
1 Unix Shell 1:
Introduction

Lab Objective: Unix is a popular operating system that is commonly used for servers and the basis

for most open source software. Using Unix for writing and submitting labs will develop a foundation

for future software development. In this lab we explore the basics of the Unix shell, including how

to navigate and manipulate �les, access remote machines with Secure Shell, and use Git for basic

version control.

Unix was �rst developed by AT&T Bell Labs in the 1970s. In the 1990s, Unix became the

foundation of the Linux and MacOSX operating systems. Most servers are Linux-based, so knowing

how to use Unix shells allows us to interact with servers and other Unix-based machines.

A Unix shell is a program that takes commands from a user and executes those commands on

the operating system. We interact with the shell through a terminal (also called a command line), a

program that lets you type in commands and gives those commands to the shell for execution.

Note

Windows is not built o� of Unix, but it does come with a terminal called PowerShell. This

terminal uses a di�erent command syntax. We will not cover the equivalent commands in the

Windows terminal, but you could download a Unix-based terminal such as Git Bash or Cygwin

to complete this lab on a Windows machine (you will still lose out on certain commands).

Alternatively, Windows 10 now o�ers a Windows Subsystem for Linux, WSL, which is a Linux

operating system downloaded onto Windows.

Note

For this lab we will be working in the UnixShell1 directory provided with the lab materials.

If you have not yet downloaded the code repository, follow steps 1 through 6 in the Getting

Started guide found at https://foundations-of-applied-mathematics.github.io/ before

proceeding with this lab. Make sure to run the download_data.sh script as described in step

5 of Getting Started; otherwise you will not have the necessary �les to complete this lab.

1

https://foundations-of-applied-mathematics.github.io/

2 Lab 1. Introduction to the Unix Shell

Basic Unix Shell
Shell Scripting

The following sections of the lab will explore several shell commands. You can execute these com-

mands by typing these commands directly into a terminal. Sometimes, though, you will want to

execute a more complicated sequence of commands, or make it easy to execute the same set of com-

mands over and over again. In those cases, it is useful to create a script, which is a sequence of shell

commands saved in a �le. Then, instead of typing the commands in individually, you simply have to

run the script, and it takes care of running all the commands.

In this lab we will be running and editing a bash script. Bash is the most commonly used Unix

shell and is the default shell installed on most Unix-based systems.

The following is a very simple bash script. The command echo <string> prints <string> in

the terminal.

#!/bin/bash

echo "Hello World!"

The �rst line, #!bin/bash, tells the computer to use the bash interpreter to run the script, and

where this interpreter is located. The #! is called the shebang or hashbang character sequence. It is

followed by the absolute path to the bash interpreter.

To run a bash script, type bash <script name> into the terminal. Alternatively, you can

execute any script by typing ./<script name>, but note that the script must contain executable

permissions for this to work. (We will learn more about permissions later in the lab.)

$ bash hello_world.sh

Hello World!

Navigation

Typically, people navigate computers by clicking on icons to open folders and programs. In the

terminal, instead of point and click we use typed commands to move from folder to folder. In the

Unix shell, we call folders directories. The �le system is a set of nested directories containing �les

and other directories.

Begin by opening a terminal. The text you see in the upper left of the terminal is called the

prompt. Before you start creating or deleting �les, you'll want to know where you are. To see what

directory you are currently working in, type pwd into the prompt. This command stands for print

working directory, and it prints out a string telling you your current location.

To see the all the contents of your current directory, type the command ls, list segments.

~$ pwd

/home/username

~$ ls

Desktop Downloads Public Videos

Documents Pictures

3

The command cd, change directory, allows you to navigate directories. To change to a new

directory, type the cd command followed by the name of the directory to which you want to move

(if you cd into a �le, you will get an error). You can move up one directory by typing cd ...

Two important directories are the root directory and the home directory. You can navigate to

the home directory by typing cd ∼ or just cd. You can navigate to root by typing cd /.

Problem 1. To begin, open a terminal and navigate to the UnixShell1/ directory provided

with this lab. Use ls to list the contents. There should be a �le called Shell1.zip and a script

called unixshell1.sh. a

Run unixshell1.sh. This script will do the following:

1. Unzip Shell1.zip, creating a directory called Shell1/

2. Remove any previously unzipped copies of Shell1/

3. Execute various shell commands, to be added in the next few problems in this lab

4. Create a compressed version of Shell1/ called UnixShell1.tar.gz.

5. Remove any old copies of UnixShell1.tar.gz

Now, open the unixshell1.sh script in a text editor. Add commands to the script to do

the following:

� Change into the Shell1/ directory.

� Print a string telling you directory you are currently working in.

Test your commands by running the script again and checking that it prints a string

ending in the location Shell1/.

aIf the necessary data �les are not in your directory, cd one directory up by typing cd .. and type bash
download_data.sh to download the data �les for each lab.

Documentation and Help
When you encounter an unfamiliar command, the terminal has several tools that can help you under-

stand what it does and how to use it. Most commands have manual pages, which give information

about what the command does, the syntax required to use it, and di�erent options to modify the

command. To open the manual page for a command, type man <command>. Some commands also

have an option called ��help, which will print out information similar to what is contained in the

manual page. To use this option, type <command> ��help.

$ man ls

LS(1) User Commands LS(1)

NAME

ls - list directory contents

SYNOPSIS

ls [OPTION]... [FILE]...

4 Lab 1. Introduction to the Unix Shell

DESCRIPTION

List information about the FILEs (the current directory by default).

-a, --all

do not ignore entries starting with .

The apropos <keyword> command will list all Unix commands that have <keyword> contained

somewhere in their manual page names and descriptions. For example, if you forget how to copy

�les, you can type in apropos copy and you'll get a list of all commands that have copy in their

description.

Flags
When you use man, you will see a list of options such as -a, -A, --author, etc. that modify how a

command functions. These are called �ags. You can use one �ag on a command by typing <command

> -<flag>, like ls -a, or combine multiple �ags by typing <command> -<flag1><flag2>, etc. as in

ls -alt.

For example, sometimes directories contain hidden �les, which are �les whose names begin with

a dot character like .bash. The ls command, by default, does not list hidden �les. Using the -a

�ag speci�es that ls should not ignore hidden �les. Find more common �ags for ls in Table 1.1.

Flags Description

-a Do not ignore hidden �les and folders

-l List �les and folders in long format

-r Reverse order while sorting

-R Print �les and subdirectories recursively

-s Print item name and size

-S Sort by size

-t Sort output by date modi�ed

Table 1.1: Common �ags of the ls command.

$ ls

file1.py file2.py

$ ls -a

. .. file1.py file2.py .hiddenfile.py

$ ls -alt # Multiple flags can be combined into one flag

total 8

drwxr-xr-x 2 c c 4096 Aug 14 10:08 .

-rw-r--r-- 1 c c 0 Aug 14 10:08 .hiddenfile.py

-rw-r--r-- 1 c c 0 Aug 14 10:08 file2.py

-rw-r--r-- 1 c c 0 Aug 14 10:08 file1.py

drwxr-xr-x 38 c c 4096 Aug 14 10:08 ..

5

Problem 2. Within the script, add a command using ls to print one list of the contents of

Shell1/ with the following criteria:

� Include hidden �les and folders

� List the �les and folders in long format (include the permissions, date last modi�ed, etc.)

� Sort the output by �le size (largest �les �rst)

Test your command by entering it into the terminal within Shell1/ or by running the script

and checking for the desired output.

Manipulating Files and Directories

In this section we will learn how to create, copy, move, and delete �les and folders. To create a text

�le, use touch <filename>. To create a new directory, use mkdir <dir_name>.

~$ cd Test/ # navigate to test directory

~/Test$ ls # list contents of directory

file1.py

~/Test$ mkdir NewDirectory # create a new empty directory

~/Test$ touch newfile.py # create a new empty file

~/Test$ ls

file1.py NewDirectory newfile.py

To copy a �le into a directory, use cp <filename> <dir_name>. When making a copy of a

directory, use the -r �ag to recursively copy �les contained in the directory. If you try to copy a

directory without the -r, the command will return an error.

Moving �les and directories follows a similar format, except no -r �ag is used when moving one

directory into another. The command mv <filename> <dir_name> will move a �le to a folder and

mv <dir1> <dir2> will move the �rst directory into the second.

If you want to rename a �le, use mv <file_old> <file_new>; the same goes for directories.

~/Test$ ls

file1.py NewDirectory newfile.py

~/Test$ mv newfile.py NewDirectory/ # move file into directory
~/Test$ cp file1.py NewDirectory/ # make a copy of file1 in directory
~/Test$ cd NewDirectory/
~/Test/NewDirectory$ mv file1.py newname.py # rename file1.py
~/Test/NewDirectory$ ls

newfile.py newname.py

6 Lab 1. Introduction to the Unix Shell

When deleting �les, use rm <filename>, and when deleting a directory, use rm -r <dir_name

>. The -r �ag tells the terminal to recursively remove all the �les and subfolders within the targeted

directory.

If you want to make sure your command is doing what you intend, the -v �ag tells rm, cp, or

mkdir to print strings in the terminal describing what it is doing.

When your terminal gets too cluttered, use clear to clean it up.

~/Test/NewDirectory$ cd .. # move one directory up
~/Test$ rm -rv NewDirectory/ # remove a directory and its contents

removed 'NewDirectory/newname.py'

removed 'NewDirectory/newfile.py'

removed directory 'NewDirectory/'

~/Test$ rm file1.py # remove a file
~/Test$ ls # directory is now empty
~/Test$

Commands Description

clear Clear the terminal screen

cp file1 dir1 Create a copy of file1 and move it to dir1/

cp file1 file2 Create a copy of file1 and name it file2

cp -r dir1 dir2 Create a copy of dir1/ and all its contents into dir2/

mkdir dir1 Create a new directory named dir1/

mkdir -p path/to/new/dir1 Create dir1/ and all intermediate directories

mv file1 dir1 Move file1 to dir1/

mv file1 file2 Rename file1 as file2

rm file1 Delete file1 [-i, -v]

rm -r dir1 Delete dir1/ and all items within dir1/ [-i, -v]

touch file1 Create an empty �le named file1

Table 1.2: File Manipulation Commands

Table 1.2 contains all the commands we have discussed so far. Commonly used �ags for some

commands are contained in square brackets; use man or ��help to see what these mean.

Problem 3. Add commands to the unixshell1.sh script to make the following changes in

Shell1/:

� Delete the Audio/ directory along with all its contents

� Create Documents/, Photos/, and Python/ directories

� Change the name of the Random/ directory to Files/

Test your commands by running the script and then using ls within Shell1/ to see what

directories are there. Once you have run the script and deleted, created or renamed �les,

7

Wildcards

As we are working in the �le system, there will be times that we want to perform the same command

to a group of similar �les. For example, you may need to move all text �les within a directory to a

new directory. Rather than copy each �le one at a time, we can apply one command to several �les

using wildcards. We will use the * and ? wildcards. The * wildcard represents any string and the ?

wildcard represents any single character. Though these wildcards can be used in almost every Unix

command, they are particularly useful when dealing with �les.

$ ls

File1.txt File2.txt File3.jpg text_files

$ mv -v *.txt text_files/

File1.txt -> text_files/File1.txt

File2.txt -> text_files/File2.txt

$ ls

File3.jpg text_files

See Table 1.3 for examples of common wildcard usage.

Command Description

*.txt All �les that end with .txt.

image* All �les that have image as the �rst 5 characters.

py All �les that contain py in the name.

doc*.txt All �les of the form doc1.txt, doc2.txt, docA.txt, etc.

Table 1.3: Common uses for wildcards.

Problem 4. Within the Shell1/ directory, there are many �les. Add commands to the script

to organize these �les into directories using wildcards. Organize by completing the following:

� Move all the .jpg �les to the Photos/ directory

� Move all the .txt �les to the Documents/ directory

� Move all the .py �les to the Python/ directory

Working With Files
Searching the File System

There are two commands we can use for searching through our directories. The find command is

used to �nd �les or directories with a certain name; the grep command is used to �nd lines within

�les matching a certain string. When searching for a speci�c string, both commands allow wildcards

within the string. You can use wildcards so that your search string matches a broader set of strings.

8 Lab 1. Introduction to the Unix Shell

Find all files or directories in Shell1/ called "final"

-type f,d specifies to look for files and directories

. specifies to look in the current directory

$ find . -name "final" -type f,d

$ # There are no files with the exact name "final" in Shell1/

$ find . -name "*final*" -type f,d

./Files/May/finals

./Files/May/finals/finalproject.py

Find all within files in Documents/ containing "Mary"

-r tells grep to search all files with Documents/

-n tells grep to print out the line number (2)

$ Shell1$ grep -nr "Mary" Documents/

Documents/people.txt:2:female,Mary,31

Command Description

find dir1 -type f -name "word" Find all �les in dir1/ (and its subdirectories) called word

(-type f is for �les; -type d is for directories)

grep "word" filename Find all occurences of word within filename

grep -nr "word" dir1 Find all occurences of word within the �les inside dir1/

(-n lists the line number; -r performs a recursive search)

Table 1.4: Commands using find and grep.

Table 1.4 contains basic sytax for using these two commands. There are many more variations

of syntax for grep and find, however. You can use man grep and man find to explore other options

for using these commands.

File Security and Permissions

A �le has three levels of permissions associated with it: the permission to read the �le, to write

(modify) the �le, and to execute the �le. There are also three categories of people who are assigned

permissions: the user (the owner), the group, and others.

You can check the permissions for file1 using the command ls -l <file1>. Note that your

output will di�er from that printed below; this is purely an example.

$ ls -l

-rw-rw-r-- 1 username groupname 194 Aug 5 20:20 calc.py

drw-rw-r-- 1 username groupname 373 Aug 5 21:16 Documents

-rwxr-x--x 1 username groupname 27 Aug 5 20:22 mult.py

-rw-rw-r-- 1 username groupname 721 Aug 5 20:23 project.py

9

The �rst character of each line denotes the type of the item whether it be a normal �le, a

directory, a symbolic link, etc. The next nine characters denote the permissions associated with that

�le.

For example, look at the output for mult.py. The �rst character - denotes that mult.py is a

normal �le. The next three characters, rwx, tell us the owner can read, write, and execute the �le.

The next three characters, r-x, tell us members of the same group can read and execute the �le, but

not edit it. The �nal three characters, --x, tell us other users can execute the �le and nothing more.

Permissions can be modi�ed using the chmod command. There are multiple notations used

to modify permissions, but the easiest to use when we want to make small modi�cations to a �le's

permissions is symbolic permissions notation. See Table 1.5 for more examples of using symbolic

permissions notation, as well as other useful commands for working with permissions.

$ ls -l script1.sh

total 0

-rw-r--r-- 1 c c 0 Aug 21 13:06 script1.sh

$ chmod u+x script1.sh # add permission for user to execute

$ chmod o-r script1.sh # remove permission for others to read

$ ls -l script1.sh

total 0

-rwxr----- 1 c c 0 Aug 21 13:06 script1.sh

Command Description

chmod u+x file1 Add executing (x) permissions to user (u)

chmod g-w file1 Remove writing (w) permissions from group (g)

chmod o-r file1 Remove reading (r) permissions from other other users (o)

chmod a+w file1 Add writing permissions to everyone (a)

chown change owner

chgrp change group

getfacl view all permissions of a �le in a readable format.

Table 1.5: Symbolic permissions notation and other useful commands

Running Files
To run a �le for which you have execution permissions, type the �le name preceded by ./.

$./hello.sh

bash: ./hello.sh: Permission denied

$ ls -l hello.sh

-rw-r--r-- 1 username groupname 31 Jul 30 14:34 hello.sh

$ chmod u+x hello.sh # You can now execute the file

$./hello.sh

Hello World!

10 Lab 1. Introduction to the Unix Shell

Problem 5. Within Shell1/, there is a script called organize_photos.sh. First, use find

to locate the script. Once you know the �le location, add commands to your script so that it

completes the following tasks:

� Moves organize_photos.sh to Scripts/

� Adds executable permissions to the script for the user

� Runs the script

Test that the script has been executed by checking that additional �les have been moved into

the Photos/ directory. Check that permissions have been updated on the script by using ls -l.

Accessing Remote Machines
At times you will �nd it useful to perform tasks on a remote computer or server, such as running a

script that requires a large amount of computing power on a supercomputer or accessing a data �le

stored on another machine.

Secure Shell
Secure Shell (SSH) allows you to remotely access other computers or servers securely. SSH is a net-

work protocol encrypted using public-key cryptography. It ensures that all communication between

your computer and the remote server is secure and encrypted.

The system you are connecting to is called the host, and the system you are connecting from

is called the client. The �rst time you connect to a host, you will receive a warning saying the

authenticity of the host can't be established. This warning is a default, and appears when you are

connecting to a host you have not connected to before. When asked if you would like to continue

connecting, select yes.

When prompted for your password, type your password as normal and press enter. No charac-

ters will appear on the screen, but they are still being logged. Once the connection is established,

there is a secure tunnel through which commands and �les can be exchanged between the client and

host. To end a secure connection, type exit.

alice@mycomputer:~$ ssh alice27@acme01.byu.edu

alice27@acme01.byu.edu password:# Type password as normal

last login 7 Sept 11

[alice27@byu.local@acme01 ~]$ ls # Commands are executed on the host

myacmeshare/

[alice27@byu.local@acme01 ~]$ exit # End a secure connection

logout

Connection to acme01.byu.edu closed.

alice@mycomputer:~$ # Commands are executed on the client

11

Secure Copy
To copy �les from one computer to another, you can use the Unix command scp, which stands for

secure copy protocol. The syntax for scp is essentially the same as the syntax for cp.

To copy a �le from your computer to a speci�c location on on a remote machine, use the

syntax scp <file1> <user@remote_host:file_path>. As with cp, to copy a directory and all of

its contents, use the -r �ag.

Make copies of file1 and dir2 in the home directory on acme01.byu.edu

alice@mycomputer:~$ scp file1 alice27@acme01.byu.edu:~/

alice@mycomputer:~$ scp -r dir1/dir2 alice27@acme01.byu.edu:~/

Use the syntax scp -r <user@remote_host:file_path/dir1> <file_path> to copy dir1

from a remote machine to the location speci�ed by file_path on your current machine.

Make a local copy of dir1 (from acme01.byu.edu) in the home directory

alice@mycomputer:~$ scp -r alice27@acme01.byu.edu:~/dir1 ~

Commands Description

ssh username@remote_host Establish a secure connection with remote_host

scp file1 user@remote_host:file_path/ Create a copy of file1 on host

scp -r dir1 user@remote_host:file_path/ Create a copy of dir1 and its contents on host

scp user@remote_host:file_path/file1 file_path2 Create a local copy of �le on client

Table 1.6: Basic syntax for ssh and scp.

Problem 6. On a computer with the host name acme20.byu.edu or acme21.byu.edu, there

is a �le called img_649.jpg. Secure copy this �le to your UnixShell1/ directory. (Do not add

the scp command to the script).

To ssh or scp on this computer, your username is your Net ID, and your password is your

typical Net ID password. To use scp or ssh for this computer, you will have to be on campus

using BYU Wi�.

Hint: To use scp, you will need to know the location of the �le on the remote computer.

Consider using ssh to access the machine and using find. The �le is located somewhere in the

directory /sshlab.

After secure copying, add a command to your script to copy the �le from UnixShell1/

into the directory Shell1/Photos/. (Make sure to leave a copy of the �le in UnixShell1/,

otherwise the �le will be deleted when you run the script again.)

Git
Git is a version control system, meaning that it keeps a record of changes in a �le. Git also facilitates

collaboration between people working on the same code. It does both these things by managing

12 Lab 1. Introduction to the Unix Shell

updates between an online code repository and copies of the repository, called clones, stored locally

on computers.

We will be using git to submit labs and return feedback on those labs. If git is not already

installed on your computer, download it at http://git-scm.com/downloads.

Using Git
Git manages the history of a �le system through commits, or checkpoints. Each time a new commit

is added to the online repository, a checkpoint is created so that if need be, you can use or look back

at an older version of the repository. You can use git log to see a list of previous commits. You

can also use git status to see the �les that have been changed in your local repository since the

last commit.

Before making your own changes, you'll want to add any commits from other clones into your

local repository. To do this, use the command git pull origin master.

Once you have made changes and want to make a new commit, there are normally three steps.

To save these changes to the online repository, �rst add the changed �les to the staging area, a list of

�les to save during the next commit, with git add <filename(s)>. If you want to add all changes

that you have made to tracked �les (�les that are already included in the online repository), use

git add -u.

Next, save the changes in the staging area with git commit -m "<A brief message describing

the changes>".

Finally, add the changes in this commit to the online repository with git push origin master.

$ cd MyDirectory/ # Navigate into a cloned repository

$ git pull origin master # Pull new commits from online repository

Make changes to file1.py

$ git add file1.py # Add file to staging area

$ git commit -m "Made changes" # Commit changes in staging area

$ git push origin master # Push changes to online repository

Online Repository

Computer

git push origin master git pull origin master

Figure 1.1: Exchanging git commits between the repository and a local clone.

Merge Conflicts
Git maintains order by raising an alert when changes are made to the same �le in di�erent clones and

neither clone contains the changes made in the other. This is called a merge con�ict, which happens

http://git-scm.com/downloads

13

when someone else has pushed a commit that you do not yet have, while you have also made one or

more commits locally that they do not have.

Achtung!

When pulling updates with git pull origin master, your terminal may sometimes display

the following merge con�ict message.

Merge branch 'master' of https://bitbucket.org/<name>/<repo> into master

Please enter a commit message to explain why this merge is necessary,

especially if it merges an updated upstream into a topic branch.

#

Lines starting with '#' will be ignored, and an empty message aborts

the commit.
~

~

This screen, displayed in vim (https://en.wikipedia.org/wiki/Vim_(text_editor)),

is asking you to enter a message to create a merge commit that will reconcile both changes.

If you do not enter a message, a default message is used. To close this screen and create the

merge commit with the default message, type :wq (the characters will appear in the bottom

left corner of the terminal) and press enter.

Note

Vim is a terminal text editor available on essentially any computer you will use. When working

with remote machines through ssh, vim is often the only text editor available to use. To

exit vim, press esc:wq To learn more about vim, visit the o�cial documentation at https:

//vimhelp.org.

Command Explanation

git status Display the staging area and untracked changes.

git pull origin master Pull changes from the online repository.

git push origin master Push changes to the online repository.

git add <filename(s)> Add a �le or �les to the staging area.

git add -u Add all modi�ed, tracked �les to the staging area.

git commit -m "<message>" Save the changes in the staging area with a given message.

git checkout <filename> Revert changes to an unstaged �le since the last commit.

git reset HEAD <filename> Remove a �le from the staging area, but keep changes.

git diff <filename> See the changes to an unstaged �le since the last commit.

git diff --cached <filename> See the changes to a staged �le since the last commit.

git config --local <option> Record your credentials (user.name, user.email, etc.).

Table 1.7: Common git commands.

https://en.wikipedia.org/wiki/Vim_(text_editor)
https://vimhelp.org
https://vimhelp.org

14 Lab 1. Introduction to the Unix Shell

Problem 7. Using git commands, push unixshell1.sh and UnixShell1.tar.gz to your on-

line git repository. Do not add anything else in the UnixShell1/ directory to the online

repository.

	Introduction to the Unix Shell

