
6 Exceptions and File
Input/Ouput

Lab Objective: In Python, an exception is an error detected during execution. Exceptions are

important for regulating program usage and for correctly reporting problems to the programmer and

end user. An understanding of exceptions is essential to safely read data from and write data to exter-

nal �les. Being able to interact with external �les is important for analyzing data and communicating

results. In this lab we learn exception syntax and �le interaction protocols.

Exceptions
An exception formally indicates an error and terminates the program early. Some of the more common

exception types are listed below, along with the kinds of problems they typically indicate.

Exception Indication

AttributeError An attribute reference or assignment failed.

ImportError An import statement failed.

IndexError A sequence subscript was out of range.

NameError A local or global name was not found.

TypeError An operation or function was applied to an object of

inappropriate type.

ValueError An operation or function received an argument that had

the right type but an inappropriate value.

ZeroDivisionError The second argument of a division or modulo operation was zero.

>>> print(x)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name 'x' is not defined

>>> [1, 2, 3].fly()

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

AttributeError: 'list' object has no attribute 'fly'

1

2 Lab 6. Exceptions and File Input/Output

Raising Exceptions
Most exceptions are due to coding mistakes and typos. However, exceptions can also be used inten-

tionally to indicate a problem to the user or programmer. To create an exception, use the keyword

raise, followed by the name of the exception class. As soon as an exception is raised, the program

stops running unless the exception is handled properly.

>>> if 7 is not 7.0: # Raise an exception with an error message.

... raise Exception("ints and floats are different!")

...

Traceback (most recent call last):

File "<stdin>", line 2, in <module>

Exception: ints and floats are different!

>>> for x in range(10):

... if x > 5: # Raise a specific kind of exception.

... raise ValueError("'x' should not exceed 5.")

... print(x, end=' ')

...

0 1 2 3 4 5

Traceback (most recent call last):

File "<stdin>", line 3, in <module>

ValueError: 'x' should not exceed 5.

Problem 1. Consider the following arithmetic �magic� trick.

1. Choose a 3-digit number where the �rst and last digits di�er by 2 or more (say, 123).

2. Reverse this number by reading it backwards (321).

3. Calculate the positive di�erence of these numbers (321− 123 = 198).

4. Add the reverse of the result to itself (198 + 891 = 1089).

The result of the last step will always be 1089, regardless of the original number chosen in step

1 (can you explain why?).

The following function prompts the user for input at each step of the magic trick, but

does not check that the user's inputs are correct.

def arithmagic():

step_1 = input("Enter a 3-digit number where the first and last "

"digits differ by 2 or more: ")

step_2 = input("Enter the reverse of the first number, obtained "

"by reading it backwards: ")

step_3 = input("Enter the positive difference of these numbers: ")

step_4 = input("Enter the reverse of the previous result: ")

print(str(step_3), "+", str(step_4), "= 1089 (ta-da!)")

3

Modify arithmagic() so that it veri�es the user's input at each step. Raise a ValueError

with an informative error message if any of the following occur:

� The �rst number (step_1) is not a 3-digit number.

� The �rst number's �rst and last digits di�er by less than 2.

� The second number (step_2) is not the reverse of the �rst number.

� The third number (step_3) is not the positive di�erence of the �rst two numbers.

� The fourth number (step_4) is not the reverse of the third number.

(Hint: input() always returns a string, so each variable is a string initially. Use int() to cast

the variables as integers when necessary. The built-in function abs() may also be useful.)

Handling Exceptions
To prevent an exception from halting the program, it must be handled by placing the problematic

lines of code in a try block. An except block then follows with instructions for what to do in the

event of an exception.

The 'try' block should hold any lines of code that might raise an exception.

>>> try:

... print("Entering try block...")

... raise Exception("for no reason")

... print("No problem!") # This line gets skipped.

... # The 'except' block is executed just after the exception is raised.

... except Exception as e:

... print("There was a problem:", e)

...

Entering try block...

There was a problem: for no reason

>>> # The program then continues on.

In this example, the name e represents the exception within the except block. Printing e

displays its error message. If desired, e can be raised again with raise e or just raise.

The try-except control �ow can be expanded with two other blocks, forming a code structure

similar to a sequence of if-elif-else blocks.

1. The try block is executed until an exception is raised (if at all).

2. An except statement specifying the same kind of exception that was raised in the try block

�catches� the exception, and the block is then executed. There may be multiple except blocks

following a single try block (similiar to having several elif statements following a single if

statement), and a single except statement may specify multiple kinds of exceptions to catch.

3. The else block is executed if an exception was not raised in the try block.

4. The finally block is always executed if it is included.

4 Lab 6. Exceptions and File Input/Output

>>> try:

... print("Entering try block...", end='')

... house_on_fire = False

... raise ValueError("The house is on fire!")

... # Check for multiple kinds of exceptions using parentheses.

... except (ValueError, TypeError) as e:

... print("caught an exception.")

... house_on_fire = True

... else: # Skipped due to the exception.

... print("no exceptions raised.")

... finally:

... print("The house is on fire:", house_on_fire)

...

Entering try block...caught an exception.

The house is on fire: True

>>> try:

... print("Entering try block...", end='')

... house_on_fire = False

... except ValueError as e: # Skipped because there was no exception.

... print("caught a ValueError.")

... house_on_fire = True

... except TypeError as e: # Also skipped.

... print("caught a TypeError.")

... house_on_fire = True

... else:

... print("no exceptions raised.")

... finally:

... print("The house is on fire:", house_on_fire)

...

Entering try block...no exceptions raised.

The house is on fire: False

The code in the finally block is always executed, even if a return statement or an uncaught

exception occurs in any block following the try statement.

>>> def implode():

... try: # Try to return immediately...

... return

... finally: # ...but 'finally' goes before 'return'.

... print("Goodbye, world!")

...

>>> implode()

Goodbye, world!

See https://docs.python.org/3/tutorial/errors.html for more examples.

https://docs.python.org/3/tutorial/errors.html

5

Achtung!

An except statement with no speci�ed exception type catches any exception raised in the

corresponding try block. This approach can mistakenly mask unexpected errors. Always be

speci�c about the kinds of exceptions you expect to encounter.

>>> def divider(x, y):

... try:

... return x / yy # The mispelled yy raises a NameError.

... except: # Catch ANY exception.

... print("y must not equal zero!")

...

>>> divider(2, 3)

y must not equal zero!

>>> def divider(x, y):

... try:

... return x / yy

... except ZeroDivisionError: # Specify an exception type.

... print("y must not equal zero!")

...

>>> divider(2, 3)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "<stdin>", line 3, in divider

NameError: name 'yy' is not defined # Now the mistake is obvious.

Problem 2. A random walk is a path created by a sequence of random steps. The following

function simulates a random walk by repeatedly adding or subtracting 1 to a running total.

from random import choice

def random_walk(max_iters=1e12):

walk = 0

directions = [1, -1]

for i in range(int(max_iters)):

walk += choice(directions)

return walk

A KeyboardInterrupt is a special exception that can be triggered at any time by entering

ctrl+c (on most systems) in the keyboard. Modify random_walk() so that if the user raises a

KeyboardInterrupt by pressing ctrl+c while the program is running, the function catches the

exception and prints �Process interrupted at iteration i�. If no KeyboardInterrupt is raised,

print �Process completed�. In both cases, return walk as before.

6 Lab 6. Exceptions and File Input/Output

Note

The built-in exceptions are organized into a class hierarchy. For example, the ValueError

class inherits from the generic Exception class. Thus, a ValueError is an Exception, but an

Exception is not a ValueError.

>>> try:

... raise ValueError("caught!")

... except Exception as e: # A ValueError is an Exception.

... print(e)

...

caught! # The exception was caught.

>>> try:

... raise Exception("not caught!")

... except ValueError as e: # A Exception is not a ValueError.

... print(e)

...

Traceback (most recent call last):

File "<stdin>", line 2, in <module>

Exception: not caught! # The exception wasn't caught!

See https://docs.python.org/3/library/exceptions.html for the complete list of

built-in exceptions and the exception class hierarchy.

File Input and Output
A �le object acts as an interface to a �le stream, meaning, it allows a program to read from or write

to external �les. The built-in function open() creates a �le object. It accepts the name of the �le

to open and an editing mode. The mode determines the kind of access that the user has to the �le.

There are four common modes:

'r': read. Open an existing �le for reading. The �le must already exist, or open() raises a

FileNotFoundError. This is the default mode.

'w': write. Create a new �le or overwrite an existing �le (careful!) and open it for writing.

'x': write new. Create a new �le and open it for writing. If the �le already exists, open() raises

a FileExistsError. This is a safer form of 'w' because it never overwrites existing �les.

'a': append. Open a �le for writing and append new data to the end of the �le if it already exists.

>>> myfile = open("hello_world.txt", 'r') # Open a file for reading.

>>> print(myfile.read()) # Print the contents of the file.

Hello, # (it's a really small file.)

World!

>>> myfile.close() # Close the file connection.

https://docs.python.org/3/library/exceptions.html

7

The With Statement
An IOError indicates that some input or output operation has failed. A simple try-finally control

�ow can ensure that a �le stream is closed safely.

The with statement provides an alternative method for safely opening and closing �les. Use

with open(<filename>, <mode>) as <alias>: to create an indented block in which the �le is open

and available under the speci�ed alias. At the end of the block, the �le is automatically and safely

closed, even in the event of an exception. This is the preferred �le-reading method when a �le only

needs to be accessed brie�y.

>>> myfile = open("hello_world.txt", 'r') # Open a file for reading.

>>> try:

... contents = myfile.readlines() # Read in the content by line.

... finally:

... myfile.close() # Explicitly close the file.

Equivalently, use a 'with' statement to take care of errors.

>>> with open("hello_world.txt", 'r') as myfile:

... contents = myfile.readlines()

... # The file is closed automatically.

In both cases, if the �le hello_world.txt does not exist in the current directory, open() raises

a FileNotFoundError. However, errors in the try or with blocks do not prevent the �le from being

safely closed.

Reading and Writing
Open �le objects have an implicit cursor that determines the location in the �le to read from or

write to. After the entire �le has been read once, either the �le must be closed and reopened, or the

cursor must be reset to the beginning of the �le with seek(0) before it can be read again.

Some of the more important �le object attributes and methods are listed below.

Attribute Description

closed True if the object is closed.

mode The access mode used to open the �le object.

name The name of the �le.

Method Description

close() Close the connection to the �le.

read() Read a given number of bytes; with no input, read the entire �le.

readline() Read a line of the �le, including the newline character at the end.

readlines() Call readline() repeatedly and return a list of the resulting lines.

seek() Move the cursor to a new position.

tell() Report the current position of the cursor.

write() Write a single string to the �le (spaces are not added).

writelines() Write a list of strings to the �le (newline characters are not added).

Only strings can be written to �les; to write a non-string type, �rst cast it as a string with

str(). Be mindful of spaces and newlines to separate the data.

8 Lab 6. Exceptions and File Input/Output

>>> with open("out.txt", 'w') as outfile: # Open 'out.txt' for writing.

... for i in range(10):

... outfile.write(str(i**2)+' ') # Write some strings (and spaces).

...

>>> outfile.closed # The file is closed automatically.

True

Problem 3. De�ne a class called ContentFilter. Implement the constructor so that it accepts

the name of a �le to be read.

1. If the �le name is invalid in any way, prompt the user for another �lename using input().

Continue prompting the user until they provide a valid �lename.

>>> cf1 = ContentFilter("hello_world.txt") # File exists.

>>> cf2 = ContentFilter("not-a-file.txt") # File doesn't exist.

Please enter a valid file name: still-not-a-file.txt

Please enter a valid file name: hello_world.txt

>>> cf3 = ContentFilter([1, 2, 3]) # Not even a string.

Please enter a valid file name: hello_world.txt

(Hint: open() might raise a FileNotFoundError, a TypeError, or an OSError.)

2. Read the �le and store its name and contents as attributes (store the contents as a single

string). Make sure the �le is securely closed.

String Formatting
The str class has several useful methods for parsing and formatting strings. They are particularly

useful for processing data from a source �le and for preparing data to be written to an external �le.

Method Returns

count() The number of times a given substring occurs within the string.

find() The lowest index where a given substring is found.

isalpha() True if all characters in the string are alphabetic (a, b, c, . . .).

isdigit() True if all characters in the string are digits (0, 1, 2, . . .).

isspace() True if all characters in the string are whitespace (" ", '\t', '\n').

join() The concatenation of the strings in a given iterable with a

speci�ed separator between entries.

lower() A copy of the string converted to lowercase.

upper() A copy of the string converted to uppercase.

replace() A copy of the string with occurrences of a given substring

replaced by a di�erent speci�ed substring.

split() A list of segments of the string, using a given character or string

as a delimiter.

strip() A copy of the string with leading and trailing whitespace removed.

9

The join() method translates a list of strings into a single string by concatenating the entries

of the list and placing the principal string between the entries. Conversely, split() translates the

principal string into a list of substrings, with the separation determined by a single input.

str.join() puts the string between the entries of a list.

>>> words = ["state", "of", "the", "art"]

>>> "-".join(words)

'state-of-the-art'

str.split() creates a list out of a string, given a delimiter.

>>> "One fish\nTwo fish\nRed fish\nBlue fish\n".split('\n')

['One fish', 'Two fish', 'Red fish', 'Blue fish', '']

If no delimiter is provided, the string is split by whitespace characters.

>>> "One fish\nTwo fish\nRed fish\nBlue fish\n".split()

['One', 'fish', 'Two', 'fish', 'Red', 'fish', 'Blue', 'fish']

Can you tell the di�erence between the following routines?

>>> with open("hello_world.txt", 'r') as myfile:

... contents = myfile.readlines()

...

>>> with open("hello_world.txt", 'r') as myfile:

... contents = myfile.read().split('\n')

Problem 4. Add the following methods to the ContentFilter class for writing the contents

of the original �le to new �les. Each method should accept the name of a �le to write to and

a keyword argument mode that speci�es the �le access mode, defaulting to 'w'. If mode is not

'w', 'x', or 'a', raise a ValueError with an informative message.

1. uniform(): write the data to the out�le with uniform case. Include an additional keyword

argument case that defaults to "upper".

If case="upper", write the data in upper case. If case="lower", write the data in lower

case. If case is not one of these two values, raise a ValueError.

2. reverse(): write the data to the out�le in reverse order. Include an additional keyword

argument unit that defaults to "line".

If unit="word", reverse the ordering of the words in each line, but write the lines in the

same order as the original �le. If unit="line", reverse the ordering of the lines, but do

not change the ordering of the words on each individual line. If unit is not one of these

two values, raise a ValueError.

3. transpose(): write a �transposed� version of the data to the out�le. That is, write the

�rst word of each line of the data to the �rst line of the new �le, the second word of each

line of the data to the second line of the new �le, and so on. Viewed as a matrix of words,

the rows of the input �le then become the columns of the output �le, and vice versa. You

may assume that there are an equal number of words on each line of the input �le.

10 Lab 6. Exceptions and File Input/Output

Also implement the __str__() magic method so that printing a ContentFilter object

yields the following output. You may want to calculate these statistics in the constructor.

Source file: <filename>

Total characters: <The total number of characters in the file>

Alphabetic characters: <The number of letters>

Numerical characters: <The number of digits>

Whitespace characters: <The number of spaces, tabs, and newlines>

Number of lines: <The number of lines>

(Hint: list comprehensions are very useful for some of these functions. For example, what does

[line[::-1] for line in lines] do? What about sum([s.isspace() for s in data])?)

Compare your class to the following example.

cf_example1.txt

A b C

d E f

>>> cf = ContentFilter("cf_example1.txt")

>>> cf.uniform("uniform.txt", mode='w', case="upper")

>>> cf.uniform("uniform.txt", mode='a', case="lower")

>>> cf.reverse("reverse.txt", mode='w', unit="word")

>>> cf.reverse("reverse.txt", mode='a', unit="line")

>>> cf.transpose("transpose.txt", mode='w')

uniform.txt

A B C

D E F

a b c

d e f

reverse.txt

C b A

f E d

d E f

A b C

transpose.txt

A d

b E

C f

11

Additional Material
Custom Exception Classes
Custom exceptions can be de�ned by writing a class that inherits from some existing exception class.

The generic Exception class is typically the parent class of choice.

>>> class TooHardError(Exception):

... pass

...

>>> raise TooHardError("This lab is impossible!")

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

__main__.TooHardError: This lab is impossible!

This may seem like a trivial extension of the Exception class, but it is useful to do because

the interpreter never automatically raises a TooHardError. Any TooHardError must have originated

from a hand-written raise command, making it easier to identify the exact source of the problem.

Chaining Exceptions
Sometimes, especially in large programs, it is useful to raise one kind of exception just after catching

another. The two exceptions can be linked together using the from statement. This syntax makes it

possible to see where the error originated from and to �pass it up� to another part of the program.

>>> try:

... raise TooHardError("This lab is impossible!")

... except TooHardError as e:

... raise NotImplementedError("Lab is incomplete") from e

...

Traceback (most recent call last):

File "<stdin>", line 2, in <module>

__main__.TooHardError: This lab is impossible!

The above exception was the direct cause of the following exception:

Traceback (most recent call last):

File "<stdin>", line 4, in <module>

NotImplementedError: Lab is incomplete

More String Formatting Tools
Concatenating string values with non-string values can be cumbersome and tedious. The str class's

format() method makes it easier to insert non-string values into the middle of a string. Write

the desired output in its entirety, replacing non-string values with curly braces {}. Then use the

format() method, entering each replaced value in order.

Join the data using string concatenation.

>>> day, month, year = 10, "June", 2017

12 Lab 6. Exceptions and File Input/Output

>>> print("Is today", day, str(month) + ',', str(year) + "?")

Is today 10 June, 2017?

Join the data using str.format().

>>> print("Is today {} {}, {}?".format(day, month, year))

Is today 10 June, 2017?

This method is extremely �exible and provides many convenient ways to format string output

nicely. Consider the following code for printing out a simple progress bar from within a loop.

>>> iters = int(1e7)

>>> chunk = iters // 20

>>> for i in range(iters):

... print("\r[{:<20}] i = {}".format('='*((i//chunk)+1), i),

... end='', flush=True)

...

Here the string "\r[{:<20}]" used in conjunction with the format() method tells the cursor

to go back to the beginning of the line, print an opening bracket, then print the �rst argument of

format() left-aligned with at least 20 total spaces before printing the closing bracket. The comma

after the print command suppresses the automatic newline character, keeping the output of each

individual print statement on the same line.

Printing at each iteration dramatically slows down the progression through the loop. How does

the following code solve that problem?

>>> for i in range(iters):

... if not i % chunk:

... print("\r[{:<20}] i = {}".format('='*((i//chunk)+1),i),

... end='', flush=True)

...

See https://docs.python.org/3/library/string.html#format-string-syntax for more ex-

amples and speci�c syntax for using str.format(). For a more robust progress bar printer, research

the tqdm module.

Standard Library Modules for I/O
The standard library has other tools for input and output operations. For details on each module,

see https://docs.python.org/3/library.

Module Description

csv CSV (comma separated value) �le writing and parsing.

io Support for �le objects and open().

os Communication with the operating system.

os.path Common path operations such as checking for �le existence.

pickle Create portable serialized representations of Python objects.

https://docs.python.org/3/library/string.html#format-string-syntax
https://docs.python.org/3/library

	Exceptions and File Input/Output

