
9 Newton’s Method

Lab Objective: Newton's method, the classical method for �nding the zeros of a function, is

one of the most important algorithms of all time. In this lab we implement Newton's method in

arbitrary dimensions and use it to solve a few interesting problems. We also explore in some detail

the convergence (or lack of convergence) of the method under various circumstances.

Iterative Methods
An iterative method is an algorithm that must be applied repeatedly to obtain a result. The general

idea behind any iterative method is to make an initial guess at the solution to a problem, apply a

few easy computations to better approximate the solution, use that approximation as the new initial

guess, and repeat until done. More precisely, let F be some function used to approximate the solution

to a problem. Starting with an initial guess of x0, compute

xk+1 = F (xk) (9.1)

for successive values of k to generate a sequence (xk)∞k=0 that hopefully converges to the true solution.

If the terms of the sequence are vectors, they are denoted by xk.

In the best case, the iteration converges to the true solution x, written limk→∞ xk = x or

xk → x. In the worst case, the iteration continues forever without approaching the solution. In

practice, iterative methods require carefully chosen stopping criteria to guarantee that the algorithm

terminates at some point. The general approach is to continue iterating until the di�erence between

two consecutive approximations is su�ciently small, and to iterate no more than a speci�c number

of times. That is, choose a very small ε > 0 and an integer N ∈ N, and update the approximation

using (9.1) until either

|xk − xk−1| < ε or k > N. (9.2)

The choices for ε and N are signi�cant: a �large� ε (such as 10−6) produces a less accurate

result than a �small� ε (such 10−16), but demands less computations; a small N (10) also potentially

lowers accuracy, but detects and halts nonconvergent iterations sooner than a large N (10,000). In

code, ε and N are often named tol and maxiter, respectively (or similar).

While there are many ways to structure the code for an iterative method, probably the cleanest

way is to combine a for loop with a break statement. As a very simple example, let F (x) = x
2 . This

method converges to x = 0 independent of starting point.

1

2 Lab 9. Newton’s Method

>>> F = lambda x: x / 2

>>> x0, tol, maxiter = 10, 1e-9, 8

>>> for k in range(maxiter): # Iterate at most N times.

... print(x0, end=' ')

... x1 = F(x0) # Compute the next iteration.

... if abs(x1 - x0) < tol: # Check for convergence.

... break # Upon convergence, stop iterating.

... x0 = x1 # Otherwise, continue iterating.

...

10 5.0 2.5 1.25 0.625 0.3125 0.15625 0.078125

In this example, the algorithm terminates after N = 8 iterations (the maximum number of

allowed iterations) because the tolerance condition |xk − xk−1| < 10−9 is not met fast enough. If N

had been larger (say 40), the iteration would have quit early due to the tolerance condition.

Newton’s Method in One Dimension
Newton's method is an iterative method for �nding the zeros of a function. That is, if f : R → R,
the method attempts to �nd a x̄ such that f(x̄) = 0. Beginning with an initial guess x0, calculate

successive approximations for x̄ with the recursive sequence

xk+1 = xk −
f(xk)

f ′(xk)
. (9.3)

The sequence converges to the zero x̄ of f if three conditions hold:

1. f and f ′ exist and are continuous,

2. f ′(x̄) 6= 0, and

3. x0 is �su�ciently close� to x̄.

In applications, the �rst two conditions usually hold. If x̄ and x0 are not �su�ciently close,� Newton's

method may converge very slowly, or it may not converge at all. However, when all three conditions

hold, Newton's method converges quadratically, meaning that the maximum error is squared at every

iteration. This is very quick convergence, making Newton's method as powerful as it is simple.

Problem 1. Write a function that accepts a function f , an initial guess x0, the derivative f
′,

a stopping tolerance defaulting to 10−5, and a maximum number of iterations defaulting to 15.

Use Newton's method as described in (9.3) to compute a zero x̄ of f . Terminate the algorithm

when |xk − xk−1| is less than the stopping tolerance or after iterating the maximum number

of allowed times. Return the last computed approximation to x̄, a boolean value indicating

whether or not the algorithm converged, and the number of iterations completed.

Test your function against functions like f(x) = ex − 2 (see Figure 9.1) or f(x) = x4 − 3.

Check that the computed zero x̄ satis�es f(x̄) ≈ 0. Also consider comparing your function to

scipy.optimize.newton(), which accepts similar arguments.

3

0.0 0.5 1.0 1.5 2.0

x0

x1

x2x3

f(x) = ex 2

Figure 9.1: Newton's method approximates the zero of a function (blue) by choosing as the next

approximation the x-intercept of the tangent line (red) that goes through the point (xk, f(xk)). In

this example, f(x) = ex−2, which has a zero at x̄ = log(2). Setting x0 = 2 and using (9.3) to iterate,

we have x1 = x0 − f(x0)
f ′(x0)

= 2− e2−2
e2 ≈ 1.2707. Similarly, x2 ≈ 0.8320, x3 ≈ .7024, and x4 ≈ 0.6932.

After only a few iterations, the zero log(2) ≈ 0.6931 is already computed to several digits of accuracy.

Note

Newton's method can be used to �nd zeros of functions that are hard to solve for analytically.

For example, the function f(x) = sin(x)
x − x is not continuous on any interval containing 0, but

it can be made continuous by de�ning f(0) = 1. Newton's method can then be used to compute

the zeros of this function.

Problem 2. Suppose that an amount of P1 dollars is put into an account at the beginning of

years 1, 2, ..., N1 and that the account accumulates interest at a fractional rate r (so r = .05

corresponds to 5% interest). In addition, at the beginning of years N1 + 1, N1 + 2, ..., N1 +N2,

an amount of P2 dollars is withdrawn from the account and that the account balance is exactly

zero after the withdrawal at year N1 +N2. Then the variables satisfy

P1[(1 + r)N1 − 1] = P2[1− (1 + r)−N2].

Write a function that, given N1, N2, P1, and P2, uses Newton's method to determine r.

For the initial guess, use r0 = 0.1.

(Hint: Construct f(r) such that when f(r) = 0, the equation is satis�ed. Also compute f ′(r).)

To test your function, if N1 = 30, N2 = 20, P1 = 2000, and P2 = 8000, then r ≈ 0.03878.

(From Atkinson, page 118).

4 Lab 9. Newton’s Method

Backtracking
Newton's method may not converge for a variety of reasons. One potential problem occurs when the

step from xk to xk+1 is so large that the zero is stepped over completely. Backtracking is a strategy

that combats the problem of overstepping by moving only a fraction of the full step from xk to xk+1.

This suggests a slight modi�cation to (9.3),

xk+1 = xk − α
f(xk)

f ′(xk)
, α ∈ (0, 1]. (9.4)

Note that setting α = 1 results in the exact same method de�ned in (9.3), but for α ∈ (0, 1), only a

fraction of the step is taken at each iteration.

Problem 3. Modify your function from Problem 1 so that it accepts a parameter α that

defaults to 1. Incorporate (9.4) to allow for backtracking.

To test your modi�ed function, consider f(x) = x1/3. The command x**(1/3.) fails

when x is negative, so the function can be de�ned with NumPy as follows.

import numpy as np

f = lambda x: np.sign(x) * np.power(np.abs(x), 1./3)

With x0 = .01 and α = 1, the iteration should not converge. However, setting α = .4, the

iteration should converge to a zero that is close to 0.

The backtracking constant α is signi�cant, as it can result in faster convergence or convergence

to a di�erent zero (see Figure 9.2). However, it is not immediately obvious how to choose an optimal

value for α.

1 0 1 2 3 4 5

1.00

0.75

0.50

0.25

0.00

0.25

0.50

x0 x

x

no backtracking
backtracking

Figure 9.2: Starting at the same initial value but using di�erent backtracking constants can result

in convergence to two di�erent solutions. The blue line converges to x̃ = (0,−1) with α = 1 in 5

iterations of Newton's method while the orange line converges to x̂ = (3.75, .25) with α = 0.4 in 15

iterations. Note that the points in this example are 2-dimensional, which is discussed in the next

section.

5

Problem 4. Write a function that accepts the same arguments as your function from Problem

3 except for α. Use Newton's method to �nd a zero of f using various values of α in the interval

(0, 1]. Plot the values of α against the number of iterations performed by Newton's method.

Return a value for α that results in the lowest number of iterations.

A good test case for this problem is the function f(x) = x1/3 discussed in Problem 3. In

this case, your plot should show that the optimal value for α is actually closer to .3 than to .4.

Newton’s Method in Higher Dimensions
Newton's method can be generalized to work on functions with a multivariate domain and range.

Let f : Rn → Rn be given by f(x) = [f1(x) f2(x) . . . fk(x)]T, with fi : Rn → R for each i. The

derivative Df : Rn → Rn×n is the n× n Jacobian matrix of f .

Df =


∂f1
∂x1

· · · ∂f1
∂xk

...
. . .

...
∂fn
∂x1

· · · ∂fn
∂xk


In this setting, Newton's method seeks a vector x̄ such that f(x̄) = 0, the vector of n zeros.

With backtracking incorporated, (9.4) becomes

xk+1 = xk − αDf(xk)
−1
f(xk). (9.5)

Note that if n = 1, (9.5) is exactly (9.4) because in that case, Df(x)−1 = 1/f ′(x).

This vector version of Newton's method terminates when the maximum number of iterations is

reached or the di�erence between successive approximations is less than a predetermined tolerance ε

with respect to a vector norm, that is, ||xk − xk−1|| < ε.

Problem 5. Modify your function from Problems 1 and 3 so that it can compute a zero of a

function f : Rn → Rn for any n ∈ N. Take the following tips into consideration.

� If n > 1, f should be a function that accepts a 1-D NumPy array with n entries and

returns another NumPy array with n entries. Similarly, Df should be a function that

accepts a 1-D array with n entries and returns a n× n array. In other words, f and Df

are callable functions, but f(x) is a vector and Df(x) is a matrix.

� np.isscalar() may be useful for determining whether or not n > 1.

� Instead of computing Df(xk)−1 directly at each step, solve the system Df(xk)yk = f(xk)

and set xk+1 = xk − αyk. In other words, use la.solve() instead of la.inv().

� The stopping criterion now requires using a norm function instead of abs().

After your modi�cations, carefully verify that your function still works in the case that

n = 1, and that your functions from Problems 2 and 4 also still work correctly. In addition,

your function from Problem 4 should also work for any n ∈ N.

6 Lab 9. Newton’s Method

Problem 6. Bioremediation involves the use of bacteria to consume toxic wastes. At a steady

state, the bacterial density x and the nutrient concentration y satisfy the system of nonlinear

equations

γxy − x(1 + y) = 0

−xy + (δ − y)(1 + y) = 0,

where γ and δ are parameters that depend on various physical features of the system.a

For this problem, assume the typical values γ = 5 and δ = 1, for which the system has

solutions at (x, y) = (0, 1), (0,−1), and (3.75, .25). Write a function that �nds an initial point

x0 = (x0, y0) such that Newton's method converges to either (0, 1) or (0,−1) with α = 1, and

to (3.75, .25) with α = 0.55. As soon as a valid x0 is found, return it (stop searching).

(Hint: search within the rectangle [− 1
4 , 0]× [0, 14].)

aThis problem is adapted from exercise 5.19 of [Hea02] and the notes of Homer Walker).

Basins of Attraction
When a function f has many zeros, the zero that Newton's method converges to depends on the

initial guess x0. For example, the function f(x) = x2 − 1 has zeros at −1 and 1. If x0 < 0, then

Newton's method converges to −1; if x0 > 0 then it converges to 1 (see Figure 9.3a). The regions

(−∞, 0) and (0,∞) are called the basins of attraction of f . Starting in one basin of attraction leads

to �nding one zero, while starting in another basin yields a di�erent zero.

When f is a polynomial of degree greater than 2, the basins of attraction are much more

interesting. For example, the basis of attraction for f(x) = x3 − x are shown in Figure 9.3b. The

basin for the zero at the origin is connected, but the other two basins are disconnected and share a

kind of symmetry.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

(a) Basins of attraction for f(x) = x2 − 1.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

(b) Basins of attraction for f(x) = x3 − x.

Figure 9.3: Basins of attraction with α = 1. Since choosing a di�erent value for α can change which

zero Newton's method converges to, the basins of attraction may change for other values of α.

It can be shown that Newton's method converges in any Banach space with only slightly stronger

hypotheses than those discussed previously. In particular, Newton's method can be performed over

the complex plane C to �nd imaginary zeros of functions. Plotting the basins of attraction over C
yields some interesting results.

7

The zeros of f(x) = x3−1 are 1, and − 1
2±
√
3
2 i. To plot the basins of attraction for f(x) = x3−1

on the square complex domain X = {a+bi | a ∈ [− 3
2 ,

3
2], b ∈ [− 3

2 ,
3
2]}, create an initial grid of complex

points in this domain using np.meshgrid().

>>> x_real = np.linspace(-1.5, 1.5, 500) # Real parts.

>>> x_imag = np.linspace(-1.5, 1.5, 500) # Imaginary parts.

>>> X_real, X_imag = np.meshgrid(x_real, x_imag)

>>> X_0 = X_real + 1j*X_imag # Combine real and imaginary parts.

The grid X0 is a 500×500 array of complex values to use as initial points for Newton's method.

Array broadcasting makes it easy to compute an iteration of Newton's method at every grid point.

>>> f = lambda x: x**3 - 1

>>> Df = lambda x: 3*x**2

>>> X_1 = X_0 - f(X_0)/Df(X_0)

After enough iterations, the (i, j)th element of the grid Xk corresponds to the zero of f that

results from using the (i, j)th element of X0 as the initial point. For example, with f(x) = x3 − 1,

each entry of Xk should be close to 1, − 1
2 +

√
3
2 i, or −

1
2 −

√
3
2 i. Each entry of Xk can then be assigned

a value indicating which zero it corresponds to. Some results of this process are displayed below.

(a) Basins of attraction for f(x) = x3 − 1. (b) Basins of attraction for f(x) = x3 − x.

Figure 9.4

Note

Notice that in some portions of Figure 9.4a, whenever red and blue try to come together, a

patch of green appears in between. This behavior repeats on an in�nitely small scale, producing

a fractal. Because it arises from Newton's method, this kind of fractal is called a Newton fractal.

Newton fractals show that the long-term behavior of Newton's method is extremely

sensitive to the initial guess x0. Changing x0 by a small amount can change the output of

Newton's method in a seemingly random way. This phenomenon is called chaos in mathematics.

8 Lab 9. Newton’s Method

Problem 7. Write a function that accepts a function f : C → C, its derivative f ′ : C → C,
an array zeros of the zeros of f , bounds [rmin, rmax, imin, imax] for the domain of the plot, an

integer res that determines the resolution of the plot, and number of iterations iters to run

the iteration. Compute and plot the basins of attraction of f in the complex plane over the

speci�ed domain in the following steps.

1. Construct a res×res grid X0 over the domain {a+ bi | a ∈ [rmin, rmax], b ∈ [imin, imax]}.

2. Run Newton's method (without backtracking) on X0 iters times, obtaining the res×res
array xk. To avoid the additional computation of checking for convergence at each step,

do not use your function from Problem 5.

3. Xk cannot be directly visualized directly because its values are complex. Solve this issue

by creating another res×res array Y . To compute the (i, j)th entry Yi,j , determine

which zero of f is closest to the (i, j)th entry of Xk. Set Yi,j to the index of this zero in

the array zeros. If there are R distinct zeros, each Yi,j should be one of 0, 1, . . . , R− 1.

(Hint: np.argmin() may be useful.)

4. Use plt.pcolormesh() to visualize the basins. Recall that this function accepts three

array arguments: the x-coordinates (in this case, the real components of the initial grid),

the y-coordinates (the imaginary components of the grid), and an array indicating color

values (Y). Set cmap="brg" to get the same color scheme as in Figure 9.4.

Test your function using f(x) = x3 − 1 and f(x) = x3 − x. The resulting plots should

resemble Figures 9.4a and 9.4b, respectively (perhaps with the colors permuted).

Bibliography

[Hea02] Michael T Heath. Scienti�c computing. McGraw-Hill New York, 2002. [6]

9

	Newton's Method
	Bibliography

