits that

yi = β0 + β1xi,1 + β2xi,2 + · · ·+ βnxi,n + εi

for i = 1, 2, . . . ,m. The real numbers β0, . . . , βn are known as the parameters of the model, and the

εi are independent, normally-distributed error terms. The goal of linear regression is to calculate

the parameters that best �t the data. This can be accomplished by posing the problem in terms of

linear least squares. De�ne

b =

 y1

...

ym

 , A =


1 x1,1 x1,2 · · · x1,n

1 x2,1 x2,2 · · · x2,n

...
...

...
. . .

...

1 xm,1 xm,2 · · · xm,n

 , x =


β0

β1

...

βn

 .

The solution x∗ = [β∗0 , β
∗
1 , . . . , β

∗
n]T to the system ATAx = ATb gives the parameters that best �t

the data. These values can be understood as de�ning the hyperplane that best �ts the data.

135

0 2 4 6 8 10
x

0

5

10

15

20

25

y

Linear Regression

Figure 12.3: Solving the linear regression problem results in a best-�t hyperplane.

Problem 4. Using your function from Problem 2, solve the linear regression problem speci�ed

by the data contained in the �lea linregression.txt. This is a whitespace-delimited text �le

formatted so that the i-th row consists of yi, xi,1, . . . , xi,n. Use np.loadtxt() to load in the

data and return the solution to the normal equations.

aSource: Statistical Reference Datasets website at http://www.itl.nist.gov/div898/strd/lls/data/LINKS/
v-Longley.shtml.

Logistic Regression
Logistic regression is another important technique in statistical analysis and machine learning that

builds o� of the concepts of linear regression. As in linear regression, there is a set of predictor

variables {xi,1, xi,2, . . . , xi,n}mi=1 with corresponding outcome variables {yi}mi=1. In logistic regression,

the outcome variables yi are binary and can be modeled by a sigmoidal relationship. The value of

the predicted yi can be thought of as the probability that yi = 1. In mathematical terms,

P(yi = 1 |xi,1, . . . , xi,n) = pi,

where

pi =
1

1 + exp(−(β0 + β1xi,1 + · · ·+ βnxi,n))
.

The parameters of the model are the real numbers β0, β1, . . . , βn. Note that pi ∈ (0, 1) regardless of

the values of the predictor variables and parameters.

The probability of observing the outcome variables yi under this model, assuming they are

independent, is given by the likelihood function L : Rn+1 → R

L(β0, . . . , βn) =

m∏
i=1

pyii (1− pi)1−yi .

http://www.itl.nist.gov/div898/strd/lls/data/LINKS/v-Longley.shtml
http://www.itl.nist.gov/div898/strd/lls/data/LINKS/v-Longley.shtml

136 Lab 12. Gradient Descent Methods

The goal of logistic regression is to �nd the parameters β0, . . . , βk that maximize this likelihood

function. Thus, the problem can be written as:

max
(β0,...,βn)

L(β0, . . . , βn).

Maximizing this function is often a numerically unstable calculation. Thus, to make the objec-

tive function more suitable, the logarithm of the objective function may be maximized because the

logarithmic function is strictly monotone increasing. Taking the log and turning the problem into a

minimization problem, the �nal problem is formulated as:

min
(β0,...,βn)

− logL(β0, . . . , βn).

A few lines of calculation reveal that this objective function can also be rewritten as

− logL(β0, . . . , βn) =
m∑
i=1

log(1 + exp(−(β0 + β1xi,1 + · · ·+ βnxi,n)))+

m∑
i=1

(1− yi)(β0 + β1xi,1 + · · ·+ βnxi,n).

The values for the parameters {βi}ni=1 that we obtain are known as the maximum likelihood

estimate (MLE). To �nd the MLE, conjugate gradient can be used to minimize the objective function.

For a one-dimensional binary logistic regression problem, we have predictor data {xi}mi=1 with

labels {yi}mi=1 where each yi ∈ {0, 1}. The negative log likelihood then becomes the following.

− logL(β0, β1) =

m∑
i=1

log(1 + e−(β0+β1xi)) + (1− yi)(β0 + β1xi) (12.4)

Problem 5. Write a class for doing binary logistic regression in one dimension that implement

the following methods.

1. fit(): accept an array x ∈ Rn of data, an array y ∈ Rn of labels (0s and 1s), and an

initial guess β0 ∈ R2. De�ne the negative log likelihood function as given in (12.4), then

minimize it (with respect to β) with your function from Problem 3 or opt.fmin_cg().

Store the resulting parameters β0 and β1 as attributes.

2. predict(): accept a �oat x ∈ R and calculate

σ(x) =
1

1 + exp(−(β0 + β1x))
,

where β0 and β1 are the optimal values calculated in fit(). The value σ(x) is the

probability that the observation x should be assigned the label y = 1.

This class does not need an explicit constructor. You may assume that predict() will be called

after fit().

137

Problem 6. On January 28, 1986, less than two minutes into the Challenger space shuttle's

10th mission, there was a large explosion that originated from the spacecraft, killing all seven

crew members and destroying the shuttle. The investigation that followed concluded that the

malfunction was caused by damage to O-rings that are used as seals for parts of the rocket

engines. There were 24 space shuttle missions before this disaster, some of which had noted

some O-ring damage. Given the data, could this disaster have been predicted?

The �le challenger.npy contains data for 23 missions (during one of the 24 missions, the

engine was lost at sea). The �rst column (x) contains the ambient temperature, in Fahrenheit,

of the shuttle launch. The second column (y) contains a binary indicator of the presence of

O-ring damage (1 if O-ring damage was present, 0 otherwise).

Instantiate your class from Problem 5 and �t it to the data, using an initial guess of

β0 = [20,−1]T. Plot the resulting curve σ(x) for x ∈ [30, 100], along with the raw data. Return

the predicted probability (according to this model) of O-ring damage on the day the shuttle

was launched, given that it was 31◦F.

30 40 50 60 70 80 90
Temperature

0.0

0.2

0.4

0.6

0.8

1.0

O-
Ri

ng
 D

am
ag

e

Probability of O-Ring Damage

Previous Damage
P(Damage) at Launch

138 Lab 12. Gradient Descent Methods

13 The Simplex Method

Lab Objective: The Simplex Method is a straightforward algorithm for �nding optimal solutions

to optimization problems with linear constraints and cost functions. Because of its simplicity and

applicability, this algorithm has been named one of the most important algorithms invented within

the last 100 years. In this lab we implement a standard Simplex solver for the primal problem.

Standard Form

The Simplex Algorithm accepts a linear constrained optimization problem, also called a linear pro-

gram, in the form given below:

minimize cTx

subject to Ax � b

x � 0

Note that any linear program can be converted to standard form, so there is no loss of generality

in restricting our attention to this particular formulation.

Such an optimization problem de�nes a region in space called the feasible region, the set of

points satisfying the constraints. Because the constraints are all linear, the feasible region forms

a geometric object called a polytope, having �at faces and edges (see Figure 13.1). The Simplex

Algorithm jumps among the vertices of the feasible region searching for an optimal point. It does

this by moving along the edges of the feasible region in such a way that the objective function is

always increased after each move.

139

140 Lab 13. The Simplex Method

1 0 1 2 3 4 5
1

0

1

2

3

4

5

(a) The feasible region for a linear program with

2-dimensional constraints.

x∗

(b) The feasible region for a linear program with

3-dimensional constraints.

Figure 13.1: If an optimal point exists, it is one of the vertices of the polyhedron. The simplex

algorithm searches for optimal points by moving between adjacent vertices in a direction that increases

the value of the objective function until it �nds an optimal vertex.

Implementing the Simplex Algorithm is straightforward, provided one carefully follows the

procedure. We will break the algorithm into several small steps, and write a function to perform

each one. To become familiar with the execution of the Simplex algorithm, it is helpful to work

several examples by hand.

The Simplex Solver
Our program will be more lengthy than many other lab exercises and will consist of a collection of

functions working together to produce a �nal result. It is important to clearly de�ne the task of each

function and how all the functions will work together. If this program is written haphazardly, it will

be much longer and more di�cult to read than it needs to be. We will walk you through the steps

of implementing the Simplex Algorithm as a Python class.

For demonstration purposes, we will use the following linear program.

minimize − 3x0 − 2x1

subject to x0 − x1 ≤ 2

3x0 + x1 ≤ 5

4x0 + 3x1 ≤ 7

x0, x1 ≥ 0.

Accepting a Linear Program
Our �rst task is to determine if we can even use the Simplex algorithm. Assuming that the problem

is presented to us in standard form, we need to check that the feasible region includes the origin. For

now, we only check for feasibility at the origin. A more robust solver sets up the auxiliary problem

and solves it to �nd a starting point if the origin is infeasible.

141

Problem 1. Write a class that accepts the arrays c, A, and b of a linear optimization problem

in standard form. In the constructor, check that the system is feasible at the origin. That is,

check that Ax � b when x = 0. Raise a ValueError if the problem is not feasible at the origin.

Adding Slack Variables
The next step is to convert the inequality constraints Ax � b into equality constraints by introducing

a slack variable for each constraint equation. If the constraint matrix A is an m × n matrix, then

there are m slack variables, one for each row of A. Grouping all of the slack variables into a vector

w of length m, the constraints now take the form Ax + w = b. In our example, we have

w =

 x2

x3

x4


When adding slack variables, it is useful to represent all of your variables, both the original

primal variables and the additional slack variables, in a convenient manner. One e�ective way is to

refer to a variable by its subscript. For example, we can use the integers 0 through n− 1 to refer to

the original (non-slack) variables x0 through xn−1, and we can use the integers n through n+m− 1

to track the slack variables (where the slack variable corresponding to the ith row of the constraint

matrix is represented by the index n+ i− 1).

We also need some way to track which variables are independent (non-zero) and which variables

are dependent (those that have value 0). This can be done using the objective function. At anytime

during the optimization process, the non-zero variables in the objective function are independent and

all other variables are dependent.

Creating a Dictionary
After we have determined that our program is feasible, we need to create the dictionary (sometimes

called the tableau), a matrix to track the state of the algorithm.

There are many di�erent ways to build your dictionary. One way is to mimic the dictionary

that is often used when performing the Simplex Algorithm by hand. To do this we will set the

corresponding dependent variable equations to 0. For example, if x5 were a dependent variable we

would expect to see a -1 in the column that represents x5. De�ne

Ā =
[
A Im

]
,

where Im is the m×m identity matrix we will use to represent our slack variables, and de�ne

c̄ =

[
c

0

]
.

That is, c̄ ∈ Rn+m such that the �rst n entries are c and the �nal m entries are zeros. Then the

initial dictionary has the form

D =

[
0 c̄T

b −Ā

]
(13.1)

The columns of the dictionary correspond to each of the variables (both primal and slack), and

the rows of the dictionary correspond to the dependent variables.

142 Lab 13. The Simplex Method

For our example the initial dictionary is

D =


0 −3 −2 0 0 0

2 −1 1 −1 0 0

5 −3 −1 0 −1 0

7 −4 −3 0 0 −1

 .
The advantage of using this kind of dictionary is that it is easy to check the progress of your

algorithm by hand.

Problem 2. Add a method to your Simplex solver that takes in arrays c, A, and b to create

the initial dictionary (D) as a NumPy array.

Pivoting

Pivoting is the mechanism that really makes Simplex useful. Pivoting refers to the act of swapping

dependent and independent variables, and transforming the dictionary appropriately. This has the

e�ect of moving from one vertex of the feasible polytope to another vertex in a way that increases

the value of the objective function. Depending on how you store your variables, you may need to

modify a few di�erent parts of your solver to re�ect this swapping.

When initiating a pivot, you need to determine which variables will be swapped. In the dictio-

nary representation, you �rst �nd a speci�c element on which to pivot, and the row and column that

contain the pivot element correspond to the variables that need to be swapped. Row operations are

then performed on the dictionary so that the pivot column becomes a negative elementary vector.

Let's break it down, starting with the pivot selection. We need to use some care when choosing

the pivot element. To �nd the pivot column, search from left to right along the top row of the

dictionary (ignoring the �rst column), and stop once you encounter the �rst negative value. The

index corresponding to this column will be designated the entering index, since after the full pivot

operation, it will enter the basis and become a dependent variable.

Using our initial dictionary D in the example, we stop at the second column:

D =


0 −3 −2 0 0 0

2 −1 1 −1 0 0

5 −3 −1 0 −1 0

7 −4 −3 0 0 −1


We now know that our pivot element will be found in the second column. The entering index is thus

1.

Next, we select the pivot element from among the negative entries in the pivot column (ignor-

ing the entry in the �rst row). If all entries in the pivot column are non-negative, the problem is

unbounded and has no solution. In this case, the algorithm should terminate. Otherwise, assuming

our pivot column is the jth column of the dictionary and that the negative entries of this column are

Di1,j , Di2,j , . . . , Dik,j , we calculate the ratios

−Di1,0

Di1,j
,
−Di2,0

Di2,j
, . . . ,

−Dik,0

Dik,j
,

143

and we choose our pivot element to be one that minimizes this ratio. If multiple entries minimize the

ratio, then we utilize Bland's Rule, which instructs us to choose the entry in the row corresponding

to the smallest index (obeying this rule is important, as it prevents the possibility of the algorithm

cycling back on itself in�nitely). The index corresponding to the pivot row is designated as the

leaving index, since after the full pivot operation, it will leave the basis and become a independent

variable.

In our example, we see that all entries in the pivot column (ignoring the entry in the �rst row,

of course) are negative, and hence they are all potential choices for the pivot element. We then

calculate the ratios, and obtain

−2

−1
= 2,

−5

−3
= 1.66...,

−7

−4
= 1.75.

We see that the entry in the third row minimizes these ratios. Hence, the element in the second

column (index 1), third row (index 2) is our designated pivot element.

D =


0 −3 −2 0 0 0

2 −1 1 −1 0 0

5 −3 −1 0 −1 0

7 −4 −3 0 0 −1



Problem 3. Write a method that will determine the pivot row and pivot column according to

Bland's Rule.

De�nition 13.1 (Bland's Rule). Choose the independent variable with the smallest index

that has a negative coe�cient in the objective function as the leaving variable. Choose the

dependent variable with the smallest index among all the binding dependent variables.

Bland's Rule is important in avoiding cycles when performing pivots. This rule guarantees

that a feasible Simplex problem will terminate in a �nite number of pivots. Hint: Avoid dividing

by zero.

Finally, we perform row operations on our dictionary in the following way: divide the pivot row

by the negative value of the pivot entry. Then use the pivot row to zero out all entries in the pivot

column above and below the pivot entry. In our example, we �rst divide the pivot row by -3, and

then zero out the two entries above the pivot element and the single entry below it:
0 −3 −2 0 0 0

2 −1 1 −1 0 0

5 −3 −1 0 −1 0

7 −4 −3 0 0 −1

→


0 −3 −2 0 0 0

2 −1 1 −1 0 0

5/3 −1 −1/3 0 −1/3 0

7 −4 −3 0 0 −1

→

−5 0 −1 0 1 0

2 −1 1 −1 0 0

5/3 −1 −1/3 0 −1/3 0

7 −4 −3 0 0 −1

→

−5 0 −1 0 1 0

1/3 0 −4/3 1 −1/3 0

5/3 −1 −1/3 0 −1/3 0

7 −4 −3 0 0 −1

→

−5 0 −1 0 1 0

1/3 0 4/3 −1 1/3 0

5/3 −1 −1/3 0 −1/3 0

1/3 0 −5/3 0 4/3 −1

 .

144 Lab 13. The Simplex Method

The result of these row operations is our updated dictionary, and the pivot operation is complete.

Problem 4. Add a method to your solver that checks for unboundedness and performs a single

pivot operation from start to completion. If the problem is unbounded, raise a ValueError.

Termination and Reading the Dictionary
Up to this point, our algorithm accepts a linear program, adds slack variables, and creates the initial

dictionary. After carrying out these initial steps, it then performs the pivoting operation iteratively

until the optimal point is found. But how do we determine when the optimal point is found? The

answer is to look at the top row of the dictionary, which represents the objective function. More

speci�cally, before each pivoting operation, check whether all of the entries in the top row of the

dictionary (ignoring the entry in the �rst column) are nonnegative. If this is the case, then we have

found an optimal solution, and so we terminate the algorithm.

The �nal step is to report the solution. The ending state of the dictionary and index list tells

us everything we need to know. The minimal value attained by the objective function is found in the

upper leftmost entry of the dictionary. The dependent variables all have the value 0 in the objective

function or �rst row of our dictionary array. The independent variables have values given by the

�rst column of the dictionary. Speci�cally, the independent variable whose index is located at the

ith entry of the index list has the value Ti+1,0.

In our example, suppose that our algorithm terminates with the dictionary and index list in

the following state:

D =


−5.2 0 0 0 0.2 0.6

0.6 0 0 −1 1.4 −0.8

1.6 −1 0 0 −0.6 0.2

0.2 0 −1 0 0.8 −0.6


Then the minimal value of the objective function is −5.2. The independent variables have indices

4, 5 and have the value 0. The dependent variables have indices 3, 1, and 2, and have values .6, 1.6,

and .2, respectively. In the notation of the original problem statement, the solution is given by

x0 = 1.6

x1 = .2.

Problem 5. Write an additional method in your solver called solve() that obtains the op-

timal solution, then returns the minimal value, the dependent variables, and the independent

variables. The dependent and independent variables should be represented as two dictionaries

that map the index of the variable to its corresponding value.

For our example, we would return the tuple

(-5.2, {0: 1.6, 1: .2, 2: .6}, {3: 0, 4: 0}).

At this point, you should have a Simplex solver that is ready to use. The following code

demonstrates how your solver is expected to behave:

145

>>> import SimplexSolver

Initialize objective function and constraints.

>>> c = np.array([-3., -2.])

>>> b = np.array([2., 5, 7])

>>> A = np.array([[1., -1], [3, 1], [4, 3]])

Instantiate the simplex solver, then solve the problem.

>>> solver = SimplexSolver(c, A, b)

>>> sol = solver.solve()

>>> print(sol)

(-5.2,

{0: 1.6, 1: 0.2, 2: 0.6},

{3: 0, 4: 0})

If the linear program were infeasible at the origin or unbounded, we would expect the solver to

alert the user by raising an error.

Note that this simplex solver is not fully operational. It can't handle the case of infeasibility

at the origin. This can be �xed by adding methods to your class that solve the auxiliary problem,

that of �nding an initial feasible dictionary when the problem is not feasible at the origin. Solving

the auxiliary problem involves pivoting operations identical to those you have already implemented,

so adding this functionality is not overly di�cult.

The Product Mix Problem
We now use our Simplex implementation to solve the product mix problem, which in its dependent

form can be expressed as a simple linear program. Suppose that a manufacturer makes n products

using m di�erent resources (labor, raw materials, machine time available, etc). The ith product is

sold at a unit price pi, and there are at mostmj units of the jth resource available. Additionally, each

unit of the ith product requires aj,i units of resource j. Given that the demand for product i is di
units per a certain time period, how do we choose the optimal amount of each product to manufacture

in that time period so as to maximize revenue, while not exceeding the available resources?

Let x1, x2, . . . , xn denote the amount of each product to be manufactured. The sale of product

i brings revenue in the amount of pixi. Therefore our objective function, the pro�t, is given by

n∑
i=1

pixi.

Additionally, the manufacture of product i requires aj,ixi units of resource j. Thus we have the

resource constraints
n∑
i=1

aj,ixi ≤ mj for j = 1, 2, . . . ,m.

Finally, we have the demand constraints which tell us not to exceed the demand for the products:

xi ≤ di for i = 1, 2, . . . , n

The variables xi are constrained to be nonnegative, of course. We therefore have a linear

program in the appropriate form that is feasible at the origin. It is a simple task to solve the problem

using our Simplex solver.

146 Lab 13. The Simplex Method

Problem 6. Solve the product mix problem for the data contained in the �le productMix.npz.

In this problem, there are 4 products and 3 resources. The archive �le, which you can load

using the function np.load, contains a dictionary of arrays. The array with key 'A' gives the

resource coe�cients ai,j (i.e. the (i, j)-th entry of the array give ai,j). The array with key 'p'

gives the unit prices pi. The array with key 'm' gives the available resource units mj . The

array with key 'd' gives the demand constraints di.

Report the number of units that should be produced for each product. Hint: Because this

is a maximization problem and your solver works with minimizations, you will need to change

the sign of the array c.

Beyond Simplex
The Computing in Science and Engineering journal listed Simplex as one of the top ten algorithms

of the twentieth century [Nas00]. However, like any other algorithm, Simplex has its drawbacks.

In 1972, Victor Klee and George Minty Cube published a paper with several examples of worst-

case polytopes for the Simplex algorithm [KM72]. In their paper, they give several examples of

polytopes that the Simplex algorithm struggles to solve.

Consider the following linear program from Klee and Minty.

max 2n−1x1 +2n−2x2 + · · · +2xn−1 +xn

subject to x1 ≤ 5

4x1 +x2 ≤ 25

8x1 +4x2 +x3 ≤ 125

...
...

2nx1 +2n−1x2 + · · · +4xn−1 +xn ≤ 5

Klee and Minty show that for this example, the worst case scenario has exponential time com-

plexity. With only n constraints and n variables, the simplex algorithm goes through 2n iterations.

This is because there are 2n extreme points, and when starting at the point x = 0, the simplex

algorithm goes through all of the extreme points before reaching the optimal point (0, 0, . . . , 0, 5n).

Other algorithms, such as interior point methods, solve this problem much faster because they are

not constrained to follow the edges.

14 OpenGym AI

Lab Objective: OpenGym AI is a module designed to learn and apply reinforcement learning. The

purpose of this lab is to learn the variety of functionalities available in OpenGym AI and to implement

them in various environments. Applying reinforcement learning techniques into OpenGym AI will

take place in future labs.

OpenGym AI is a module used to perform reinforcement learning. It contains a collection of

environments where reinforcement learning can be used to accomplish various tasks. These environ-

ments include performing computer functions such as copy and paste, playing Atari video games,

and controlling robots. To install OpenGym AI, run the following code.

>>> pip install gym

Environments
Each environment in OpenGym AI can be thought of as a di�erent scenario where reinforcement

learning can be applied. A catalog of all available environments can be found using the following

code:

>>> from gym import envs

>>> print(envs.registry.all())

dict_values([EnvSpec(Copy-v0), EnvSpec(RepeatCopy-v0), EnvSpec(ReversedAddition←↩
-v0), EnvSpec(ReversedAddition3-v0), EnvSpec(DuplicatedInput-v0), EnvSpec(←↩
Reverse-v0), EnvSpec(CartPole-v0),...

Note that some of these environments require additional software. To learn more about each envi-

ronment, its scenario and necessary software, visit gym.openai.com/envs.

To begin working in an environment, identify the name of the environment and initialize the

environment. Once intialized, make sure to reset the environment. Resetting the environment is

necessary to begin using the environment by putting everything in the correct starting position.

For example, the environment "NChain-v0" presents a scenario where a player is traversing a chain

with n states. Restarting the environment puts the player at the beginning of the chain. Once the

environment is complete, make sure to close the environment. Closing the environment tells the

computer to stop running the environment as to not run the environment in the background.

147

gym.openai.com/envs

148 Lab 14. OpenGym AI

>>> import gym

>>> # Get NChain-v0 environment

env = gym.make('NChain-v0')

>>> # Reset the environment

>>> env.reset()

0

>>> # Close the environment

>>> env.close()

Action Space

Once reset, the player in the environment can then perform actions from the action space. In "

NChain-v0", the action space has 2 actions; move forward one state or return to the beginning of

the chain. To perform an action, use the function step, which accepts the action as a parameter and

returns an observation (more on those later). If the action space is discrete, then actions are de�ned

as integers 0 through n, where n is the number of actions. The action each integer represents can be

found in the documentation of each environment.

>>> # Determine the number of actions available

>>> env.action_space

Discrete(2)

>>> # Reset environment and perform a random action

>>> env.step(env.action_space.sample())

(1, 0, False, {})

However, not all action spaces are discrete. Consider the environment "GuessingGame-v0".

The purpose of this game is to guess within 1% of a random number in the interval [−1000, 1000]

in 200 guesses. Since the number is not required to be an integer, and each action is guessing a

number, it does not make sense for the action space to be discrete. Rather this action space should

be an interval In OpenGym AI, this action space is described as an n-dimensional array Box(n,).

This means an feasible action is an n-dimensional vector. To identify the range of the box, use the

attributes high and low. Thus, in the environment "GuessingGame-v0", the action space will be a

1-dimensional box with range [−1000, 1000].

>>> # Get Guessing Game environment

env = gym.make("GuessingGame-v0"}

>>> # Check size of action space

>>> env.action_space

Box(1,)

>>> # Check range of action space

>>> env.action_space.high

149

array([10000.], dtype=float32)

>>> env.action_space.low

array([-10000.], dtype=float32)

Observation Space
The observation space contains all possible observations given an action. For example, in "NChain

-v0", an observation would be the position of the player on the chain and in "GuessingGame-v0",

the observation would be whether the guess is higher than, equal to, or lower than the target. The

observation from each action can be found in the tuple returned by step. This tuple tells us the

following information:

1. observation: The current state of the environment. For example, in "GuessingGame-v0", 0

indicates the guess is too high, 1 indicates the guess is on target, and 2 indicates the guess is

too low.

2. reward: The reward given from the observation. In most environments, maximizing the to-

tal reward increases performance. For example, the reward for each observation is 0 in "

GuessingGame-v0" unless the observation is within 1% of the target.

3. done: A boolean indicating if the observation terminates the environment.

4. info: Various information that may be helpful when debugging.

Consider the code below.

>>> env = gym.make("GuessingGame-v0")

>>> # Make a random guess

>>> env.step(env.action_space.sample())

(1, 0, False, {'guesses': 1, 'number': 524.50509074})

This tuple can be interpreted as follows:

1. The guess was too high.

2. The guess was not with 1% of the target.

3. The environment is not terminated.

4. Information that may help debugging (the number of guesses made so far and the target

number).

150 Lab 14. OpenGym AI

Problem 1. The game Blackjacka is a card game where the player receives two cards from a

facecard deck. The goal of the player is to get cards whose sum is as close to 21 as possible

without exceeding 21. In this version of Blackjack, an ace is considered 1 or 11 and any facecard

is considered 10. At each turn, the player may choose to take another card or stop drawing

cards. If their card sum does not exceed 21, they may take another card. If it does, they lose.

After the player stops drawing cards, the computer may play the same game. If the computer

gets closer to 21 than the player, the player loses.

The environment "Blackjack-v0" is an OpenGym AI environment that plays blackjack.

The actions in the action space are 0 to stop drawing and 1 to draw another card. The

observation (�rst entry in the tuple returned by step) is a tuple containing the total sum of

the players hand, the �rst card of the computer's hand, and whether the player has an ace.

The reward (second entry in the tuple returned by step) is 1 if the player wins, -1 if the player

loses, and 0 if there is a draw.

Write a function random_blackjack() that accepts an integer n. Initialize "Blackjack

-v0" n times and each time take random actions until the game is terminated. Return the

percentage of games the player wins.

aFor more on how to play Blackjack, see https://en.wikipedia.org/wiki/Blackjack.

Understanding Environments

Because each action and observation space is made up of numbers, good documentation is imperative

to understanding any given environment. Fortunately, most environments in OpenAI Gym are very

well documented. Documentation for any given environment can be found through gym.openai.

com/envs by clicking on the github link in the environment.

Most documentation follows the same pattern. There is a docstring which includes a description

of the environment, a detailed action space, a detailed observation space, and explanation of rewards.

It is always helpful to refer to this documentation when working in an OpenGym AI environment.

In addition to documentation, certain environments can be understood better through visual-

ization. For example, the environment "Acrobot-v1" displays an inverted pendulum. Visualizing the

environment allows the user to see the movement of the inverted pendulum as forces are applied to

it. This can be done with the function render(). When using render(), ALWAYS use a try-�nally

block to close the environment. This ensures that the video rendering ends no matter what.

>>> # Get environment

>>> env = gym.make("Acrobot-v1")

>>> # Take random actions and visualize each action

>>> try:

>>> env.reset()

>>> done = False

>>> while not done:

>>> env.render()

>>> obs, reward, done, info = env.step(env.action_space.sample())

>>> if done:

>>> break

>>> finally:

https://en.wikipedia.org/wiki/Blackjack
gym.openai.com/envs
gym.openai.com/envs

151

>>> env.close()

Figure 14.1: Rendering of "Acrobot-v1"

Problem 2. Write a function blackjack() which runs a naive algorithm to win blackjack.

The function should receive an integer n. If the players hand is less than or equal to n, the

player should draw another card. If the players hand is more than n, they should stop playing.

Run the algorithm 10000 times and return the average reward. What value of n wins most on

average?

Solving An Environment
One way to solve an environment is to use information from the current observation to choose our

next action. For example, consider "GuessingGame-v0". Each observation tells us whether the guess

was too high or too low. After each observation, the interval where the target lies continues to get

smaller. By choosing the midpoint of the current interval where the target lies, the true target can

be identi�ed much faster.

Problem 3. The environment "CartPole-v0" presents a cart with a vertical pole. The goal

of the environment is to keep the pole vertical as long as possible. Write a function cartpole()

which initializes the environment and keeps the pole vertical as long as possible based on the

velocity of the tip of the pole. Render the environment at each step and return the time before

the environment terminates. The time should be at least 2 seconds and on average be about 3

seconds.

(Hint: Use the documentation of the environment to determine the meaning of each action

and observation. It can be found at https://github.com/openai/gym/wiki/CartPole-v0.)

https://github.com/openai/gym/wiki/CartPole-v0

152 Lab 14. OpenGym AI

Problem 4. The environment "MountainCar-v0" shows a car in a valley. The goal of the

environment is to get the car to the top of the right mountain. The car can be driven forward

(toward the goal) with the action 2, can be driven backward with the action 0, and will be put

in neutral with the action 1. Note that the car cannot immediately get up the hill because of

gravity. In order to move the car to goal, momentum will need to be gained by going back and

forth between both sides of the valley. Each observation is a 2-dimensional array, containing

the (x,y) position of the car. Using the position of the car, write a function car() that solves

the "MountainCar-v0" environment. Render the environment at each step and return the time

before the environment terminates. The time should be less than 3 seconds.

Q-Learning
While naive methods like the ones above can be useful, reinforcement is a much better approach for

using OpenAI Gym. Reinforcement learning is a sub�eld of machine learning where a problem is

attempted over and over again. Each time a method is used to solve the problem, the method adapts

based on the information gained from the previous attempt. Information can be gained from the

sequence of observations and the total reward earned.

A simple reinforcement method is called Q-learning. While the details of Q-learning will not

be explained in detail, the main idea is that the next action is not only based on the reward of

the current action, but also of the next action. Q-learning creates a Q-table, which is an n × m
dimensional array, where n is the number of observations and m is the number of actions. For each

state, the optimal action is the action that maximizes the value in the Q-table. In other words, if I

am at observation i, the best action is the argmax of row i in the Q-table.

Q-learning requires 3 hyperparameters:

1. alpha: the learning rate. This determines whether to accept new values into the q-table.

2. gamma: the discount factor. The discount factor determines how important the reward of the

current action is compared to the following action.

3. epsilon: the maximum value. This is the max reward that can be earned from a future action

(not the current).

These hyperparameters can be changed to created di�erent Q-tables.

Problem 5. Write a function taxi() which initializes the environment "Taxi-v2". The goal

of this environment is the pick up a passenger in a taxi and drop them o� at their destination

as fast as possible (see https://gym.openai.com/envs/Taxi-v2/). First, randomly act until

the environment is done and calculate the reward. Then use find_qtable() to get the optimal

Q-table of the environment. Set alpha=.1, gamma=.6, and epsilon=.1. Use the qtable to move

through the environment and calculate the reward. Return the average reward of the random

moves and the average reward of the Q-learning over 10000 iterations.

(Hint: Use the documentation found at https://github.com/openai/gym/blob/master/

gym/envs/toy_text/taxi.py to understand the environment better).

https://gym.openai.com/envs/Taxi-v2/
https://github.com/openai/gym/blob/master/gym/envs/toy_text/taxi.py
https://github.com/openai/gym/blob/master/gym/envs/toy_text/taxi.py

15 CVXOPT

Lab Objective: CVXOPT is a package of Python functions and classes designed for the purpose

of convex optimization. In this lab we use these tools for linear and quadratic programming. We will

solve various optimization problems using CVXOPT and optimize eating healthily on a budget.

Linear Programs
A linear program is a linear constrained optimization problem. Such a problem can be stated in

several di�erent forms, one of which is

minimize cTx

subject to Gx � h

Ax = b.

The symbol � denotes that the components of Gx are less than the components of h. In other

words, if x � y, then xi < yi for all xi ∈ x and yi ∈ y.

De�ne vector s � 0 such that the constraint Gx + s = h. This vector is known as a slack

variable. Since s � 0, the constraint Gx + s = h is equivalent to Gx � h.

With a slack variable, a new form of the linear program is found:

minimize cTx

subject to Gx + s = h

Ax = b

s � 0.

This is the formulation used by CVXOPT. It requires that the matrix A has full row rank, and

that the block matrix [G A]T has full column rank.

Consider the following example:

minimize − 4x1 − 5x2

subject to x1 + 2x2 ≤ 3

2x1 + x2 = 3

x1, x2 ≥ 0

153

154 Lab 15. CVXOPT

Recall that all inequalities must be less than or equal to, so that Gx � h. Because the �nal two

constraints are x1, x2 ≥ 0, they need to be adjusted to be ≤ constraints. This is easily done by

multiplying by −1, resulting in the constraints −x1,−x2 ≤ 0. If we de�ne

G =

 1 2

−1 0

0 −1

 , h =

3

0

0

 , A =
[
2 1

]
, and b =

[
3
]

then we can express the constraints compactly as

Gx � h,

Ax = b,
where x =

[
x1

x2

]
.

By adding a slack variable s, we can write our constraints as

Gx + s = h,

which matches the form discussed above.

To solve the problem using CVXOPT, initialize the arrays c, G, h, A, and b and pass them to

the appropriate function. CVXOPT uses its own data type for an array or matrix. While similar to

the NumPy array, it does have a few di�erences, especially when it comes to initialization. Below,

we initialize CVXOPT matrices for c, G, h, A, and b. We then use the CVXOPT function for linear

programming solvers.lp(), which accepts c, G, h, A, and b as arguments.

>>> from cvxopt import matrix, solvers

>>> c = matrix([-4., -5.])

>>> G = matrix([[1., -1., 0.],[2., 0., -1.]])

>>> h = matrix([3., 0., 0.])

>>> A = matrix([[2.],[1.]])

>>> b = matrix([3.])

>>> sol = solvers.lp(c, G, h, A, b)

pcost dcost gap pres dres k/t

0: -8.5714e+00 -1.4143e+01 4e+00 0e+00 3e-01 1e+00

1: -8.9385e+00 -9.2036e+00 2e-01 3e-16 1e-02 3e-02

2: -8.9994e+00 -9.0021e+00 2e-03 3e-16 1e-04 3e-04

3: -9.0000e+00 -9.0000e+00 2e-05 1e-16 1e-06 3e-06

4: -9.0000e+00 -9.0000e+00 2e-07 1e-16 1e-08 3e-08

Optimal solution found.

>>> print(sol['x'])

[1.00e+00]

[1.00e+00]

>>> print(sol['primal objective'])

-8.999999939019435

>>> print(type(sol['x']))

<class 'cvxopt.base.matrix'>

155

Achtung!

CVXOPT matrices only accept �oats. Other data types will raise a TypeError.

Additionally, CVXOPT matrices are initialized column-wise rather than row-wise (as in

the case of NumPy). Alternatively, we can initialize the arrays �rst in NumPy (a process with

which you should be familiar), and then simply convert them to the CVXOPT matrix data

type.

>>> import numpy as np

>>> c = np.array([-4., -5.])

>>> G = np.array([[1., 2.],[-1., 0.],[0., -1]])

>>> h = np.array([3., 0., 0.])

>>> A = np.array([[2., 1.]])

>>> b = np.array([3.])

Convert the arrays to the CVXOPT matrix type.

>>> c = matrix(c)

>>> G = matrix(G)

>>> h = matrix(h)

>>> A = matrix(A)

>>> b = matrix(b)

In this lab we will initialize non-trivial matrices �rst as NumPy arrays for consistency.

Note

Although it is often helpful to see the progress of each iteration of the algorithm, you may

suppress this output by �rst running,

solvers.options['show_progress'] = False

The function solvers.lp() returns a dictionary containing useful information. For now, we

will only focus on the value of x and the primal objective value (i.e. the minimum value achieved by

the objective function).

Achtung!

Note that the minimizer x returned by the solvers.lp() function is a cvxopt.base.matrix

object. np.ravel() is a NumPy function that takes an object and returns its values as

a �attened NumPy array. Use np.ravel() to return all minimizers in this lab as �attened

NumPy arrays.

156 Lab 15. CVXOPT

Problem 1. Solve the following convex optimization problem:

minimize 2x1 + x2 + 3x3

subject to x1 + 2x2 ≥ 3

2x1 + 10x2 + 3x3 ≥ 10

x1 ≥ 0

x2 ≥ 0

x3 ≥ 0

Return the minimizer x and the primal objective value.

(Hint: make the necessary adjustments so that all inequality constraints are ≤ rather than ≥).

l1 Norm
The l1 norm is de�ned

||x||1 =

n∑
i=1

|xi|.

A l1 minimization problem is minimizing a vector's l1 norm, while �tting certain constraints. It can

be written in the following form:

minimize ‖x‖1
subject to Ax = b.

This problem can be converted into a linear program by introducing an additional vector u of

length n. De�ne u such that |xi| ≤ ui. Thus, −ui− xi ≤ 0 and −ui + xi ≤ 0. These two inequalities

can be added to the linear system as constraints. Additionally, this means that ||x||1 ≤ ||u||1. So

minimizing ||u||1 subject to the given constraints will in turn minimize ||x||1. This can be written as

follows:

minimize
[
1T 0T

] [u
x

]

subject to

−I I

−I −I
−I 0

[u
x

]
�
[
0

0

]
,

[
0 A

] [u
x

]
= b.

Solving this gives values for the optimal u and the optimal x, but we only care about the optimal x.

Problem 2. Write a function called l1Min() that accepts a matrix A and vector b as NumPy

arrays and solves the l1 minimization problem. Return the minimizer x and the primal objective

value. Remember to �rst discard the unnecessary u values from the minimizer.

To test your function consider the matrix A and vector b below.

A =

[
1 2 1 1

0 3 −2 −1

]
b =

[
7

4

]

157

The linear system Ax = b has in�nitely many solutions. Use l1Min() to verify that the solution

which minimizes ||x||1 is approximately x = [0., 2.571, 1.857, 0.]T and the minimum objective

value is approximately 4.429.

The Transportation Problem
Consider the following transportation problem: A piano company needs to transport thirteen pianos

from their three supply centers (denoted by 1, 2, 3) to two demand centers (4, 5). Transporting a

piano from a supply center to a demand center incurs a cost, listed in Table 15.3. The company

wants to minimize shipping costs for the pianos while meeting the demand.

Supply Center Number of pianos available

1 7

2 2

3 4

Table 15.1: Number of pianos available at each supply center

Demand Center Number of pianos needed

4 5

5 8

Table 15.2: Number of pianos needed at each demand center

Supply Center Demand Center Cost of transportation Number of pianos

1 4 4 p1

1 5 7 p2

2 4 6 p3

2 5 8 p4

3 4 8 p5

3 5 9 p6

Table 15.3: Cost of transporting one piano from a supply center to a demand center

A system of constraints is de�ned for the variables p1, p2, p3, p4, p5, and p6, First, there cannot

be a negative number of pianos so the variables must be nonnegative. Next, the Tables 15.1 and 15.2

de�ne the following three supply constraints and two demand constraints:

p1 + p2 = 7

p3 + p4 = 2

p5 + p6 = 4

p1 + p3 + p5 = 5

p2 + p4 + p6 = 8

The objective function is the number of pianos shipped from each location multiplied by the

respective cost (found in Table 15.3):

4p1 + 7p2 + 6p3 + 8p4 + 8p5 + 9p6.

158 Lab 15. CVXOPT

Note

Since our answers must be integers, in general this problem turns out to be an NP-hard prob-

lem. There is a whole �eld devoted to dealing with integer constraints, called integer linear

programming, which is beyond the scope of this lab. Fortunately, we can treat this particular

problem as a standard linear program and still obtain integer solutions.

Recall the variables are nonnegative, so p1, p2, p3, p4, p5, p6 ≥ 0. Thus, G and h constrain the

variables to be non-negative. Because CVXOPT uses the format Gx � h, we see that this inequality

must be multiplied by −1. So, G must be a 6× 6 identity matrix multiplied by −1, and

h is a column vector of zeros. Since the supply and demand constraints are equality constraints,

they are A and b. Initialize these arrays and solve the linear program by entering the code below.

>>> c = matrix(np.array([4., 7., 6., 8., 8., 9.]))

>>> G = matrix(-1*np.eye(6))

>>> h = matrix(np.zeros(6))

>>> A = matrix(np.array([[1.,1.,0.,0.,0.,0.],

[0.,0.,1.,1.,0.,0.],

[0.,0.,0.,0.,1.,1.],

[1.,0.,1.,0.,1.,0.],

[0.,1.,0.,1.,0.,1.]]))

>>> b = matrix(np.array([7., 2., 4., 5., 8.]))

>>> sol = solvers.lp(c, G, h, A, b)

pcost dcost gap pres dres k/t

0: 8.9500e+01 8.9500e+01 2e+01 2e-16 2e-01 1e+00

1: 8.7023e+01 8.7044e+01 3e+00 1e-15 3e-02 2e-01

Terminated (singular KKT matrix).

>>> print(sol['x'])

[4.31e+00]

[2.69e+00]

[3.56e-01]

[1.64e+00]

[3.34e-01]

[3.67e+00]

>>> print(sol['primal objective'])

87.023

Notice that some problems occurred. First, CVXOPT alerted us to the fact that the algorithm

terminated prematurely (due to a singular matrix). Second, the minimizer and solution obtained do

not consist of integer entries.

So what went wrong? Recall that the matrix A is required to have full row rank, but we can

easily see that the rows of A are linearly dependent. We rectify this by converting the last row of the

equality constraints into two inequality constraints, so that the remaining equality constraints de�ne

a new matrix A with linearly independent rows.

This is done as follows:

Suppose we have the equality constraint

x1 + 2x2 − 3x3 = 4.

159

This is equivalent to the pair of inequality constraints

x1 + 2x2 − 3x3 ≤ 4,

x1 + 2x2 − 3x3 ≥ 4.

The linear program requires only ≤ constraints, so we obtain the pair of constraints

x1 + 2x2 − 3x3 ≤ 4,

−x1 − 2x2 + 3x3 ≤ −4.

Apply this process to the last equality constraint of the transportation problem. Then de�ne

a new matrix G with several additional rows (to account for the new inequality constraints), a new

vector h with more entries, a smaller matrix A, and a smaller vector b.

Problem 3. Solve the transportation problem by converting the last equality constraint into

an inequality constraint. Return the minimizer x and the primal objective value.

Quadratic Programming
Quadratic programming is similar to linear programming, but the objective function is quadratic

rather than linear. The constraints, if there are any, are still of the same form. Thus, G,h, A, and b

are optional. The formulation that we will use is

minimize
1

2
xTQx + rTx

subject to Gx � h

Ax = b,

where Q is a positive semide�nite symmetric matrix. In this formulation, we require again that A

has full row rank and that the block matrix [Q G A]T has full column rank.

As an example, consider the quadratic function

f(x1, x2) = 2x2
1 + 2x1x2 + x2

2 + x1 − x2.

There are no constraints, so we only need to initialize the matrix Q and the vector r. To �nd these,

we �rst rewrite our function to match the formulation given above. If we let

Q =

[
a b

b c

]
, r =

[
d

e

]
, and x =

[
x1

x2

]
,

then

1

2
xTQx + rTx =

1

2

[
x1

x2

]T [
a b

b c

] [
x1

x2

]
+

[
d

e

]T [
x1

x2

]
=

1

2
ax2

1 + bx1x2 +
1

2
cx2

2 + dx1 + ex2

Thus, we see that the proper values to initialize our matrix Q and vector r are:

a = 4 d = 1

b = 2 e = −1

c = 2

160 Lab 15. CVXOPT

Now that we have the matrix Q and vector r, we are ready to use the CVXOPT function for quadratic

programming solvers.qp().

>>> Q = matrix(np.array([[4., 2.], [2., 2.]]))

>>> r = matrix([1., -1.])

>>> sol=solvers.qp(Q, r)

>>> print(sol['x'])

[-1.00e+00]

[1.50e+00]

>>> print sol['primal objective']

-1.25

Problem 4. Find the minimizer and minimum of

g(x1, x2, x3) =
3

2
x2

1 + 2x1x2 + x1x3 + 2x2
2 + 2x2x3 +

3

2
x2

3 + 3x1 + x3

(Hint: Write the function g to match the formulation given above before coding.)

Problem 5. The l2 minimization problem is to

minimize ‖x‖2
subject to Ax = b.

This problem is equivalent to a quadratic program, since ‖x‖2 = xTx. Write a function

that accepts a matrix A and vector b and solves the l2 minimization problem. Return the

minimizer x and the primal objective value.

To test your function, use the matrix A and vector b from Problem 2. The minimizer

is approximately x = [0.966, 2.169, 0.809, 0.888]T and the minimum primal objective value is

approximately 7.079.

Eating on a Budget
In 2009, the inmates of Morgan County jail convinced Judge Clemon of the Federal District Court in

Birmingham to put Sheri� Barlett in jail for malnutrition. Under Alabama law, in order to encourage

less spending, "the chief lawman could go light on prisoners' meals and pocket the leftover change."1.

Sheri�s had to ensure a minimum amount of nutrition for inmates, but minimizing costs meant more

money for the sheri�s themselves. Judge Clemon jailed Sheri� Barlett one night until a plan was

made to use all allotted funds, 1.75 per inmate, to feed prisoners more nutritious meals. While this

case made national news, the controversy of feeding prisoners in Alabama continues as of 20192.

1Nossiter, Adam, 8 Jan 2009, "As His Inmates Grew Thinner, a Sheri�'s Wallet Grew Fatter", New York

Times,https://www.nytimes.com/2009/01/09/us/09sheriff.html
2Sheets, Connor, 31 January 2019, "Alabama sheri�s urge lawmakers to

get them out of the jail food business", https://www.al.com/news/2019/01/

alabama-sheriffs-urge-lawmakers-to-get-them-out-of-the-jail-food-business.html

https://www.nytimes.com/2009/01/09/us/09sheriff.html
https://www.al.com/news/2019/01/alabama-sheriffs-urge-lawmakers-to-get-them-out-of-the-jail-food-business.html
https://www.al.com/news/2019/01/alabama-sheriffs-urge-lawmakers-to-get-them-out-of-the-jail-food-business.html

161

The problem of minimizing cost while reaching healthy nutritional requirements can be ap-

proached as a convex optimization problem. Rather than viewing this problem from the sheri�'s

perspective, we view it from the perspective of a college student trying to minimize food cost in

order to pay for higher education, all while meeting standard nutritional guidelines.

The �le food.npy contains a dataset with nutritional facts for 18 foods that have been eaten

frequently by college students working on this text. A subset of this dataset can be found in Table

15.4, where the "Food" column contains the list of all 18 foods.

The columns of the full dataset are:

Column 1: p, price (dollars)

Column 2: s, number of servings

Column 3: c, calories per serving

Column 4: f , fat per serving (grams)

Column 5: ŝ, sugar per serving (grams)

Column 6: ĉ, calcium per serving (milligrams)

Column 7: f̂ , �ber per serving (grams)

Column 8: p̂, protein per serving (grams)

Food Price Serving Size Calories Fat Sugar Calcium Fiber Protein

p s c f ŝ ĉ f̂ p̂

dollars g g mg g g

Ramen 6.88 48 190 7 0 0 0 5

Potatoes 0.48 1 290 0.4 3.2 53.8 6.9 7.9

Milk 1.79 16 130 5 12 250 0 8

Eggs 1.32 12 70 5 0 28 0 6

Pasta 3.88 8 200 1 2 0 2 7

Frozen Pizza 2.78 5 350 11 5 150 2 14

Potato Chips 2.12 14 160 11 1 0 1 1

Frozen Broccoli 0.98 4 25 0 1 25 2 1

Carrots 0.98 2 52.5 0.3 6.1 42.2 3.6 1.2

Bananas 0.24 1 105 0.4 14.4 5.9 3.1 1.3

Tortillas 3.48 18 140 4 0 0 0 3

Cheese 1.88 8 110 8 0 191 0 6

Yogurt 3.47 5 90 0 7 190 0 17

Bread 1.28 6 120 2 2 60 0.01 4

Chicken 9.76 20 110 3 0 0 0 20

Rice 8.43 40 205 0.4 0.1 15.8 0.6 4.2

Pasta Sauce 3.57 15 60 1.5 7 20 2 2

Lettuce 1.78 6 8 0.1 0.6 15.5 1 0.6

Table 15.4: Subset of table containing food data

162 Lab 15. CVXOPT

According to the FDA1 and US Department of Health, someone on a 2000 calorie diet should

have no more than 2000 calories, no more than 65 grams of fat, no more than 50 grams of sugar2, at

least 1000 milligrams of calcium1, at least 25 grams of �ber, and at least 46 grams of protein2 per

day.

We can rewrite this as a convex optimization problem below.

minimize

18∑
i=1

pixi,

subject to

18∑
i=1

cixi ≤ 2000,

18∑
i=1

fixi ≤ 65,

18∑
i=1

ŝixi ≤ 50,

18∑
i=1

ĉixi ≥ 1000,

18∑
i=1

f̂ixi ≥ 25,

18∑
i=1

p̂ixi ≥ 46,

xi ≥ 0.

Problem 6. Read in the �le food.npy. Use CVXOPT to identify how much of each food item

a college student should each to minimize cost spent each day. Return the minimizing vector

and the total amount of money spent.

What is the food you should eat most each day? What are the three foods you should eat

most each week?

(Hint: Each nutritional value must be multiplied by the number of servings to get the

nutrition value of the whole product).

You can learn more about CVXOPT at http://cvxopt.org/index.html.

1urlhttps://www.accessdata.fda.gov/scripts/InteractiveNutritionFactsLabel/pdv.html
2https://www.today.com/health/4-rules-added-sugars-how-calculate-your-daily-limit-t34731
126 Sept 2018, https://ods.od.nih.gov/factsheets/Calcium-HealthProfessional/
2https://www.accessdata.fda.gov/scripts/InteractiveNutritionFactsLabel/protein.html

http://cvxopt.org/index.html
https://ods.od.nih.gov/factsheets/Calcium-HealthProfessional/
https://www.accessdata.fda.gov/scripts/InteractiveNutritionFactsLabel/protein.html

16 Interior Point 1: Linear
Programs

Lab Objective: For decades after its invention, the Simplex algorithm was the only competitive

method for linear programming. The past 30 years, however, have seen the discovery and widespread

adoption of a new family of algorithms that rival�and in some cases outperform�the Simplex algo-

rithm, collectively called Interior Point methods. One of the major shortcomings of the Simplex

algorithm is that the number of steps required to solve the problem can grow exponentially with the

size of the linear system. Thus, for certain large linear programs, the Simplex algorithm is simply

not viable. Interior Point methods o�er an alternative approach and enjoy much better theoretical

convergence properties. In this lab we implement an Interior Point method for linear programs, and

in the next lab we will turn to the problem of solving quadratic programs.

Introduction

Recall that a linear program is a constrained optimization problem with a linear objective function

and linear constraints. The linear constraints de�ne a set of allowable points called the feasible

region, the boundary of which forms a geometric object known as a polytope. The theory of convex

optimization ensures that the optimal point for the objective function can be found among the

vertices of the feasible polytope. The Simplex Method tests a sequence of such vertices until it �nds

the optimal point. Provided the linear program is neither unbounded nor infeasible, the algorithm

is certain to produce the correct answer after a �nite number of steps, but it does not guarantee an

e�cient path along the polytope toward the minimizer. Interior point methods do away with the

feasible polytope and instead generate a sequence of points that cut through the interior (or exterior)

of the feasible region and converge iteratively to the optimal point. Although it is computationally

more expensive to compute such interior points, each step results in signi�cant progress toward

the minimizer. See Figure 16.1 for an example of a path using an Interior Point algorithm. In

general, the Simplex Method requires many more iterations (though each iteration is less expensive

computationally).

163

164 Lab 16. Interior Point 1: Linear Programs

0 1 2 3 4 5 6
0

1

2

3

4

5

6

starting point

optimal point

Feasible Region

Figure 16.1: A path traced by an Interior Point algorithm.

Primal-Dual Interior Point Methods
Some of the most popular and successful types of Interior Point methods are known as Primal-Dual

Interior Point methods. Consider the following linear program:

minimize cTx

subject to Ax = b

x � 0.

Here, x, c ∈ Rn, b ∈ Rm, and A ∈ Rm×n with full row rank. This is the primal problem, and its

dual takes the form:

maximize bTλ

subject to ATλ + µ = c

µ,λ � 0,

where λ ∈ Rm and µ ∈ Rn.

KKT Conditions
The theory of convex optimization gives us necessary and su�cient conditions for the solutions to

the primal and dual problems via the Karush-Kuhn-Tucker (KKT) conditions. The Lagrangian for

the primal problem is as follows:

L(x,λ,µ) = cTx + λT(b−Ax)− µTx

165

The KKT conditions are

ATλ + µ = c

Ax = b

xiµi = 0, i = 1, 2, . . . , n,

x,µ � 0.

It is convenient to write these conditions in a more compact manner, by de�ning an almost-linear

function F and setting it equal to zero:

F (x,λ,µ) :=

ATλ + µ− c

Ax− b

Mx

 = 0,

(x,µ � 0),

whereM = diag(µ1, µ2, . . . , µn). Note that the �rst row of F is the KKT condition for dual feasibility,

the second row of F is the KKT condition for the primal problem, and the last row of F accounts

for complementary slackness.

Problem 1. De�ne a function interiorPoint() that will be used to solve the complete in-

terior point problem. This function should accept A, b, and c as parameters, along with the

keyword arguments niter=20 and tol=1e-16. The keyword arguments will be used in a later

problem.

For this problem, within the interiorPoint() function, write a function for the vector-

valued function F described above. This function should accept x, λ, and µ as parameters and

return a 1-dimensional NumPy array with 2n+m entries.

Search Direction
A Primal-Dual Interior Point method is a line search method that starts with an initial guess

(xT
0 ,λ

T
0 ,µ

T
0) and produces a sequence of points that converge to (x∗T,λ∗

T
,µ∗T), the solution to

the KKT equations and hence the solution to the original linear program. The constraints on the

problem make �nding a search direction and step length a little more complicated than for the

unconstrained line search we have studied previously.

In the spirit of Newton's Method, we can form a linear approximation of the system F (x,λ,µ) =

0 centered around our current point (x,λ,µ), and calculate the direction (4xT,4λT,4µT) in which

to step to set the linear approximation equal to 0. This equates to solving the linear system:

DF (x,λ,µ)

4x

4λ

4µ

 = −F (x,λ,µ) (16.1)

Here DF (x,λ,µ) denotes the total derivative matrix of F . We can calculate this matrix block-wise

by obtaining the partial derivatives of each block entry of F (x,λ,µ) with respect to x, λ, and µ,

respectively. We thus obtain:

DF (x,λ,µ) =

 0 AT I

A 0 0

M 0 X



166 Lab 16. Interior Point 1: Linear Programs

where X = diag(x1, x2, . . . , xn).

Unfortunately, solving Equation 16.1 often leads to a search direction that is too greedy. Even

small steps in this direction may lead the iteration out of the feasible region by violating one of the

constraints. To remedy this, we de�ne the duality measure ν1 of the problem:

ν =
xTµ

n

The idea is to use Newton's method to identify a direction that strictly decreases ν. Thus instead of

solving Equation 16.1, we solve:

DF (x,λ,µ)

4x

4λ

4µ

 = −F (x,λ,µ) +

 0

0

σνe

 (16.2)

where e = (1, 1, . . . , 1)T and σ ∈ [0, 1) is called the centering parameter. The closer σ is to 0, the

more similar the resulting direction will be to the plain Newton direction. The closer σ is to 1, the

more the direction points inward to the interior of the of the feasible region.

Problem 2. Within interiorPoint(), write a subroutine to compute the search direction

(4xT,4λT,4µT) by solving Equation 16.2. Use σ = 1
10 for the centering parameter.

Note that only the last block row of DF will need to be changed at each iteration (since

M and X depend on µ and x, respectively). Use the functions lu_factor() and lu_solve()

from the scipy.linalg module to solving the system of equations e�ciently.

Step Length
Now that we have our search direction, it remains to choose our step length. We wish to step nearly

as far as possible without violating the problem's constraints, thus remaining in the interior of the

feasible region. First, we calculate the maximum allowable step lengths for x and µ, respectively:

αmax = min{−µi/4µi | 4µi < 0}
δmax = min{−xi/4xi | 4xi < 0}

If all values of 4µ are nonnegative, let αmax = 1. Likewise, if all values of 4x are nonnegative, let

δmax = 1. Next, we back o� from these maximum step lengths slightly:

α = min(1, 0.95αmax)

δ = min(1, 0.95δmax).

These are our �nal step lengths. Thus, the next point in the iteration is given by:

xk+1 = xk + δ4xk

(λk+1,µk+1) = (λk,µk) + α(4λk,4µk).

1ν is the Greek letter for n, pronounced �nu.�

167

Problem 3. Within interiorPoint(), write a subroutine to compute the step size after the

search direction has been computed. Avoid using loops when computing αmax and βmax (use

masking and NumPy functions instead).

Initial Point
Finally, the choice of initial point (x0,λ0,µ0) is an important, nontrivial one. A naïvely or randomly

chosen initial point may cause the algorithm to fail to converge. The following function will calculate

an appropriate initial point.

def starting_point(A, b, c):

"""Calculate an initial guess to the solution of the linear program

min c\trp x, Ax = b, x>=0.

Reference: Nocedal and Wright, p. 410.

"""

Calculate x, lam, mu of minimal norm satisfying both

the primal and dual constraints.

B = la.inv(A @ A.T))

x = A.T @ B @ b

lam = B @ A @ c

mu = c - (A.T @ lam)

Perturb x and s so they are nonnegative.

dx = max((-3./2)*x.min(), 0)

dmu = max((-3./2)*mu.min(), 0)

x += dx*np.ones_like(x)

mu += dmu*np.ones_like(mu)

Perturb x and mu so they are not too small and not too dissimilar.

dx = .5*(x*mu).sum()/mu.sum()

dmu = .5*(x*mu).sum()/x.sum()

x += dx*np.ones_like(x)

mu += dmu*np.ones_like(mu)

return x, lam, mu

Problem 4. Complete the implementation of interiorPoint().

Use the function starting_point() provided above to select an initial point, then run

the iteration niter times, or until the duality measure is less than tol. Return the optimal

point x∗ and the optimal value cTx∗.

The duality measure ν tells us in some sense how close our current point is to the mini-

mizer. The closer ν is to 0, the closer we are to the optimal point. Thus, by printing the value

of ν at each iteration, you can track how your algorithm is progressing and detect when you

have converged.

168 Lab 16. Interior Point 1: Linear Programs

To test your implementation, use the following code to generate a random linear program,

along with the optimal solution.

def randomLP():

"""Generate a linear program min c\trp x s.t. Ax = b, x>=0.

First generate m feasible constraints, then add

slack variables to convert it into the above form.

Inputs:

m (int >= n): number of desired constraints.

n (int): dimension of space in which to optimize.

Outputs:

A ((m,n+m) ndarray): Constraint matrix.

b ((m,) ndarray): Constraint vector.

c ((n+m,), ndarray): Objective function with m trailing 0s.

x ((n,) ndarray): The first 'n' terms of the solution to the LP.

"""

A = np.random.random((m,n))*20 - 10

A[A[:,-1]<0] *= -1

x = np.random.random(n)*10

b = np.zeros(m)

b[:n] = A[:n,:] @ x

b[n:] = A[n:,:] @ x + np.random.random(m-n)*10

c = np.zeros(n+m)

c[:n] = A[:n,:].sum(axis=0)/n

A = np.hstack((A, np.eye(m)))

return A, b, -c, x

>>> m, n = 7, 5

>>> A, b, c, x = randomLP(m, n)

>>> point, value = interiorPoint(A, b, c)

>>> np.allclose(x, point[:n])

True

Least Absolute Deviations (LAD)
We now return to the familiar problem of �tting a line (or hyperplane) to a set of data. We have

previously approached this problem by minimizing the sum of the squares of the errors between the

data points and the line, an approach known as least squares. The least squares solution can be

obtained analytically when �tting a linear function, or through a number of optimization methods

(such as Conjugate Gradient) when �tting a nonlinear function.

The method of least absolute deviations (LAD) also seeks to �nd a best �t line to a set of data,

but the error between the data and the line is measured di�erently. In particular, suppose we have a

set of data points (y1,x1), (y2,x2), . . . , (ym,xm), where yi ∈ R, xi ∈ Rn for i = 1, 2, . . . ,m. Here, the

xi vectors are the explanatory variables and the yi values are the response variables, and we assume

the following linear model:

yi = βTxi + b, i = 1, 2, . . . ,m,

169

0 2 4 6 8 10
0

10

20

30
Least Absolute Deviation

0 2 4 6 8 10
0

10

20

30
Least Squares

Figure 16.2: Fitted lines produced by least absolute deviations (top) and least squares (bottom).

The presence of an outlier accounts for the stark di�erence between the two lines.

where β ∈ Rn and b ∈ R. The error between the data and the proposed linear model is given by

n∑
i=1

|βTxi + b− yi|,

and we seek to choose the parameters β, b so as to minimize this error.

Advantages of LAD

The most prominent di�erence between this approach and least squares is how they respond to

outliers in the data. Least absolute deviations is robust in the presence of outliers, meaning that one

(or a few) errant data points won't severely a�ect the �tted line. Indeed, in most cases, the best �t

line is guaranteed to pass through at least two of the data points. This is a desirable property when

the outliers may be ignored (perhaps because they are due to measurement error or corrupted data).

Least squares, on the other hand, is much more sensitive to outliers, and so is the better choice when

outliers cannot be dismissed. See Figure 16.2.

While least absolute deviations is robust with respect to outliers, small horizontal perturbations

of the data points can lead to very di�erent �tted lines. Hence, the least absolute deviations solution

is less stable than the least squares solution. In some cases there are even in�nitely many lines that

minimize the least absolute deviations error term. However, one can expect a unique solution in

most cases.

The least absolute deviations solution arises naturally when we assume that the residual terms

βTxi+b−yi have a particular statistical distribution (the Laplace distribution). Ultimately, however,

the choice between least absolute deviations and least squares depends on the nature of the data at

hand, as well as your own good judgment.

170 Lab 16. Interior Point 1: Linear Programs

LAD as a Linear Program

We can formulate the least absolute deviations problem as a linear program, and then solve it using

our interior point method. For i = 1, 2, . . . ,m we introduce the arti�cial variable ui to take the place

of the error term |βTxi + b − yi|, and we require this variable to satisfy ui ≥ |βTxi + b − yi|. This
constraint is not yet linear, but we can split it into an equivalent set of two linear constraints:

ui ≥ βTxi + b− yi,
ui ≥ yi − βTxi − b.

The ui are implicitly constrained to be nonnegative.

Our linear program can now be stated as follows:

minimize

m∑
i=1

ui

subject to ui ≥ βTxi + b− yi,
ui ≥ yi − βTxi − b.

Now for each inequality constraint, we bring all variables (ui,β, b) to the left hand side and introduce

a nonnegative slack variable to transform the constraint into an equality:

ui − βTxi − b− s2i−1 = −yi,
ui + βTxi + b− s2i = yi,

s2i−1, s2i ≥ 0.

Notice that the variables β, b are not assumed to be nonnegative, but in our interior point

method, all variables are assumed to be nonnegative. We can �x this situation by writing these

variables as the di�erence of nonnegative variables:

β = β1 − β2,

b = b1 − b2,
β1,β2 � 0; b1, b2 ≥ 0.

Substituting these values into our constraints, we have the following system of constraints:

ui − βT
1xi + βT

2xi − b1 + b2 − s2i−1 = −yi,
ui + βT

1xi − βT
2xi + b1 − b2 − s2i = yi,

β1,β2 � 0;ui, b1, b2, s2i−1, s2i ≥ 0.

Writing y = (−y1, y1,−y2, y2, . . . ,−ym, ym)T and βi = (βi,1, . . . , βi,n)T for i = {1, 2}, we can aggre-

gate all of our variables into one vector as follows:

v = (u1, . . . , um, β1,1, . . . , β1,n, β2,1, . . . , β2,n, b1, b2, s1, . . . , s2m)T.

De�ning c = (1, 1, . . . , 1, 0, . . . , 0)T (where only the �rst m entries are equal to 1), we can write our

objective function as
m∑
i=1

ui = cTv.

171

Hence, the �nal form of our linear program is:

minimize cTv

subject to Av = y,

v � 0,

where A is a matrix containing the coe�cients of the constraints. Our constraints are now equalities,

and the variables are all nonnegative, so we are ready to use our interior point method to obtain the

solution.

LAD Example
Consider the following example. We start with an array data, each row of which consists of the

values yi, xi,1, . . . , xi,n, where xi = (xi,1, xi,2, . . . , xi,n)T. We will have 3m+ 2(n+ 1) variables in our

linear program. Below, we initialize the vectors c and y.

>>> m = data.shape[0]

>>> n = data.shape[1] - 1

>>> c = np.zeros(3*m + 2*(n + 1))

>>> c[:m] = 1

>>> y = np.empty(2*m)

>>> y[::2] = -data[:, 0]

>>> y[1::2] = data[:, 0]

>>> x = data[:, 1:]

The hardest part is initializing the constraint matrix correctly. It has 2m rows and 3m+2(n+1)

columns. Try writing out the constraint matrix by hand for smallm,n, and make sure you understand

why the code below is correct.

>>> A = np.ones((2*m, 3*m + 2*(n + 1)))

>>> A[::2, :m] = np.eye(m)

>>> A[1::2, :m] = np.eye(m)

>>> A[::2, m:m+n] = -x

>>> A[1::2, m:m+n] = x

>>> A[::2, m+n:m+2*n] = x

>>> A[1::2, m+n:m+2*n] = -x

>>> A[::2, m+2*n] = -1

>>> A[1::2, m+2*n+1] = -1

>>> A[:, m+2*n+2:] = -np.eye(2*m, 2*m)

Now we can calculate the solution by calling our interior point function.

>>> sol = interiorPoint(A, y, c, niter=10)[0]

However, the variable sol holds the value for the vector

v = (u1, . . . , um, β1,1, . . . , β1,n, β2,1, . . . , β2,n, b1, b2, s1, . . . , s2m+1)T.

We extract values of β = β1 − β2 and b = b1 − b2 with the following code:

172 Lab 16. Interior Point 1: Linear Programs

>>> beta = sol[m:m+n] - sol[m+n:m+2*n]

>>> b = sol[m+2*n] - sol[m+2*n+1]

Problem 5. The �le simdata.txt contains two columns of data. The �rst gives the values of

the response variables (yi), and the second column gives the values of the explanatory variables

(xi). Find the least absolute deviations line for this data set, and plot it together with the

data. Plot the least squares solution as well to compare the results.

>>> from scipy.stats import linregress

>>> slope, intercept = linregress(data[:,1], data[:,0])[:2]

>>> domain = np.linspace(0,10,200)

>>> plt.plot(domain, domain*slope + intercept)

17 Interior Point 2:
Quadratic Programs

Lab Objective: Interior point methods originated as an alternative to the Simplex method for

solving linear optimization problems. However, they can also be adapted to treat convex optimiza-

tion problems in general. In this lab we implement a primal-dual Interior Point method for convex

quadratic constrained optimization and explore applications in elastic membrane theory and �nance.

Quadratic Optimization Problems
A quadratic constrained optimization problem di�ers from a linear constrained optimization problem

only in that the objective function is quadratic rather than linear. We can pose such a problem as

follows:

minimize
1

2
xTQx + cTx

subject to Ax � b,

Gx = h.

We will restrict our attention to quadratic programs involving positive semide�nite quadratic

terms (in general, inde�nite quadratic objective functions admit many local minima, complicating

matters considerably). Such problems are called convex, since the objective function is convex. To

simplify the exposition, we will also only allow inequality constraints (generalizing to include equality

constraints is not di�cult). Thus, we have the problem

minimize
1

2
xTQx + cTx

subject to Ax � b

where Q ∈ Rn×n is a positive semide�nite matrix, A ∈ Rm×n, x, c ∈ Rn, and b ∈ Rm.
The Lagrangian function for this problem is:

L(x,µ) =
1

2
xTQx + cTx− µT(Ax− b), (17.1)

where µ ∈ Rm is the Lagrange multiplier.

173

174 Lab 17. Interior Point 2: Quadratic Programs

We also introduce a nonnegative slack vector y ∈ Rm to change the inequality Ax−b � 0 into

the equality Ax− b− y = 0.

Then the complete set of KKT conditions are:

Qx−ATµ + c = 0,

Ax− b− y = 0,

yiµi = 0, i = 1, 2, . . . ,m,

y,µ � 0.

Quadratic Interior Point Method
The Interior Point method we describe here is an adaptation of the method we used with linear

programming. De�ne Y = diag(y1, y2, . . . , ym), M = diag(µ1, µ2, . . . , µm), and let e ∈ Rm be a

vector of all ones. Then the roots of the function

F (x,y,µ) =

Qx−ATµ + c

Ax− y − b

YMe

 = 0,

(y,µ) � 0

satisfy the KKT conditions. The derivative matrix of this function is given by

DF (x,y,µ) =

Q 0 −AT

A −I 0

0 M Y

 ,
and the duality measure ν for this problem is

ν =
yTµ

m
.

Search Direction
We calculate the search direction for this algorithm in the spirit of Newton's Method; this is the

same way that we did in the linear programming case. That is, we solve the system:

DF (x,y,µ)

4x

4y

4µ

 = −F (x,y,µ) +

 0

0

σνe

 , (17.2)

where σ ∈ [0, 1) is the centering parameter.

Problem 1. Create a function qInteriorPoint(). It should accept the arrays Q, c, A, and

b, a tuple of arrays guess giving initial estimates for x,y, and µ (this will be explained later),

along with the keyword arguments niter=20 and tol=1e-16.

In this function, calculate the search direction. Create F and DF as described above, and

calculate the search direction (4xT,4yT,4µT) by solving Equation 17.2. Use σ = 1
10 for the

centering parameter.

(Hint: What are the dimensions of F and DF?)

175

Step Length
Now that we have our search direction, we select a step length. We want to step nearly as far as

possible without violating the nonnegativity constraints. However, we back o� slightly from the

maximum allowed step length because an overly greedy step at one iteration may prevent a descent

step at the next iteration. Thus, we choose our step size

α = max{a ∈ (0, 1] | τ(y,µ) + a(4y,4µ) � 0},

where τ ∈ (0, 1) controls how much we back o� from the maximal step length. For now, choose

τ = 0.95. In general, τ can be made to approach 1 at each successive iteration. This may speed up

convergence in some cases.

We wish to step nearly as far as possible without violating the problem's constraints, as to

remain in the interior of the feasible region. First, we calculate the maximum allowable step lengths

for µ and y.

βmax = min{−µi/4µi | 4µi < 0}
δmax = min{−yi/4yi | 4yi < 0}

If all of the entries of 4µ are nonnegative, we let βmax = 1. Likewise, if all the entries of 4y are

nonnegative, let δmax = 1. Next, we back o� from these maximum step lengths slightly:

β = min(1, τβmax)

δ = min(1, τδmax)

α = min(β, δ)

This α is our �nal step length. Thus, the next point in the iteration is given by:

(xk+1,yk+1,µk+1) = (xk,yk,µk) + α(4xk,4yk,4µk).

This completes one iteration of the algorithm.

Initial Point
The starting point (x0,y0,µ0) has an important e�ect on the convergence of the algorithm. The

code listed below will calculate an appropriate starting point:

def startingPoint(G, c, A, b, guess):

"""

Obtain an appropriate initial point for solving the QP

.5 x\trp Gx + x\trp c s.t. Ax >= b.

Parameters:

G -- symmetric positive semidefinite matrix shape (n,n)

c -- array of length n

A -- constraint matrix shape (m,n)

b -- array of length m

guess -- a tuple of arrays (x, y, l) of lengths n, m, and m, resp.

176 Lab 17. Interior Point 2: Quadratic Programs

Returns:

a tuple of arrays (x0, y0, l0) of lengths n, m, and m, resp.

"""

m,n = A.shape

x0, y0, l0 = guess

initialize linear system

N = np.zeros((n+m+m, n+m+m))

N[:n,:n] = G

N[:n, n+m:] = -A.T

N[n:n+m, :n] = A

N[n:n+m, n:n+m] = -np.eye(m)

N[n+m:, n:n+m] = np.diag(l0)

N[n+m:, n+m:] = np.diag(y0)

rhs = np.empty(n+m+m)

rhs[:n] = -(G.dot(x0) - A.T.dot(l0)+c)

rhs[n:n+m] = -(A.dot(x0) - y0 - b)

rhs[n+m:] = -(y0*l0)

sol = la.solve(N, rhs)

dx = sol[:n]

dy = sol[n:n+m]

dl = sol[n+m:]

y0 = np.maximum(1, np.abs(y0 + dy))

l0 = np.maximum(1, np.abs(l0+dl))

return x0, y0, l0

Notice that we still need to provide a tuple of arrays guess as an argument. Do your best to provide

a reasonable guess for the array x, and we suggest setting y and µ equal to arrays of ones. We

summarize the entire algorithm below.

1: procedure Interior Point Method for QP

2: Choose initial point (x0,y0,µ0).

3: while k < niters and ν < tol: do

4: Calculate the duality measure ν.

5: Solve 17.2 for the search direction (4xk,4yk,4µk).

6: Calculate the step length α.

7: (xk+1,yk+1,µk+1) = (xk,yk,µk) + α(4xk,4yk,4µk).

Problem 2. Complete the implementation of qInteriorPoint(). Return the optimal point

x as well as the �nal objective function value.

177

Test your algorithm on the simple problem

minimize
1

2
x2

1 + x2
2−x1x2 − 2x1 − 6x2

subject to − x1 − x2 ≥ −2,

x1 − 2x2 ≥ −2,

−2x1 − x2 ≥ −3,

x1, x2 ≥ 0.

In this case, we have for the objective function matrix Q and vector c,

Q =

[
1 −1

−1 2

]
, c =

[
−2

−6

]
.

The constraint matrix A and vector b are given by:

A =


−1 −1

1 −2

−2 −1

1 0

0 1

 , b =


−2

−2

−3

0

0

 .

Use x = [.5, .5] as the initial guess. The correct minimizer is
[

2
3 ,

4
3

]
.

(Hint: You may want to print out the duality measure ν to check the progress of the

iteration).

Note

The Interior Point methods presented in this and the preceding labs are only special cases of the

more general Interior Point algorithm. The general version can be used to solve many convex

optimization problems, provided that one can derive the corresponding KKT conditions and

duality measure ν.

Application: Optimal Elastic Membranes

The properties of elastic membranes (stretchy materials like a thin rubber sheet) are of interest in

certain �elds of mathematics and various sciences. A mathematical model for such materials can

be used by biologists to study interfaces in cellular regions of an organism or by engineers to design

tensile structures. Often we can describe con�gurations of elastic membranes as a solution to an

optimization problem. As a simple example, we will �nd the shape of a large circus tent by solving

a quadratic constrained optimization problem using our Interior Point method.

178 Lab 17. Interior Point 2: Quadratic Programs

Figure 17.1: Tent pole con�guration (left) and optimal elastic tent (right).

Imagine a large circus tent held up by a few poles. We can model the tent by a square two-

dimensional grid, where each grid point has an associated number that gives the height of the tent

at that point. At each grid point containing a tent pole, the tent height is constrained to be at least

as large as the height of the tent pole. At all other grid points, the tent height is simply constrained

to be greater than zero (ground height). In Python, we can store a two-dimensional grid of values

as a simple two-dimensional array. We can then �atten this array to give a one-dimensional vector

representation of the grid. If we let x be a one-dimensional array giving the tent height at each

grid point, and L be the one-dimensional array giving the underlying tent pole structure (consisting

mainly of zeros, except at the grid points that contain a tent pole), we have the linear constraint:

x � L.

The theory of elastic membranes claims that such materials tend to naturally minimize a quan-

tity known as the Dirichlet energy. This quantity can be expressed as a quadratic function of the

membrane. Since we have modeled our tent with a discrete grid of values, this energy function has

the form
1

2
xTHx + cTx,

where H is a particular positive semide�nite matrix closely related to Laplace's Equation, c is a

vector whose entries are all equal to −(n− 1)−2, and n is the side length of the grid. Our circus tent

is therefore given by the solution to the quadratic constrained optimization problem:

minimize
1

2
xTHx + cTx

subject to x � L.

See Figure 17.1 for an example of a tent pole con�guration and the corresponding tent.

We provide the following function for producing the Dirichlet energy matrix H.

179

from scipy.sparse import spdiags

def laplacian(n):

"""Construct the discrete Dirichlet energy matrix H for an n x n grid."""

data = -1*np.ones((5, n**2))

data[2,:] = 4

data[1, n-1::n] = 0

data[3, ::n] = 0

diags = np.array([-n, -1, 0, 1, n])

return spdiags(data, diags, n**2, n**2).toarray()

Now we initialize the tent pole con�guration for a grid of side length n, as well as initial guesses for

x, y, and µ.

Create the tent pole configuration.

>>> L = np.zeros((n,n))

>>> L[n//2-1:n//2+1,n//2-1:n//2+1] = .5

>>> m = [n//6-1, n//6, int(5*(n/6.))-1, int(5*(n/6.))]

>>> mask1, mask2 = np.meshgrid(m, m)

>>> L[mask1, mask2] = .3

>>> L = L.ravel()

Set initial guesses.

>>> x = np.ones((n,n)).ravel()

>>> y = np.ones(n**2)

>>> mu = np.ones(n**2)

We leave it to you to initialize the vector c, the constraint matrix A, and to initialize the matrix H

with the laplacian() function. We can solve and plot the tent with the following code:

>>> from matplotlib import pyplot as plt

>>> from mpl_toolkits.mplot3d import axes3d

Calculate the solution.

>>> z = qInteriorPoint(H, c, A, L, (x,y,mu))[0].reshape((n,n))

Plot the solution.

>>> domain = np.arange(n)

>>> X, Y = np.meshgrid(domain, domain)

>>> fig = plt.figure()

>>> ax1 = fig.add_subplot(111, projection='3d')

>>> ax1.plot_surface(X, Y, z, rstride=1, cstride=1, color='r')

>>> plt.show()

Problem 3. Solve the circus tent problem with the tent pole con�guration given above, for

grid side length n = 15. Plot your solution.

180 Lab 17. Interior Point 2: Quadratic Programs

Application: Markowitz Portfolio Optimization
Suppose you have a certain amount of money saved up, with no intention of consuming it any time

soon. What will you do with this money? If you hide it somewhere in your living quarters or on

your person, it will lose value over time due to in�ation, not to mention you run the risk of burglary

or accidental loss. A safer choice might be to put the money into a bank account. That way, there is

less risk of losing the money, plus you may even add to your savings through interest payments from

the bank. You could also consider purchasing bonds from the government or stocks from various

companies, which come with their own sets of risks and returns. Given all of these possibilities, how

can you invest your money in such a way that maximizes the return (i.e. the wealth that you gain over

the course of the investment) while still exercising caution and avoiding excessive risk? Economist

and Nobel laureate Harry Markowitz developed the mathematical underpinnings and answer to this

question in his work on modern portfolio theory.

A portfolio is a set of investments over a period of time. Each investment is characterized by

a �nancial asset (such as a stock or bond) together with the proportion of wealth allocated to the

asset. An asset is a random variable, and can be described as a sequence of values over time. The

variance or spread of these values is associated with the risk of the asset, and the percent change

of the values over each time period is related to the return of the asset. For our purposes, we will

assume that each asset has a positive risk, i.e. there are no riskless assets available.

Stated more precisely, our portfolio consists of n risky assets together with an allocation vector

x = (x1, . . . , xn)T, where xi indicates the proportion of wealth we invest in asset i. By de�nition,

the vector x must satisfy
n∑
i=1

xi = 1.

Suppose the ith asset has an expected rate of return µi and a standard deviation σi. The total return

on our portfolio, i.e. the expected percent change in our invested wealth over the investment period,

is given by
n∑
i=1

µixi.

We de�ne the risk of this portfolio in terms of the covariance matrix Q of the n assets:√
xTQx.

The covariance matrix Q is always positive semide�nite and captures the variance and correlations

of the assets.

Given that we want our portfolio to have a prescribed return R, there are many possible

allocation vectors x that make this possible. It would be wise to choose the vector minimizing the

risk. We can state this as a quadratic program:

minimize
1

2
xTQx

subject to

n∑
i=1

xi = 1

n∑
i=1

µixi = R.

181

Note that we have slightly altered our objective function for convenience, as minimizing 1
2x

TQx is

equivalent to minimizing
√

xTQx. The solution to this problem will give the portfolio with least risk

having a return R. Because the components of x are not constrained to be nonnegative, the solution

may have some negative entries. This indicates short selling those particular assets. If we want to

disallow short selling, we simply include nonnegativity constraints, stated in the following problem:

minimize
1

2
xTQx

subject to

n∑
i=1

xi = 1

n∑
i=1

µixi = R

x � 0.

Each return value R can be paired with its corresponding minimal risk σ. If we plot these

risk-return pairs on the risk-return plane, we obtain a hyperbola. In general, the risk-return pair

of any portfolio, optimal or not, will be found in the region bounded on the left by the hyperbola.

The positively-sloped portion of the hyperbola is known as the e�cient frontier, since the points

there correspond to optimal portfolios. Portfolios with risk-return pairs that lie to the right of the

e�cient frontier are ine�cient portfolios, since we could either increase the return while keeping the

risk constant, or we could decrease the risk while keeping the return constant. See Figure 17.2.

Risk

Re
tu

rn

Efficient Frontier

Inefficient Portfolios

Figure 17.2: E�cient frontier on the risk-return plane.

One weakness of this model is that the risk and return of each asset is in general unknown.

After all, no one can predict the stock market with complete certainty. There are various ways of

estimating these values given past stock prices, and we take a very straightforward approach. Suppose

for each asset, we have k previous return values of the asset. That is, for asset i, we have the data

vector

yi = [yi1, . . . , y
i
k]T.

182 Lab 17. Interior Point 2: Quadratic Programs

We estimate the expected rate of return for asset i by simply taking the average of y1, . . . , yk, and we

estimate the variance of asset i by taking the variance of the data. We can estimate the covariance

matrix for all assets by taking the covariance matrix of the vectors y1, . . . , yn. In this way, we obtain

estimated values for each µi and Q.

Problem 4. The text �le portfolio.txt contains historical stock data for several assets (U.S.

bonds, gold, S&P 500, etc). In particular, the �rst column gives the years corresponding to

the data, and the remaining eight columns give the historical returns of eight assets over the

course of these years. Use this data to estimate the covariance matrix Q as well as the expected

rates of return µi for each asset. Assuming that we want to guarantee an expected return of

R = 1.13 for our portfolio, �nd the optimal portfolio both with and without short selling.

Since the problem contains both equality and inequality constraints, use the QP solver in

CVXOPT rather than your qInteriorPoint() function.

Hint: Use numpy.cov() to compute Q.

18 Dynamic
Programming

Lab Objective: Sequential decision making problems are a class of problems in which the current

choice depends on future choices. They are a subset of Markov decision processes, an important

class of problems with applications in business, robotics, and economics. Dynamic programming is a

method of solving these problems that optimizes the solution by breaking the problem down into steps

and optimizing the decision at each time period. In this lab we use dynamic programming to solve

two classic dynamic optimization problems.

The Marriage Problem
Many dynamic optimization problems can be classi�ed as optimal stopping problems, where the goal

is to determine at what time to take an action to maximize the expected reward. For example, when

hiring a secretary, how many people should you interview before hiring the current interviewer? Or

how many people should you date before you get married? These problems try to determine at what

person t to stop in order to maximize the chance of getting the best candidate.

For instance, let N be the number of people you could date. After dating each person, you can

either marry them or move on; you can't resume a relationship once it ends. In addition, you can

rank your current relationship to all of the previous options, but not to future ones. The goal is to

�nd the policy that maximizes the probability of choosing the best marriage partner. That policy

may not always choose the best candidate, but it should get an almost-best candidate most of the

time.

Let V (t− 1) be the probability that we choose the best partner when we have passed over the

�rst t − 1 candidates with an optimal policy. In other words, we have dated t − 1 people and want

to know the probability that the tth person is the one we should marry. Note that the probability

that the tth person is not the best candidate is t−1
t and the probability that they are is 1

t . If the

tth person is not the best out of the �rst t, then probability they are the best overall is 0 and the

probability they are not is V (t). If the tth person is the best out of the �rst t, then the probability

they are the best overall is t
N and the probability they are not is V (t).

By Bellman's optimality equations,

V (t− 1) =
t− 1

t
max {0, V (t)}+

1

t
max

{
t

N
, V (t)

}
= max

{
t− 1

t
V (t) +

1

N
,V (t)

}
. (18.1)

183

184 Lab 18. Dynamic Programming

Notice that (18.1) implies that V (t−1) ≥ V (t) for all t ≤ N . Hence, the probability of selecting

the best match V (t) is non-increasing. Conversely, P (t is best overall|t is best out of the �rst t) =
t
N is strictly increasing. Therefore, there is some t0, called the optimal stopping point, such that

V (t) ≤ t
N for all t ≥ t0. After t0 relationships, we choose the next partner who is better than all of

the previous ones. We can write (18.1) as

V (t− 1) =

{
V (t0) t < t0,
t−1
t V (t) + 1

N t ≥ t0.

The goal of an optimal stopping problem is to �nd t0, which we can do by backwards induction.

We start at the �nal candidate, who always has probability 0 of being the best overall if they

are not the best so far, and work our way backwards, computing the expected value V (t), for

t = N,N − 1, . . . , 1.

If N = 4, we have

V (4) = 0,

V (3) = max

{
3

4
V (4) +

1

4
, 0

}
= .25,

V (2) = max

{
2

3
V (3) +

1

4
, .25

}
= .4166,

V (1) = max

{
1

4
, .4166

}
= .4166.

In this case, the maximum expected value is .4166 and the stopping point is t = 2. It is also useful

to look at the optimal stopping percentage of people to date before getting married. In this case, it

is 2/4 = .5.

Problem 1. Write a function that accepts a number of candidates N . Calculate the expected

values of choosing candidate t for t = 0, 1, . . . , N − 1.

Return the highest expected value V (t0) and the optimal stopping point t0.

(Hint: Since Python starts indices at 0, the �rst candidate is t = 0.)

Check your answer for N = 4 with the example detailed above.

Problem 2. Write a function that takes in an integerM and runs your function from Problem

1 for each N = 3, 4, . . . ,M . Graph the optimal stopping percentage of candidates (t0/N)

to interview and the maximum probability V (t0) against N . Return the optimal stopping

percentage for M .

The optimal stopping percentage for M = 1000 is .367.

Both the stopping time and the probability of choosing the best person converge to 1
e ≈ .36788.

Then to maximize the chance of having the best marriage, you should date at least N
e people be-

fore choosing the next best person. This famous problem is also known as the secretary prob-

lem, the sultan's dowry problem, and the best choice problem. For more information, see https:

//en.wikipedia.org/wiki/Secretary_problem.

https://en.wikipedia.org/wiki/Secretary_problem
https://en.wikipedia.org/wiki/Secretary_problem

185

The Cake Eating Problem

Imagine you are given a cake. How do you eat it to maximize your enjoyment? Some people may

prefer to eat all of their cake at once and not save any for later. Others may prefer to eat a little bit

at a time. If we are to consume a cake of size W over T + 1 time periods, then our consumption at

each step is represented as a vector

c =
[
c0 c1 · · · cT

]T
,

where

T∑
i=0

ci = W.

This vector is called a policy vector and describes how much cake is eaten at each time period.

The enjoyment of eating a slice of cake is represented by a utility function. For some amount of

consumption ci ∈ [0,W], the utility gained is given by u(ci).

For this lab, we assume the utility function satis�es u(0) = 0, that W = 1, and that W is cut

into N equally-sized pieces so that each ci must be of the form
i
N for some integer 0 ≤ i ≤ N .

Discount Factors

A person or �rm typically has a time preference for saving or consuming. For example, a dollar

today can be invested and yield interest, whereas a dollar received next year does not include the

accrued interest. Since cake gets stale as it gets older, we assume that cake in the present yields

more utility than cake in the future. We can model this by multiplying future utility by a discount

factor β ∈ (0, 1). For example, if we were to consume c0 cake at time 0 and c1 cake at time 1, with

c0 = c1 then the utility gained at time 0 is larger than the utility at time 1:

u(c0) > βu(c1).

The total utility for eating the cake is

T∑
t=0

βtu(ct).

186 Lab 18. Dynamic Programming

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.5

1.0

1.5

Policy 1, Utility = 1.0
Policy 2, Utility = 0.6
Policy 3, Utility = 1.8
Policy 4, Utility = 1.7

Figure 18.1: Plots for various policies with u(x) =
√
x and β = 0.9. Policy 1 eats all of the cake in

the �rst step while policy 2 eats all of the cake in the last step. Their di�erence in utility demonstrate

the e�ect of the discount factor on waiting to eat. Policy 3 eats the same amount of cake at each

step, while policy 4 begins by eating .4 of the cake, then .3, .2, and .1.

The Value Function
The cake eating problem is an optimization problem where we maximize utility.

max
c

T∑
t=0

βtu(ct) (18.2)

subject to

T∑
t=0

ct = W

ct ≥ 0.

One way to solve it is with the value function. The value function V (a, b,W) gives the utility

gained from following an optimal policy from time a to time b.

V (a, b,W) = max
c

b∑
t=a

βtu(ct)

subject to

b∑
t=a

ct = W

ct ≥ 0.

V (0, T,W) gives how much utility we gain in T days and is the same as Equation 18.2.

Let Wt represent the total amount of cake left at time t. Observe that Wt+1 ≤ Wt for all t,

because our problem does not allow for the creation of more cake. Notice that V (t+ 1, T,Wt+1) can

be represented by βV (t, T − 1,Wt+1), which is the value of eating Wt+1 cake later. Then we can

express the value function as the sum of the utility of eating Wt −Wt+1 cake now and Wt+1 cake

later.

187

V (t, T,Wt) = max
Wt+1

(u(Wt −Wt+1) + βV (t, T − 1,Wt+1)) (18.3)

where u(Wt −Wt+1) is the value gained from eating Wt −Wt+1 cake at time t.

Let w =
[
0 1

N · · · N−1
N 1

]T
. We de�ne the consumption matrix C by Cij = u(wi − wj).

Note that C is an (N +1)× (N +1) lower triangular matrix since we assume j ≤ i; we can't consume

more cake than we have. The consumption matrix will help solve the value function by calculating

all possible value of u(Wt −Wt+1) at once. At each time t, Wt can only have N + 1 values, which

will be represented as wi = i
N , which is i pieces of cake remaining. For example, if N = 4, then

w = [0, .25, .5, .75, 1]T, and w3 = 0.75 represents having three pieces of cake left. In this case, we get

the following consumption matrix.
0 0 0 0 0

u(0.25) 0 0 0 0

u(0.5) u(0.25) 0 0 0

u(0.75) u(0.5) u(0.25) 0 0

u(1) u(0.75) u(0.5) u(0.25) 0

 .

Problem 3. Write a function that accepts the number of equal sized pieces N that divides the

cake and a utility function u(x). Assume W = 1. Create a partition vector w whose entries

correspond to possible amounts of cake. Return the consumption matrix.

Solving the Optimization Problem
Initially we do not know how much cake to eat at t = 0: should we eat one piece of cake (w1),

or perhaps all of the cake (wN)? It may not be obvious which option is best and that option may

change depending on the discount factor β. Instead of asking how much cake to eat at some time t,

we ask how valuable wi cake is at time t. As mentioned above, V (t, T − 1,Wt+1) in 18.3 is a new

value function problem with a = t, b = T − 1, and W = Wt+1, making 18.3 a recursion formula. By

using the optimal value of the value function in the future, V (t, T − 1,Wt+1), we can determine the

optimal value for the present, V (t, T,Wt). V (t, T,Wt) can be solved by trying each possible Wt+1

and choosing the one that gives the highest utility.

The (N+1)×(T+1) matrix A that solves the value function is called the value function matrix.

Aij is the value of having wi cake at time j. A0j = 0 because there is never any value in having w0

cake, i.e. u(w0) = u(0) = 0.

We start at the last time period. Since there is no value in having any cake left over when time

runs out, the decision at time T is obvious: eat the rest of the cake. The amount of utility gained

from having wi cake at time T is given by u(wi). So AiT = u(wi). Written in the form of (18.3),

AiT = V (0, 0, wi) = max
wj

(u(wi − wj) + βV (0,−1, wj)) = u(wi). (18.4)

This happens because V (0,−1, wj) = 0. As mentioned, there is no value in saving cake so this

equation is maximized when wj = 0. All possible values of wi are calculated so that the value of

having wi cake at time T is known.

188 Lab 18. Dynamic Programming

Achtung!

Given a time interval from t = 0 to t = T the utility of waiting until time T to eat wi cake

is actually βTu(Wi). However, through backwards induction, the problem is solved backwards

by beginning with t = T as an isolated state and calculating its value. This is why the value

function above is V (0, 0,Wi) and not V (T, T,Wi).

For example, the following matrix results with T = 3, N = 4, and β = 0.9.
0 0 0 u(0)

0 0 0 u(0.25)

0 0 0 u(0.5)

0 0 0 u(0.75)

0 0 0 u(1)

 .

Problem 4. Write a function that accepts a stopping time T , a number of equal sized pieces

N that divides the cake, a discount factor β, and a utility function u(x). Return the value

function matrix A for t = T (the matrix should have zeros everywhere except the last column).

Return a matrix of zeros for the policy matrix P .

Next, we use the fact that AjT = V (0, 0, wj) to evaluate the T −1 column of the value function

matrix, Ai(T−1), by modifying (18.4) as follows,

Ai(T−1) = V (0, 1, wi) = max
wj

(u(wi − wj) + βV (0, 0, wj)) = max
wj

(u(wi − wj) + βAjT)) . (18.5)

Remember that there is a limited set of possibilities for wj , and we only need to consider options

such that wj ≤ wi. Instead of doing these one by one for each wi, we can compute the options for

each wi simultaneously by creating a matrix. This information is stored in an (N + 1) × (N + 1)

matrix known as the current value matrix, or CV t, where the (ij)th entry is the value of eating

wi − wj pieces of cake at time t and saving j pieces of cake until the next period. For t = T − 1,

CV T−1
ij = u(wi − wj) + βAjT . (18.6)

The largest entry in the ith row of CV T−1 is the optimal value that the value function can

attain at T −1, given that we start with wi cake. The maximal values of each row of CV T−1 become

the column of the value function matrix, A, at time T − 1.

Achtung!

The notation CV t does not mean raising the matrix to the tth power; rather, it indicates what

time period we are in. All of the CV t could be grouped together into a three-dimensional

matrix, CV , that has dimensions (N + 1) × (N + 1) × (T + 1). Although this is possible, we

will not use CV in this lab, and will instead only consider CV t for any given time t.

The following matrix is CV 2 where T = 3, β = .9, N = 4, and u(x) =
√
x. The maximum

value of each row, circled in red, is used in the 3rd column of A. Remember that A's column index

begins at 0, so the 3rd column represents j = 2.

189

CV 2 =

0 0 0 0 0

0.5 0.45 0 0 0

0.707 0.95 0.636 0 0

0.866 1.157 1.136 0.779 0

1 1.316 1.343 1.279 0.9




Now that the column of A corresponding to t = T−1 has been calculated, we repeat the process

for T − 2 and so on until we have calculated each column of A. In summary, at each time step t, �nd

CV t and then set Ait as the maximum value of the ith row of CV t. Generalizing (18.5) and (18.6)

shows

CV tij = u(wi − wj) + βAj(t+1). Ait = max
j

(
CV tij

)
. (18.7)

The full value function matrix corresponding to the example is below. The maximum value in

the value function matrix is the maximum possible utility to be gained.

A =


0 0 0 0

0.5 0.5 0.5 0.5

0.95 0.95 0.95 0.707

1.355 1.355 1.157 0.866

1.7195 1.562 1.343 1

 .

Figure 18.2: The value function matrix where T = 3, β = .9, N = 4, and u(x) =
√
x. The bottom

left entry indicates the highest utility that can be achieved is 1.7195.

Problem 5. Complete your function from Problem 4 so it returns the entire value function

matrix. Starting from the next to last column, iterate backwards by

� calculating the current value matrix for time t using (18.7),

� �nding the largest value in each row of the current value matrix, and

� �lling in the corresponding column of A with these values.

(Hint: Use axis arguments.)

Solving for the Optimal Policy
With the value function matrix constructed, the optimization problem is solved in some sense. The

value function matrix contains the maximum possible utility to be gained. However, it is not im-

mediately apparent what policy should be followed by only inspecting the value function matrix A.

The (N + 1)× (T + 1) policy matrix, P , is used to �nd the optimal policy. The (ij)th entry of the

policy matrix indicates how much cake to eat at time j if we have i pieces of cake. Like A and CV ,

i and j begin at 0.

190 Lab 18. Dynamic Programming

The last column of P is calculated similarly to last column of A. PiT = wi, because at time T

we know that the remainder of the cake should be eaten. Recall that the column of A corresponding

to t was calculated by the maximum values of CV t. The column of P for time t is calculated by

taking wi − wj , where j is the smallest index corresponding to the maximum value of CV t,

Pit = wi − wj .

where j = {min{j} | CV tij ≥ CV tik ∀ k ∈ [0, 1, . . . , N] }

Recall CV 2 in our example with T = 3, β = .9, N = 4, and u(x) =
√
x above.

CV 2 =

0 0 0 0 0

0.5 0.45 0 0 0

0.707 0.95 0.636 0 0

0.866 1.157 1.136 0.779 0

1 1.316 1.343 1.279 0.9




To calculate P12, we look at the second row (i = 1) in CV 2. The maximum, .5, occurs at CV 2

10,

so j = 0 and P12 = w1 − w0 = .25− 0 = .25. Similarly, P42 = w4 − w2 = 1− .5 = .5. Continuing in

this manner,

P =

0 0 0 0

0.25 0.25 0.25 0.25

0.25 0.25 0.25 0.5;

0.25 0.25 0.5 0.75

0.25 0.5 0.5; 1.




Given that the rows of P are the slices of cake available and the columns are the time intervals,

we �nd the policy by starting in the bottom left corner, PN0, where there are N slices of cake

available and t = 0. This entries tells us what percentage of the N slices of cake we should eat. In

the example, this entry is .25, telling us we should eat 1 slice of cake at t = 0. Thus, when t = 1

we have N − 1 slices of cake available, since we ate 1 slice of cake. We look at the entry at P(N−1)1,

which has value .25. So we eat 1 slice of cake at t = 1. We continue this pattern to �nd the optimal

policy c =
[
.25 .25 .25 .25

]
.

Achtung!

The optimal policy will not always be a straight diagonal in the example above. For example,

if the bottom left corner had value .5, then we should eat 2 pieces of cake instead of 1. Then

the next entry we should evaluate would be P(N−2)1 in order to determine the optimal policy.

To verify the optimal policy found with P , we can use the value function matrix A. By

expanding the entires of A, we can see that the optimal policy does give the maximum value.

191

0 0 0 0

√
0.25

√
0.25

√
0.25

√
0.25

√
0.25 + β

√
0.25

√
0.25 + β

√
0.25

√
0.25 + β

√
0.25

√
0.5

√
0.25 + β

√
0.25 + β2

√
0.25

√
0.25 + β

√
0.25 + β2

√
0.25

√
0.5 + β

√
0.25

√
0.75

√
0.25 + β

√
0.25 + β2

√
0.25 + β3

√
0.25

√
0.5 + β

√
0.25 + β2

√
0.25

√
0.5 + β

√
0.5

√
1



A =

Problem 6. Modify your function from Problem 4 to determine the policy matrix. Initialize

the matrix as zeros and �ll it in starting from the last column at the same time that you

calculate the value function matrix.

(Hint: You may �nd np.argmax() useful.)

Problem 7. Write a function find_policy() that will �nd the optimal policy for the stopping

time T , a cake of size 1 split into N pieces, a discount factor β, and the utility function u.

192 Lab 18. Dynamic Programming

19 Policy Function
Iteration

Lab Objective: Iterative methods can be powerful ways to solve dynamic optimization problems

without computing the exact solution. Often we can iterate very quickly to the true solution, or at

least within some ε error of the solution. These methods are signi�cantly faster than computing the

exact solution using dynamic programming. We demonstrate two iterative methods, value iteration

(VI) and policy iteration (PI), and use them to solve a deterministic Markov decision process.

Dynamic Optimization
Many dynamic optimization problem take the form of a Markov decision process. A Markov decision

process is similar to that of a Markov chain, but rather than determining state movement using only

probabilities, state movement is determined based on probabilities, actions, and rewards. They are

formulated as follows.

T is a set of discrete time periods. In this lab, T = 0, 1, . . . , T . S is the set of possible states.

The set of allowable actions for each state s is As. st+1 = g(st, at) is a transition function that

determines the state st+1 at time t + 1 based on the previous state st and action at. The reward

u(st, at, st+1) is the reward for taking action a while in state s at time t and the next state being

state st+1. The time discount factor β ∈ [0, 1] determines how much less a reward is worth in the

future. Let Ns,a be the set of all possible next states when taking action a in state s. p(st, at, st+1)

is probability of taking action a at time t while in state s and arriving at state st+1 ∈ Ns,a.
A deterministic Markov process has p(st, at, st+1) = 1 ∀s, a. This means that Ns,a has one

element ∀s, a. A stochastic Markov process has p(st, at, st+1) ≤ 1, given that there can be multiple

possible next states for taking a given action in a given state.

The dynamic optimization problem is

max
a

T∑
t=0

βtu(st, at) (19.1)

subject to st+1 = g(st, at) ∀t. (19.2)

The cake eating problem described in the previous lab follows this format where S consists of

the possible amounts of remaining cake (iW), ct is the amount of cake we can eat, and the amount

of cake remaining st+1 = g(st, at) is wt − ct, where wt is the amount of cake we have left and ct is

the amount of cake we eat at time t. This is an example of a deterministic Markov process.

193

194 Lab 19. Policy Function Iteration

For this lab we de�ne a dictionary P to represent the decision process. This dictionary contains

all of the information about the states, actions, probabilities, and rewards. Each dictionary key is a

state-action combination and each dictionary value is a list of tuples.

P [s][a] = [(p(s, a, s̄), s̄, u(s, a, s̄), is_terminal), ...]

There is a tuple for each s̄ ∈ Ns,a in the list. The �nal entry in the tuple, is_terminal, indicates if

the s̄ is a stopping point.

Moving on a Grid
Now consider an N ×N grid. Assume that a robot moves around the grid, one space at a time, until

it reaches the lower right hand corner and stops. Each square is a state, S = {0, 1, . . . , N2 − 1}, and
the set of actions is {Left,Down,Right, Up}. For this lab, Left = 0, Down = 1, Right = 2, and

Up = 3.

Achtung!

It is important to remember that the actions do not correspond to the states the robot is in

after the action. When the robot is in state 0 and takes action 1, he is then in state 2.

As is the set of actions that keep the robot on the grid. If the robot is in the top left hand corner,

the only allowed actions are Down and Right so A0 = {1, 2}. The transition function g(st, at) = st+1

can be explicitly de�ned for each s, a where st+1 is the new state after moving.

Let N = 2 and label the squares as displayed below. In this example, we de�ne the reward to

be −1 if the robot moves into 2, −1 if the robot moves into 0 from 1, and 1 when it reaches the end,

3. We de�ne the reward function to be u(st, at, st+1) = u(st+1). Since this is a deterministic model,

p(st, at, st+1) = p(st+1) = 1,∀s, a.

0 1

2 3

All of this information is encapsulated in P . We de�ne P [s][a] for all states and actions, even

if they are not possible. This simpli�es coding the algorithm but is not necessary.

P[0][0] = [(0, 0, 0, False)] P[2][0] = [(0, 2, -1, False)]

P[0][1] = [(1, 2, -1, False)] P[2][1] = [(0, 2, -1, False)]

P[0][2] = [(1, 1, 0, False)] P[2][2] = [(1, 3, 1, True)]

P[0][3] = [(0, 0, 0, False)] P[2][3] = [(1, 0, 0, False)]

P[1][0] = [(1, 0, -1, False)] P[3][0] = [(0, 0, 0, True)]

P[1][1] = [(1, 3, 1, True)] P[3][1] = [(0, 0, 0, True)]

P[1][2] = [(0, 0, 0, False)] P[3][2] = [(0, 0, 0, True)]

P[1][3] = [(0, 0, 0, False)] P[3][3] = [(0, 0, 1, True)]

We de�ne the value function V (s) to be the maximum possible reward of starting in state s.

Then using Bellman's optimality equation,

V (s) = max
a∈As
{Σs̄∈Ns,ap(s̄) ∗ (u(s̄) + βV (s̄))}. (19.3)

The summation occurs when it is a stochastic Markov process. For example, if the robot is

in the top left corner and moves right, we could have that the probability the robot actually moves

right is .5. In this case, P [0][2] = [(.5, 1, 0, False), (.5, 2,−1, False)]. This will occur later in the lab.

195

Value Iteration
In the previous lab, we used dynamic programming to solve for the value function. This was a

recursive method where we calculated all possible values for each state and time period. Value

iteration is another algorithm that solves the value function by taking an initial value function and

calculating a new value function iteratively. Since we are not calculating all possible values, it is

typically faster than dynamic programming.

Convergence of Value Iteration

A function f that is a contraction mapping has a �xed point p such that f(p) = p. Blackwell's

contraction theorem can be used to show that Bellman's equation is a ��xed point� (it actually acts

more like a �xed function in this case) for an operator T : L∞(X;R)→ L∞(X;R) where L∞(X;R)

is the set of all bounded functions:

[T (f)](s) = max
a∈As
{Σs̄∈Ns,ap(s̄) ∗ (u(s̄) + βf(s̄))]} (19.4)

It can be shown that 19.1 is the �xed �point� of our operator T . A result of contraction mappings is

that there exists a unique solution to 19.4.

Vk+1(si) = [T (Vk)](si) = max
a∈As
{Σs̄∈Ns,ap(s̄) ∗ (u(s̄) + βVk(s̄))]} (19.5)

where an initial guess for V0(s) is used. As k → ∞, it is guaranteed that (Vk(s)) → V ∗(s).

Because of the contraction mapping, if Vk+1(s) = Vk(s) ∀ s, we have found the true value function,

V ∗(s).

As an example, let V0 = [0, 0, 0, 0] and β = 1, where each entry of V0 represents the maximum

value at that state. We calculate V1(s) from the robot example above.

V1(0) = max
a∈A0

{Σs̄∈Ns,ap(s̄) ∗ (u(s̄) + V0(s̄))}

= max{p(1) ∗ (u(1) + V0(1)), p(2) ∗ (u(2) + V0(2)))}
= max{1(−1 + 0), 1(0 + 0)}
= max{−1, 0}
= 0

V1(1) = max{p(0) ∗ (u(0) + V0(0)), p(2) ∗ (u(2) + V0(2))}
= max{1(0 + 0), 1(1 + 0)}
= 1

Calculating V1(2) and V1(3) gives V1 = [0, 1, 1, 0]. Repeating the process, V2 = [1, 1, 1, 0], which

is the solution. It means that maximum reward the robot can achieve by starting on square i is V2(i).

Problem 1. Write a function called value_iteration() that will accept a dictionary P rep-

resenting the decision process, the number of states, the number of actions, a discount factor

β ∈ (0, 1), the tolerance amount ε, and the maximum number of iterations maxiter. Perform

value iteration until ‖Vk+1 − Vk‖ < ε or k > maxiter. Return the �nal vector representing V ∗

and the number of iterations. Test your code on the example given above.

196 Lab 19. Policy Function Iteration

Calculating the Policy
While knowing the maximum expected value is helpful, it is usually more important to know the

policy that generates the most value. Value Iteration tells the robot what reward he can expect, but

not how to get it. The policy vector, c, is found by using the policy function: π : R → R. π(s) is

the action we should take while in state s to maximize reward. We can modify the Bellman equation

using V ∗(s) to �nd π:

π(s) = argmaxa∈As{Σs̄∈Ns,ap(s̄) ∗ (u(s̄) + β ∗ V ∗(s̄))]} (19.6)

Using value iteration, we found V ∗ = [1, 1, 1, 0] in the example above. We �nd π(0) by looking

at actions 1 and 2 (since actions 0 and 3 have probability 0).

π(0) = argmax1,2{p(1) ∗ (u(1) + V ∗(1)), p(2) ∗ (u(2) + V ∗(2))}
= argmax{1 ∗ (−1 + 1), 1 ∗ (0 + 1)}
= argmax{0, 1}
= 2.

So when the robot is in state 0, he should take action 2, moving Right. This avoids the −1

penalty for moving Down into square 2. Similarly,

π(1) = argmax0,1{1 ∗ (0 + 1), 1 ∗ (1 + 1)} = argmax{1, 2} = 1.

The policy corresponding to the optimal reward is [2, 1, 2, 0]. The robot should move to square 3 if

possible, avoiding 2 because it has a negative reward. Since 3 is terminal, it does not matter what

π(3) is. We set it to 0 for convenience.

Note

Note that π gives the optimal action a to take at each state s. It does not give a sequence of

actions to take in order to maximize the policy.

Problem 2. Write a function called extract_policy() that will accept a dictionary P repre-

senting the decision process, the number of states, the number of actions, an array representing

the value function, and a discount factor β ∈ (0, 1), defaulting to 1. Return the policy vector

corresponding to V ∗. Test your code on the example with β = 1.

Policy Iteration
For dynamic programming problems, it can be shown that value function iteration converges relative

to the discount factor β. As β → 1, the number of iterations increases dramatically. As mentioned

earlier β is usually close to 1, which means this algorithm can converge slowly. In value iteration,

we used an initial guess for the value function, V0 and used (19.1) to iterate towards the true value

function. Once we achieved a good enough approximation for V ∗, we recovered the true policy

function π∗. Instead of iterating on our value function, we can instead make an initial guess for

the policy function, π0, and use this to iterate toward the true policy function. We do so by taking

advantage of the de�nition of the value function, where we assume that our policy function yields

the most optimal result. This is policy iteration.

197

That is, given a speci�c policy function πk, we can modify (19.1) by assuming that the policy

function is the optimal choice. This process, called policy evaluation, evaluates the value function for

a given policy.

Vk+1(s) = max
a∈[As]

{Σs̄∈Ns,a(p(s̄) ∗ (u(s̄) + β ∗ Vk(s̄))} = Σs̄∈Ns,π(s)
(p(s̄) ∗ (u(s̄) + β ∗ Vk(s̄)) (19.7)

The last equality occurs because in state s, the robot should choose the action that maximizes reward,

which is π(s) by de�nition.

Problem 3. Write a function called compute_policy_v() that accepts a dictionary P repre-

senting the decision process, the number of states, the number of actions, an array representing

a policy, a discount factor β ∈ (0, 1), and a tolerance amount ε. Return the value function

corresponding to the policy.

Test your code on the policy vector generated from extract_policy() for the example.

The result should be the same value function array from value_iteration().

Now that we have the value function for our policy, we can take the value function and �nd

a better policy. Called policy improvement, this step is the same method used in value iteration to

�nd the policy.

Given an initial guess for our policy function, π0, we calculate the corresponding value function

using (19.7), and then use (19.6) to improve our policy function. The algorithm for policy function

iteration can be summarized as follows:

Algorithm 19.1 Policy Iteration

1: procedure Policy Iteration Function(P, nS, nA, β, tol, maxiter)

2: π0 ← [π0(w0), π0(w1), . . . , π0(wN)] . Common choice is π0(wi) = wi−1 with π0(0) = 0

3: for k = 1, 2, . . . , maxiter do . Iterate only maxiter times at most.

4: for s ∈ S do . Policy evaluation

5: Vk+1(s) = Σs̄∈Ns,π(s)
(p(s̄) ∗ (u(s̄) + β ∗ Vk(s̄)) . compute_policy_v.

6: for s ∈ S do . Policy improvement.

7: πk+1(s) = argmaxa∈As{Σs̄∈Ns,ap(s̄) ∗ (u(s̄) + β ∗ Vk+1(s̄))]} . extract_policy.

8: if ||πk+1 − πk|| < ε then

9: break . Stop iterating if the policy doesn't change enough.

10: return Vk+1, πk+1

Problem 4. Write a function called policy_iteration() that will accept a dictionary P

representing the decision process, the number of states, the number of actions, a discount factor

β ∈ (0, 1), the tolerance amount ε, and the maximum number of iterations maxiter. Perform

policy iteration until ‖πk+1 − πk‖ < ε or k > maxiter. Return the �nal vector representing

Vk, the optimal policy πk, and the number of iterations. Test your code on the example given

above and compare your answers to the results from 1 and 2.

198 Lab 19. Policy Function Iteration

The Frozen Lake Problem
For the rest of the lab, we will be using OpenAi Gym environments. They can be installed using

conda or pip.

$ pip install gym[all]

In the Frozen Lake problem, you and your friends tossed a frisbee onto a mostly frozen lake.

The lake is divided into an N ×N grid where the top left hand corner is the start, the bottom right

hand corner is the end, and the other squares are either frozen or holes. To retrieve the frisbee, you

must successfully navigate around the melted ice without falling. The possible actions are left, right,

up, and down. Since ice is slippery, you won't always move in the intended direction. Hence, this

is a stochastic Markov process, i.e. p(st, at, st+1) < 1. If you fall, your reward is 0. If you succeed,

your reward is 1. There are two scenarios: N = 4 and N = 8.

S H

H H

H

H F

Figure 19.1: Diagram of the 4x4 scenario. The green S represents the starting point and the green F

represents the frisbee. Red squares marked H are holes. Blue squares are pieces of the frozen lake.

This problem can be found in two environments in OpenAi Gym. To run the 4 × 4 scenario,

use env_name='FrozenLake-v0'. For the 8× 8 scenario, use env_name='FrozenLake8x8-v0'.

Using Gym
To use gym, we import it and create an environment based on the built-in gym environment. The

FrozenLake environment has 3 important attributes, P , nS, and nA. P is the same dictionary we

used in the previous problems. nS and nA are the number of states and actions respectively. We

can calculate the optimal policy with value iteration or policy iteration using these attributes. Since

the ice is slippery, this policy will not always result in a reward of 1.

import gym

from gym import wrappers

Make environment for 4x4 scenario

env_name = 'FrozenLake-v0'

env = gym.make(env_name).env

Find number of states and actions

number_of_states = env.nS

number_of_actions = env.nA

199

Problem 5. Write a function that runs value_iteration and policy_iteration on Frozen-

Lake. It should accept a boolean basic_case defaulting to True and an integer n defaulting

to 1000 that indicates how many times to run the simulation. If basic_case is True, run

the 4x4 scenario, If not, run the 8x8 scenario. Calculate the value function and policy for the

environment using both value iteration and policy iteration. Return the policies generated by

value iteration and the policy and value function generated by policy iteration. Set the mean

total rewards to 0 and return them as well.

The gym environments have built-in functions that allow us to simulate each step of the environ-

ment. Before running a scenario in gym, always put it in the starting state by calling env.reset().

To simulate moving, call env.step.

import gym

from gym import wrappers

Make environment for 4x4 scenario

env_name = 'FrozenLake-v0'

env = gym.make(env_name).env

Put environment in starting state

obs = env.reset()

Take a step in the optimal direction and update variables

obs, reward, done, _ = env.step(int(policy[obs]))

The step function returns four values: observation, reward, done, info. The observation is an

environment-speci�c object representing the observation of the environment. For FrozenLake, this is

the current state. When we step, or take an action, we get a new observation, or state, as well as the

reward for taking that action. If we fall into a hole or reach the frisbee, the simulation is over so we

are done. When we are done, the boolean done is True. The info value is a dictionary of diagnostic

information. It will not be used in this lab.

Problem 6. Write a function run_simulation() that takes in the environment env, a policy

policy, a boolean render, and a discount factor β. Calculate the total reward for the policy

for one simulation using env.reset and env.step(). Stop the simulation when done is True.

(Hint: When calculating reward, use βk.)

Modify frozen_lake() to call run_simulation() for both the value iteration policy and

the policy iteration policy M times. Return the policy generated by value iteration, the mean

total reward for the policy generated by value iteration, the value function generated by policy

iteration, the policy generated by policy iteration, and the mean total reward for the policy

generated by policy iteration.

200 Lab 19. Policy Function Iteration

Part II

Appendices

201

A Getting Started

The labs in this curriculum aim to introduce computational and mathematical concepts, walk through

implementations of those concepts in Python, and use industrial-grade code to solve interesting,

relevant problems. Lab assignments are usually about 5�10 pages long and include code examples

(yellow boxes), important notes (green boxes), warnings about common errors (red boxes), and

about 3�7 exercises (blue boxes). Get started by downloading the lab manual(s) for your course from

http://foundations-of-applied-mathematics.github.io/.

Submitting Assignments
Labs

Every lab has a corresponding speci�cations �le with some code to get you started and to make your

submission compatible with automated test drivers. Like the lab manuals, these materials are hosted

at http://foundations-of-applied-mathematics.github.io/.

Download the .zip �le for your course, unzip the folder, and move it somewhere where it

won't get lost. This folder has some setup scripts and a collection of folders, one per lab, each of

which contains the speci�cations �le(s) for that lab. See Student-Materials/wiki/Lab-Index for

the complete list of labs, their speci�cations and data �les, and the manual that each lab belongs to.

Achtung!

Do not move or rename the lab folders or the enclosed speci�cations �les; if you do, the test

drivers will not be able to �nd your assignment. Make sure your folder and �le names match

Student-Materials/wiki/Lab-Index.

To submit a lab, modify the provided speci�cations �le and use the �le-sharing program

speci�ed by your instructor (discussed in the next section). The instructor will drop feedback

�les in the lab folder after grading the assignment. For example, the Introduction to Python lab

has the speci�cations �le PythonIntro/python_intro.py. To complete that assignment, modify

PythonIntro/python_intro.py and submit it via your instructor's �le-sharing system. After grad-

ing, the instructor will create a �le called PythonIntro/PythonIntro_feedback.txt with your score

and some feedback.

203

http://foundations-of-applied-mathematics.github.io/
http://foundations-of-applied-mathematics.github.io/
https://github.com/Foundations-of-Applied-Mathematics/Student-Materials/wiki/Lab-Index
https://github.com/Foundations-of-Applied-Mathematics/Student-Materials/wiki/Lab-Index

204 Appendix A. Getting Started

Homework
Non-lab coding homework should be placed in the _Homework/ folder and submitted like a lab

assignment. Be careful to name your assignment correctly so the instructor (and test driver) can �nd

it. The instructor may drop speci�cations �les and/or feedback �les in this folder as well.

Setup

Achtung!

We strongly recommend using a Unix-based operating system (Mac or Linux) for the labs.

Unix has a true bash terminal, works well with git and python, and is the preferred platform

for computational and data scientists. It is possible to do this curriculum with Windows, but

expect some road bumps along the way.

There are two ways to submit code to the instructor: with git (http://git-scm.com/), or with

a �le-syncing service like Google Drive. Your instructor will indicate which system to use.

Setup With Git
Git is a program that manages updates between an online code repository and the copies of the

repository, called clones, stored locally on computers. If git is not already installed on your computer,

download it at http://git-scm.com/downloads. If you have never used git, you might want to read

a few of the following resources.

� O�cial git tutorial: https://git-scm.com/docs/gittutorial

� Bitbucket git tutorials: https://www.atlassian.com/git/tutorials

� GitHub git cheat sheet: services.github.com/.../github-git-cheat-sheet.pdf

� GitLab git tutorial: https://docs.gitlab.com/ce/gitlab-basics/start-using-git.html

� Codecademy git lesson: https://www.codecademy.com/learn/learn-git

� Training video series by GitHub: https://www.youtube.com/playlist?list=PLg7.../

There are many websites for hosting online git repositories. Your instructor will indicate which

web service to use, but we only include instructions here for setup with Bitbucket.

1. Sign up. Create a Bitbucket account at https://bitbucket.org. If you use an academic email

address (ending in .edu, etc.), you will get free unlimited public and private repositories.

2. Make a new repository. On the Bitbucket page, click the + button from the menu on the

left and, under CREATE, select Repository. Provide a name for the repository, mark the

repository as private, and make sure the repository type is Git. For Include a README?,

select No (if you accidentally include a README, delete the repository and start over). Un-

der Advanced settings, enter a short description for your repository, select No forks un-

der forking, and select Python as the language. Finally, click the blue Create repository

button. Take note of the URL of the webpage that is created; it should be something like

https://bitbucket.org/<name>/<repo>.

http://git-scm.com/
http://git-scm.com/downloads
https://git-scm.com/docs/gittutorial
https://www.atlassian.com/git/tutorials
https://services.github.com/on-demand/downloads/github-git-cheat-sheet.pdf
https://docs.gitlab.com/ce/gitlab-basics/start-using-git.html
https://www.codecademy.com/learn/learn-git
https://www.youtube.com/playlist?list=PLg7s6cbtAD15G8lNyoaYDuKZSKyJrgwB-
https://bitbucket.org

205

3. Give the instructor access to your repository. On your newly created Bitbucket repository

page (https://bitbucket.org/<name>/<repo> or similar), go to Settings in the menu to

the left and select User and group access, the second option from the top. Enter your

instructor's Bitbucket username under Users and click Add. Select the blue Write button so

your instructor can read from and write feedback to your repository.

4. Connect your folder to the new repository. In a shell application (Terminal on Linux or Mac,

or Git Bash (https://gitforwindows.org/) on Windows), enter the following commands.

Navigate to your folder.

$ cd /path/to/folder # cd means 'change directory'.

Make sure you are in the right place.

$ pwd # pwd means 'print working directory'.

/path/to/folder

$ ls *.md # ls means 'list files'.

README.md # This means README.md is in the working directory.

Connect this folder to the online repository.

$ git init

$ git remote add origin https://<name>@bitbucket.org/<name>/<repo>.git

Record your credentials.

$ git config --local user.name "your name"

$ git config --local user.email "your email"

Add the contents of this folder to git and update the repository.

$ git add --all

$ git commit -m "initial commit"

$ git push origin master

For example, if your Bitbucket username is greek314, the repository is called acmev1, and the

folder is called Student-Materials/ and is on the desktop, enter the following commands.

Navigate to the folder.

$ cd ~/Desktop/Student-Materials

Make sure this is the right place.

$ pwd

/Users/Archimedes/Desktop/Student-Materials

$ ls *.md

README.md

Connect this folder to the online repository.

$ git init

$ git remote add origin https://greek314@bitbucket.org/greek314/acmev1.git

Record credentials.

$ git config --local user.name "archimedes"

https://gitforwindows.org/

206 Appendix A. Getting Started

$ git config --local user.email "greek314@example.com"

Add the contents of this folder to git and update the repository.

$ git add --all

$ git commit -m "initial commit"

$ git push origin master

At this point you should be able to see the �les on your repository page from a web browser. If

you enter the repository URL incorrectly in the git remote add origin step, you can reset

it with the following line.

$ git remote set-url origin https://<name>@bitbucket.org/<name>/<repo>.git

5. Download data �les. Many labs have accompanying data �les. To download these �les, navi-

gate to your clone and run the download_data.sh bash script, which downloads the �les and

places them in the correct lab folder for you. You can also �nd individual data �les through

Student-Materials/wiki/Lab-Index.

Navigate to your folder and run the script.

$ cd /path/to/folder

$ bash download_data.sh

6. Install Python package dependencies. The labs require several third-party Python packages

that don't come bundled with Anaconda. Run the following command to install the necessary

packages.

Navigate to your folder and run the script.

$ cd /path/to/folder

$ bash install_dependencies.sh

7. (Optional) Clone your repository. If you want your repository on another computer after

completing steps 1�4, use the following commands.

Navigate to where you want to put the folder.

$ cd ~/Desktop/or/something/

Clone the folder from the online repository.

$ git clone https://<name>@bitbucket.org/<name>/<repo>.git <foldername>

Record your credentials in the new folder.

$ cd <foldername>

$ git config --local user.name "your name"

$ git config --local user.email "your email"

Download data files to the new folder.

$ bash download_data.sh

https://github.com/Foundations-of-Applied-Mathematics/Student-Materials/wiki/Lab-Index

207

Setup Without Git

Even if you aren't using git to submit �les, you must install it (http://git-scm.com/downloads)

in order to get the data �les for each lab. Share your folder with your instructor according to their

directions, and follow steps 5 and 6 of the previous section to download the data �les and install

package dependencies.

Using Git
Git manages the history of a �le system through commits, or checkpoints. Use git status to see

the �les that have been changed since the last commit. These changes are then moved to the staging

area, a list of �les to save during the next commit, with git add <filename(s)>. Save the changes

in the staging area with git commit -m "<A brief message describing the changes>".

Staged: the files with changes
to be saved at commit time

Modified: the files with
changes since the last commit

Tracked: the files that have
been added to git, but with no
changes since the last commit

Untracked: the files that have
never been added to git

git log:
a record of all
commit messages

New Commit

Previous Commit

...

Second Commit

First Commit

git add "<filename>"

(stage changes)

git reset HEAD -- "<filename>"

(unstage changes)

git checkout -- "<filename>"

(discard changes)

git commit -m "<message>"

(save changes)

Modify file

Figure A.1: Git commands to stage, unstage, save, or discard changes. Commit messages are recorded

in the log.

All of these commands are done within a clone of the repository, stored somewhere on a com-

puter. This repository must be manually synchronized with the online repository via two other git

commands: git pull origin master, to pull updates from the web to the computer; and git

push origin master, to push updates from the computer to the web.

Online Repository

Computer

git push origin master git pull origin master

Figure A.2: Exchanging git commits between the repository and a local clone.

http://git-scm.com/downloads

208 Appendix A. Getting Started

Command Explanation

git status Display the staging area and untracked changes.

git pull origin master Pull changes from the online repository.

git push origin master Push changes to the online repository.

git add <filename(s)> Add a �le or �les to the staging area.

git add -u Add all modi�ed, tracked �les to the staging area.

git commit -m "<message>" Save the changes in the staging area with a given message.

git checkout -- <filename> Revert changes to an unstaged �le since the last commit.

git reset HEAD -- <filename> Remove a �le from the staging area.

git diff <filename> See the changes to an unstaged �le since the last commit.

git diff --cached <filename> See the changes to a staged �le since the last commit.

git config --local <option> Record your credentials (user.name, user.email, etc.).

Table A.1: Common git commands.

Note

When pulling updates with git pull origin master, your terminal may sometimes display

the following message.

Merge branch 'master' of https://bitbucket.org/<name>/<repo> into master

Please enter a commit message to explain why this merge is necessary,

especially if it merges an updated upstream into a topic branch.

#

Lines starting with '#' will be ignored, and an empty message aborts

the commit.

~

~

This means that someone else (the instructor) has pushed a commit that you do not yet have,

while you have also made one or more commits locally that they do not have. This screen,

displayed in vim (https://en.wikipedia.org/wiki/Vim_(text_editor)), is asking you to

enter a message (or use the default message) to create a merge commit that will reconcile both

changes. To close this screen and create the merge commit, type :wq and press enter.

Example Work Sessions

$ cd ~/Desktop/Student-Materials/

$ git pull origin master # Pull updates.

Make changes to a file.

$ git add -u # Track changes.

$ git commit -m "Made some changes." # Commit changes.

$ git push origin master # Push updates.

https://en.wikipedia.org/wiki/Vim_(text_editor)

209

Pull any updates from the online repository (such as TA feedback).

$ cd ~/Desktop/Student-Materials/

$ git pull origin master

From https://bitbucket.org/username/repo

* branch master -> FETCH_HEAD

Already up-to-date.

Work on the labs. For example, modify PythonIntro/python_intro.py.

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

PythonIntro/python_intro.py

Track the changes with git.

$ git add PythonIntro/python_intro.py

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

modified: PythonIntro/python_intro.py

Commit the changes to the repository with an informative message.

$ git commit -m "Made some changes"

[master fed9b34] Made some changes

1 file changed, 10 insertion(+) 1 deletion(-)

Push the changes to the online repository.

$ git push origin master

Counting objects: 3, done.

Delta compression using up to 2 threads.

Compressing objects: 100% (2/2), done.

Writing objects: 100% (3/3), 327 bytes | 0 bytes/s, done.

Total 3 (delta 0), reused 0 (delta 0)

To https://username@bitbucket.org/username/repo.git

5742a1b..fed9b34 master -> master

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

nothing to commit, working directory clean

210 Appendix A. Getting Started

B Installing and
Managing Python

Lab Objective: One of the great advantages of Python is its lack of overhead: it is relatively easy

to download, install, start up, and execute. This appendix introduces tools for installing and updating

speci�c packages and gives an overview of possible environments for working e�ciently in Python.

Installing Python via Anaconda
A Python distribution is a single download containing everything needed to install and run Python,

together with some common packages. For this curriculum, we strongly recommend using the

Anaconda distribution to install Python. Anaconda includes IPython, a few other tools for developing

in Python, and a large selection of packages that are common in applied mathematics, numerical

computing, and data science. Anaconda is free and available for Windows, Mac, and Linux.

Follow these steps to install Anaconda.

1. Go to https://www.anaconda.com/download/.

2. Download the Python 3.6 graphical installer speci�c to your machine.

3. Open the downloaded �le and proceed with the default con�gurations.

For help with installation, see https://docs.anaconda.com/anaconda/install/. This page

contains links to detailed step-by-step installation instructions for each operating system, as well as

information for updating and uninstalling Anaconda.

Achtung!

This curriculum uses Python 3.6, not Python 2.7. With the wrong version of Python, some

example code within the labs may not execute as intended or result in an error.

Managing Packages
A Python package manager is a tool for installing or updating Python packages, which involves

downloading the right source code �les, placing those �les in the correct location on the machine,

and linking the �les to the Python interpreter. Never try to install a Python package without using

a package manager (see https://xkcd.com/349/).

211

https://www.anaconda.com/download/
https://docs.anaconda.com/anaconda/install/
https://xkcd.com/349/

212 Appendix B. Installing and Managing Python

Conda

Many packages are not included in the default Anaconda download but can be installed via Ana-

conda's package manager, conda. See https://docs.anaconda.com/anaconda/packages/pkg-docs

for the complete list of available packages. When you need to update or install a package, always

try using conda �rst.

Command Description

conda install <package-name> Install the speci�ed package.

conda update <package-name> Update the speci�ed package.

conda update conda Update conda itself.

conda update anaconda Update all packages included in Anaconda.

conda --help Display the documentation for conda.

For example, the following terminal commands attempt to install and update matplotlib.

$ conda update conda # Make sure that conda is up to date.

$ conda install matplotlib # Attempt to install matplotlib.

$ conda update matplotlib # Attempt to update matplotlib.

See https://conda.io/docs/user-guide/tasks/manage-pkgs.html for more examples.

Note

The best way to ensure a package has been installed correctly is to try importing it in IPython.

Start IPython from the command line.

$ ipython

IPython 6.5.0 -- An enhanced Interactive Python. Type '?' for help.

Try to import matplotlib.

In [1]: from matplotlib import pyplot as plt # Success!

Achtung!

Be careful not to attempt to update a Python package while it is in use. It is safest to update

packages while the Python interpreter is not running.

Pip

The most generic Python package manager is called pip. While it has a larger package list, conda is

the cleaner and safer option. Only use pip to manage packages that are not available through conda.

https://docs.anaconda.com/anaconda/packages/pkg-docs
https://conda.io/docs/user-guide/tasks/manage-pkgs.html

213

Command Description

pip install package-name Install the speci�ed package.

pip install --upgrade package-name Update the speci�ed package.

pip freeze Display the version number on all installed packages.

pip --help Display the documentation for pip.

See https://pip.pypa.io/en/stable/user_guide/ for more complete documentation.

Workflows
There are several di�erent ways to write and execute programs in Python. Try a variety of work�ows

to �nd what works best for you.

Text Editor + Terminal
The most basic way of developing in Python is to write code in a text editor, then run it using either

the Python or IPython interpreter in the terminal.

There are many di�erent text editors available for code development. Many text editors are

designed speci�cally for computer programming which contain features such as syntax highlighting

and error detection, and are highly customizable. Try installing and using some of the popular text

editors listed below.

� Atom: https://atom.io/

� Sublime Text: https://www.sublimetext.com/

� Notepad++ (Windows): https://notepad-plus-plus.org/

� Geany: https://www.geany.org/

� Vim: https://www.vim.org/

� Emacs: https://www.gnu.org/software/emacs/

Once Python code has been written in a text editor and saved to a �le, that �le can be executed

in the terminal or command line.

$ ls # List the files in the current directory.

hello_world.py

$ cat hello_world.py # Print the contents of the file to the terminal.

print("hello, world!")

$ python hello_world.py # Execute the file.

hello, world!

Alternatively, start IPython and run the file.

$ ipython

IPython 6.5.0 -- An enhanced Interactive Python. Type '?' for help.

In [1]: %run hello_world.py

hello, world!

https://pip.pypa.io/en/stable/user_guide/
https://atom.io/
https://www.sublimetext.com/
https://notepad-plus-plus.org/
https://www.geany.org/
https://www.vim.org/
https://www.gnu.org/software/emacs/

214 Appendix B. Installing and Managing Python

IPython is an enhanced version of Python that is more user-friendly and interactive. It has

many features that cater to productivity such as tab completion and object introspection.

Note

While Mac and Linux computers come with a built-in bash terminal, Windows computers do

not. Windows does come with Powershell, a terminal-like application, but some commands in

Powershell are di�erent than their bash analogs, and some bash commands are missing from

Powershell altogether. There are two good alternatives to the bash terminal for Windows:

� Windows subsystem for linux: docs.microsoft.com/en-us/windows/wsl/.

� Git bash: https://gitforwindows.org/.

Jupyter Notebook
The Jupyter Notebook (previously known as IPython Notebook) is a browser-based interface for

Python that comes included as part of the Anaconda Python Distribution. It has an interface similar

to the IPython interpreter, except that input is stored in cells and can be modi�ed and re-evaluated

as desired. See https://github.com/jupyter/jupyter/wiki/ for some examples.

To begin using Jupyter Notebook, run the command jupyter notebook in the terminal. This

will open your �le system in a web browser in the Jupyter framework. To create a Jupyter Notebook,

click the New drop down menu and choose Python 3 under the Notebooks heading. A new tab

will open with a new Jupyter Notebook.

Jupyter Notebooks di�er from other forms of Python development in that notebook �les contain

not only the raw Python code, but also formatting information. As such, Juptyer Notebook �les

cannot be run in any other development environment. They also have the �le extension .ipynb

rather than the standard Python extension .py.

Jupyter Notebooks also support Markdown�a simple text formatting language�and LATEX,

and can embedded images, sound clips, videos, and more. This makes Jupyter Notebook the ideal

platform for presenting code.

Integrated Development Environments
An integrated development environment (IDEs) is a program that provides a comprehensive environ-

ment with the tools necessary for development, all combined into a single application. Most IDEs

have many tightly integrated tools that are easily accessible, but come with more overhead than a

plain text editor. Consider trying out each of the following IDEs.

� JupyterLab: http://jupyterlab.readthedocs.io/en/stable/

� PyCharm: https://www.jetbrains.com/pycharm/

� Spyder: http://code.google.com/p/spyderlib/

� Eclipse with PyDev: http://www.eclipse.org/, https://www.pydev.org/

See https://realpython.com/python-ides-code-editors-guide/ for a good overview of these

(and other) work�ow tools.

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://gitforwindows.org/
https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks
http://jupyterlab.readthedocs.io/en/stable/
https://www.jetbrains.com/pycharm/
http://code.google.com/p/spyderlib/
http://www.eclipse.org/
https://www.pydev.org/
https://realpython.com/python-ides-code-editors-guide/

C NumPy Visual Guide

Lab Objective: NumPy operations can be di�cult to visualize, but the concepts are straightforward.

This appendix provides visual demonstrations of how NumPy arrays are used with slicing syntax,

stacking, broadcasting, and axis-speci�c operations. Though these visualizations are for 1- or 2-

dimensional arrays, the concepts can be extended to n-dimensional arrays.

Data Access
The entries of a 2-D array are the rows of the matrix (as 1-D arrays). To access a single entry, enter

the row index, a comma, and the column index. Remember that indexing begins with 0.

A[0] =


× × × × ×
× × × × ×
× × × × ×
× × × × ×

 A[2,1] =


× × × × ×
× × × × ×
× × × × ×
× × × × ×



Slicing
A lone colon extracts an entire row or column from a 2-D array. The syntax [a:b] can be read as

�the ath entry up to (but not including) the bth entry.� Similarly, [a:] means �the ath entry to the

end� and [:b] means �everything up to (but not including) the bth entry.�

A[1] = A[1,:] =


× × × × ×
× × × × ×
× × × × ×
× × × × ×

 A[:,2] =


× × × × ×
× × × × ×
× × × × ×
× × × × ×



A[1:,:2] =


× × × × ×
× × × × ×
× × × × ×
× × × × ×

 A[1:-1,1:-1] =


× × × × ×
× × × × ×
× × × × ×
× × × × ×


215

216 Appendix C. NumPy Visual Guide

Stacking
np.hstack() stacks sequence of arrays horizontally and np.vstack() stacks a sequence of arrays

vertically.

A =

 × × ×
× × ×
× × ×

 B =

 ∗ ∗ ∗∗ ∗ ∗
∗ ∗ ∗



np.hstack((A,B,A)) =

 × × × ∗ ∗ ∗ × × ×
× × × ∗ ∗ ∗ × × ×
× × × ∗ ∗ ∗ × × ×



np.vstack((A,B,A)) =



× × ×
× × ×
× × ×
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
× × ×
× × ×
× × ×


Because 1-D arrays are �at, np.hstack() concatenates 1-D arrays and np.vstack() stacks them

vertically. To make several 1-D arrays into the columns of a 2-D array, use np.column_stack().

x =
[
× × × ×

]
y =

[
∗ ∗ ∗ ∗

]

np.hstack((x,y,x)) =
[
× × × × ∗ ∗ ∗ ∗ × × × ×

]

np.vstack((x,y,x)) =

 × × × ×
∗ ∗ ∗ ∗
× × × ×

 np.column_stack((x,y,x)) =


× ∗ ×
× ∗ ×
× ∗ ×
× ∗ ×


The functions np.concatenate() and np.stack() are more general versions of np.hstack() and

np.vstack(), and np.row_stack() is an alias for np.vstack().

Broadcasting
NumPy automatically aligns arrays for component-wise operations whenever possible. See http:

//docs.scipy.org/doc/numpy/user/basics.broadcasting.html for more in-depth examples and

broadcasting rules.

http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html

217

A =

 1 2 3

1 2 3

1 2 3

 x =
[

10 20 30
]

A + x =

 1 2 3

1 2 3

1 2 3

+[]
10 20 30

=

 11 22 33

11 22 33

11 22 33



A + x.reshape((1,-1)) =

 1 2 3

1 2 3

1 2 3

+

 10

20

30

 =

 11 12 13

21 22 23

31 32 33



Operations along an Axis
Most array methods have an axis argument that allows an operation to be done along a given axis.

To compute the sum of each column, use axis=0; to compute the sum of each row, use axis=1.

A =


1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4



A.sum(axis=0) =


1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

 =
[

4 8 12 16
]

A.sum(axis=1) =


1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

 =
[

10 10 10 10
]

218 Appendix C. NumPy Visual Guide

Bibliography

[ADH+01] David Ascher, Paul F Dubois, Konrad Hinsen, Jim Hugunin, Travis Oliphant, et al.

Numerical python, 2001.

[BL04] Steven Bird and Edward Loper. Nltk: the natural language toolkit. In Proceedings of

the ACL 2004 on Interactive poster and demonstration sessions, page 31. Association for

Computational Linguistics, 2004.

[Gei60] Theodor Seuss Geisel. Green eggs and ham. Beginner Books, 1960.

[Hun07] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing In Science & Engi-

neering, 9(3):90�95, 2007.

[KM72] Victor Klee and George J. Minty. How good is the simplex algorithm? In Inequalities,

volume 3, pages 159�175. Academic Press, 1972.

[Nas00] J.C. Nash. The (dantzig) simplex method for linear programming. Computing in Science

and Engineering, 2(1):29�31, 2000.

[Oli06] Travis E Oliphant. A guide to NumPy, volume 1. Trelgol Publishing USA, 2006.

[Oli07] Travis E Oliphant. Python for scienti�c computing. Computing in Science & Engineering,

9(3), 2007.

[VD10] Guido VanRossum and Fred L Drake. The python language reference. Python software

foundation Amsterdam, Netherlands, 2010.

[VHL06] Philipp Von Hilgers and Amy N Langville. The �ve greatest applications of markov

chains. In Proceedings of the Markov Anniversary Meeting, Boston Press, Boston, MA.

Citeseer, 2006.

219

	Preface
	to 20ptILabs
	Linked Lists
	Binary Search Trees
	Nearest Neighbor Search
	Breadth-first Search
	Markov Chains
	The Discrete Fourier Transform
	Convolution and Filtering
	Introduction to Wavelets
	Polynomial Interpolation
	Gaussian Quadrature
	One-dimensional Optimization
	Gradient Descent Methods
	The Simplex Method
	OpenGym AI
	CVXOPT
	Interior Point 1: Linear Programs
	Interior Point 2: Quadratic Programs
	Dynamic Programming
	Policy Function Iteration

	to 20ptIIAppendices
	Getting Started
	Installing and Managing Python
	NumPy Visual Guide
	Bibliography

