
10 Conditioning and
Stability

Lab Objective: The condition number of a function measures how sensitive that function is to

changes in the input. On the other hand, the stability of an algorithm measures how accurately that

algorithm computes the value of a function from exact input. Both of these concepts are important

for answering the crucial question, �is my computer telling the truth?� In this lab we examine the

conditioning of common linear algebra problems, including computing polynomial roots and matrix

eigenvalues. We also present an example to demonstrate how two di�erent algorithms for the same

problem may not have the same level of stability.

Conditioning
The absolute condition number of a function f : Rm → Rn at a point x ∈ Rm is de�ned by

κ̂(x) = lim
δ→0+

sup
‖h‖<δ

‖f(x+ h)− f(x)‖
‖h‖

. (10.1)

In other words, the absolute condition number of f is the limit of the change in output over

the change of input. Similarly, the relative condition number of f is the limit of the relative change

in output over the relative change in input,

κ(x) = lim
δ→0+

sup
‖h‖<δ

(
‖f(x+ h)− f(x)‖

‖f(x)‖

/
‖h‖
‖x‖

)
=
‖x‖
‖f(x)‖

κ̂(x). (10.2)

A function with a large condition number is called ill-conditioned. Small changes to the input

of an ill-conditioned function may produce large changes in output. It is important to know if a

function is ill-conditioned because �oating point representation almost always introduces some input

error, and therefore the outputs of ill-conditioned functions cannot be trusted.

The condition number of a matrix A, κ(A) = ‖A‖‖A−1‖, is an upper bound on the condition

number for many of the common problems associated with the matrix, such as solving the system

Ax = b. If A is square but not invertible, then κ(A) =∞ by convention. To compute κ(A), we often

use the matrix 2-norm, which is the largest singular value σmax of A. Recall that if σ is a singular

value of A, 1
σ is a singular value of A−1. Thus, we have that

κ(A) =
σmax

σmin
, (10.3)

which is also a valid equation for non-square matrices.

1

2 Lab 10. Conditioning and Stability

Achtung!

Ill-conditioned matrices can wreak havoc in even simple applications. For example, the matrix

A =

[
1 1

1 1.0000000001

]
is extremely ill-conditioned, with κ(A) ≈ 4× 1010. Solving the systems Ax = b1 and Ax = b2

can result in wildly di�erent answers, even when b1 and b2 are extremely close.

>>> import numpy as np

>>> from scipy import linalg as la

>>> A = np.array([[1, 1], [1, 1+1e-10]])

>>> np.linalg.cond(A)

39999991794.058899

Set up and solve a simple system of equations.

>>> b1 = np.array([2, 2])

>>> x1 = la.solve(A, b1)

>>> print(x1)

[2. 0.]

Solve a system with a very slightly different vector b.

>>> b2 = np.array([2, 2+1e-5])

>>> la.norm(b1 - b2)

>>> x2 = la.solve(A, b2)

>>> print(x2)

[-99997.99172662 99999.99172662] # This solution is hugely different!

If you �nd yourself working with matrices that have large condition numbers, check your

math carefully or try to reformulate the problem entirely.

Note

An orthonormal matrix U has orthonormal columns and satis�es UTU = I and ‖U‖2 = 1. If

U is square, then U−1 = UT and UT is also orthonormal. Therefore κ(U) = ‖U‖2‖U−1‖2 = 1.

Even if U is not square, all of its singular values are equal to 1, and again κ(U) = σmax/σmin = 1.

The condition number of a matrix cannot be less than 1 since σmax ≥ σmin by de�nition.

Thus orthonormal matrices are, in a sense, the best kind of matrices for computations. This is

one of the main reasons why numerical algorithms based on the QR decomposition or the SVD

are so important.

3

Problem 1. Write a function that accepts a matrix A and computes its condition number

using (10.3). Use scipy.linalg.svd(), or scipy.linalg.svdvals() to compute the singular

values of A. Avoid computing A−1. If the smallest singular value is 0, return ∞ (np.inf).

Validate your function by comparing it to np.linalg.cond(). Check that orthonormal

matrices have a condition number of 1 (use scipy.linalg.qr() to generate an orthonormal

matrix) and that singular matrices have a condition number of ∞ according to your function.

The Wilkinson Polynomial

Let f : Cn+1 → Cn be the function that maps a collection of n + 1 coe�cients (cn, cn−1, . . . , c0) to

the n roots of the polynomial cnx
n + cn−1x

n−1 + . . .+ c2x
2 + c1x+ c0. Finding polynomial roots is

an extremely ill-conditioned problem in general, so the condition number of f is likely very large. To

see this, consider the Wilkinson polynomial, made famous by James H. Wilkinson in 1963:

w(x) =

20∏
r=1

(x− r) = x20 − 210x19 + 20615x18 − 1256850x17 + · · · .

Let w̃(x) be w(x) where the coe�cient on x19 is very slightly perturbed from −210 to −210.0000001.
The following code computes and compares the roots of w̃(x) and w(x) using NumPy and SymPy.

>>> import sympy as sy

>>> from matplotlib import pyplot as plt

The roots of w are 1, 2, ..., 20.

>>> w_roots = np.arange(1, 21)

Get the exact Wilkinson polynomial coefficients using SymPy.

>>> x, i = sy.symbols('x i')

>>> w = sy.poly_from_expr(sy.product(x-i, (i, 1, 20)))[0]

>>> w_coeffs = np.array(w.all_coeffs())

>>> print(w_coeffs[:6])

[1 -210 20615 -1256850 53327946 -1672280820]

Perturb one of the coefficients very slightly.

>>> h = np.zeros(21)

>>> h[1]=1e-7

>>> new_coeffs = w_coeffs - h

>>> print(new_coeffs[:6])

[1 -210.000000100000 20615 -1256850 53327946 -1672280820]

Use NumPy to compute the roots of the perturbed polynomial.

>>> new_roots = np.roots(np.poly1d(new_coeffs))

Figure 10.1a plots w(x) and w̃(x) together, and Figure 10.1b and compares their roots in the

complex plane.

4 Lab 10. Conditioning and Stability

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
x

4
3
2
1
0
1
2
3
4

w
(x

)
1e13

Original
Perturbed

(a) The original and perturbed Wilkinson polynomi-

als. They match for about half of the domain, then

di�er drastically.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Real Axis

3

2

1

0

1

2

3

Im
ag

in
ar

y
Ax

is

Original
Perturbed

(b) Roots of the original and perturbed Wilkinson

polynomials. About half of the perturbed roots are

complex.

Figure 10.1

Figure 10.1 clearly indicates that a very small change in just a single coe�cient drastically

changes the nature of the polynomial and its roots. To quantify the di�erence, estimate the condition

numbers (this example uses the ∞ norm to compute κ̂ and κ).

Sort the roots to ensure that they are in the same order.

>>> w_roots = np.sort(w_roots)

>>> new_roots = np.sort(new_roots)

Estimate the absolute condition number in the infinity norm.

>>> k = la.norm(new_roots - w_roots, np.inf) / la.norm(h, np.inf)

>>> print(k)

28262391.3304

Estimate the relative condition number in the infinity norm.

>>> k * la.norm(w_coeffs, np.inf) / la.norm(w_roots, np.inf)

1.95063629993970+25 # This is huge!!

There are some caveats to this example.

1. Computing the quotients in (10.1) and (10.2) for a �xed perturbation h only approximates the

condition number. The true condition number is the limit of such quotients. We hope that

when ‖h‖ is small, a random quotient is at least the same order of magnitude as the limit, but

there is no way to be sure.

2. This example assumes that NumPy's root-�nding algorithm, np.roots(), is stable, so that the

di�erence between w_roots and new_roots is due to the di�erence in coe�cients, and not to

problems with np.roots(). We will return to this issue in the next section.

Even with these caveats, it is apparent that root �nding is a di�cult problem to solve correctly.

Always check your math carefully when dealing with polynomial roots.

5

Problem 2. Write a function that carries out the following experiment 100 times.

1. Randomly perturb the true coe�cients of the Wilkinson polynomial by replacing each

coe�cient ci with ci ∗ ri, where ri is drawn from a normal distribution centered at 1 with

standard deviation 10−10 (use np.random.normal()).

2. Plot the perturbed roots as small points in the complex plane. That is, plot the real part

of the coe�cients on the x-axis and the imaginary part on the y-axis. Plot on the same

�gure in each experiment.

(Hint: use a pixel marker, marker=',', to avoid overcrowding the �gure.)

3. Compute the absolute and relative condition numbers with the ∞ norm.

Plot the roots of the unperturbed Wilkinson polynomial with the perturbed roots. Your �nal

plot should resemble Figure 10.2. Finally, return the average computed absolute and relative

condition numbers.

0 5 10 15 20
Real Axis

6

4

2

0

2

4

6

Im
ag

in
ar

y
Ax

is

Perturbed
Original

Figure 10.2: This �gure replicates Figure 12.1 on p. 93 of [TB97].

Calculating Eigenvalues
Let f : Mn(C) → Cn be the function that maps an n × n matrix with complex entries to its n

eigenvalues. This problem is well-conditioned for symmetric matrices, but it can be extremely ill-

conditioned for non-symmetric matrices. Let A be an n× n matrix and let λ be the vector of the n

eigenvalues of A. If Ã = A +H is a pertubation of A and λ̃ are its eigenvalues, then the condition

numbers of f can be estimated by

κ̂(A) =
‖λ− λ̃‖
‖H‖

, κ(A) =
‖A‖
‖λ‖

κ̂(A). (10.4)

6 Lab 10. Conditioning and Stability

Problem 3. Write a function that accepts a matrix A and estimates the condition number of

the eigenvalue problem using (10.4). For the perturbation H, construct a matrix with complex

entries where the real and imaginary parts are drawn from normal distributions centered at 0

with standard deviation σ = 10−10.

reals = np.random.normal(0, 1e-10, A.shape)

imags = np.random.normal(0, 1e-10, A.shape)

H = reals + 1j*imags

Use scipy.linalg.eig() or scipy.linalg.eigvals() to compute the eigenvalues of A and

A + H, and use the 2-norm for both the vector and matrix norms. Return the absolute and

relative condition numbers.

Problem 4. Write a function that accepts bounds [xmin, xmax, ymin, ymax] and an integer res.

Use your function from Problem 3 to compute the relative condition number of the eigenvalue

problem for the 2× 2 matrix [
1 x

y 1

]
at every point of an evenly spaced res×res grid over the domain [xmin, xmax] × [ymin, ymax].

Plot these estimated relative condition numbers using plt.pcolormesh() and the colormap

cmap='gray_r'. With res=200, your plot should look similar to the following �gure.

Problem 4 shows that the conditioning of the eigenvalue problem depends heavily on the matrix,

and that it is di�cult to know a priori how bad the problem will be. Luckily, most real-world problems

requiring eigenvalues are symmetric. In their book on Numerical Linear Algebra, L. Trefethen and

D. Bau III summed up the issue of conditioning and eigenvalues when they stated, �if the answer is

highly sensitive to perturbations, you have probably asked the wrong question.�

7

Stability
The stability of an algorithm is measured by the error in its output. Let f : Rm → Rn be a problem

to be solved, as in the previous section, and let f̃ be an actual algorithm for solving the problem.

The forward error of f at x is ||f(x)− f̃(x)||, and the relative forward error of f at x is

||f(x)− f̃(x)||
||f(x)||

.

An algorithm is called stable if its relative forward error is small.1

As an example, consider again NumPy's root-�nding algorithm that we used to investigate the

Wilkinson polynomial. The exact roots of w(x) are clearly 1, 2, . . . , 20. Had we not known this, we

could have tried computing the roots from the coe�cients using np.roots() (without perturbing

the coe�cients at all).

w_coeffs holds the coefficients and w_roots holds the true roots.

>>> computed_roots = np.sort(np.roots(np.poly1d(w_coeffs)))

>>> print(computed_roots[:6]) # The computed roots are close to integers.

[1. 2. 3. 3.99999999 5.00000076 5.99998749]

Compute the forward error.

>>> forward_error = la.norm(w_roots - computed_roots)

>>> print(forward_error)

0.020612653126379665

Compute the relative forward error.

>>> forward_error / la.norm(w_roots)

0.00038476268486104599 # The error is nice and small.

This analysis suggests that np.roots() is a stable algorithm, so large condition numbers of

Problem 2 really are due to the poor conditioning of the problem, not the way in which the problem

was solved.

Note

Conditioning is a property of a problem to be solved, such as �nding the roots of a polynomial

or calculating eigenvalues. Stability is a property of an algorithm to solve a problem, such

as np.roots() or scipy.linalg.eig(). If a problem is ill-conditioned, any algorithm used to

solve that problem may result in suspicious solutions, even if that algorithm is stable.

Least Squares
The ordinary least squares (OLS) problem is to �nd the x that minimizes ‖Ax− b‖2 for �xed A and

b. It can be shown that an equivalent problem is �nding the solution of AHAx = AHb, called the

normal equations. A common application of least squares is polynomial approximation. Given a set

of m data points {(xk, yk)}mk=1, the goal is to �nd the set of coe�cients {ci}ni=0 such that

yk ≈ cnxnk + cn−1x
n−1
k + · · ·+ c2x

2
k + c1xk + c0

1See the Additional Material section for alternative (and more rigorous) de�nitions of algorithmic stability.

8 Lab 10. Conditioning and Stability

for all k, with the smallest possible error. These m linear equations yield the linear system

Ax =


xn1 xn−11 · · · x21 x1 1

xn2 xn−12 · · · x22 x2 1

xn3 xn−13 · · · x23 x3 1
...

...
...

...
...

xnm xn−1m · · · x2m xm 1





cn
cn−1
...

c2
c1
c0


=


y1
y2
y3
...

ym

 = b. (10.5)

Problem 5. Write a function that accepts an integer n. Solve for the coe�cients of the poly-

nomial of degree n that best �ts the data found in stability_data.npy. Use two approaches

to get the least squares solution:

1. Use la.inv() to solve the normal equations: x = (ATA)−1ATb. Although this approach

seems intuitive, it is actually highly unstable and can return an answer with a very large

forward error.

2. Use la.qr() with mode='economic' and la.solve_triangular() to solve the system

Rx = QTb, which is equivalent to solving the normal equations. This algorithm has the

advantage of being stable.

Load the data and set up the system (10.5) with the following code.

xk, yk = np.load("stability_data.npy").T

A = np.vander(xk, n+1)

Plot the resulting polynomials together with the raw data points. Return the forward

error ‖Ax− b‖2 of both approximations.

(Hint: The function np.polyval() will be helpful for plotting the resulting polynomials.)

Test your function using various values of n, taking special note of what happens for values

of n near 14 (pictured below).

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25
Normal Equations
QR Solver

9

Catastrophic Cancellation
When a computer takes the di�erence of two very similar numbers, the result is often stored with

a small number of signi�cant digits and the tiniest bit of information is lost. However, these small

errors can propagate into large errors later down the line. This phenomenon is called catastrophic

cancellation, and is a common cause for numerical instability.

Catastrophic cancellation is a potential problem whenever �oats or large integers that are very

close to one another are subtracted. This problem can be avoided by either rewriting the program

to not use subtraction, or by increasing the number of signi�cant digits that the computer tracks.

For example, consider the simple problem of computing
√
a −
√
b. The computation can be

done directly with subtraction, or by performing the equivalent division

√
a−
√
b = (

√
a−
√
b)

√
a+
√
b

√
a+
√
b
=

a− b
√
a+
√
b
.

>>> from math import sqrt # np.sqrt() fails for very large numbers.

>>> a = 10**20 + 1

>>> b = 10**20

>>> sqrt(a) - sqrt(b) # Do the subtraction directly.

0.0 # a != b, so information has been lost.

>>> (a - b) / (sqrt(a) + sqrt(b)) # Use the alternative formulation.

5e-11 # Much better!

In this example, a and b are distinct enough that the computer can still tell that a− b = 1, but√
a and

√
b are so close to each other that

√
a−
√
b is computed as 0.

Problem 6. Let I(n) =
∫ 1

0
xnex−1dx. It can be shown that for a positive integer n,

I(n) = (−1)n(!n− n!

e
), (10.6)

where !n = n!
∑n
k=0

(−1)k
k! is the subfactorial of n. Write a function to do the following.

1. Use SymPy's sy.integrate() to evaluate the integral form of I(n) for n = 5, 10, . . . , 50.

Convert the symbolic results of each integration to a �oat. Since this is done symbolically,

these values can be accepted as the true values of I(n).

(Hint: be careful that the values of n in the integrand are of type int.)

2. Use (10.6) to compute I(n) for the same values of n. Use sy.subfactorial() to compute

!n and sy.factorial() to compute n!.

(Hint: be careful to only pass Python integers to these functions.)

3. Plot the relative forward error of the results computed in step 2 at each of the given values

of n. Use a log scale on the y-axis. Is (10.6) a stable way to compute I(n)? Why?

The examples presented in this lab are just a few of the ways that a mathematical problem can

turn into a computational train wreck. Always use stable algorithms when possible, and remember

to check if problems are well conditioned or not.

10 Lab 10. Conditioning and Stability

Additional Material
Other Notions of Stability
The de�nition of stability can be made more rigorous in the following way. Let f be a problem to

solve and f̃ an algorithm to solve it. If for every x in the domain there exists a x̃ such that

‖x̃− x‖
‖x‖

and
‖f̃(x)− f(x̃)‖
‖f(x̃)‖

are small (close to εmachine ≈ 10−16), then f̃ is called stable. In other words, �A stable algorithm

gives nearly the right answer to nearly the right question� (Trefethen, Bao, 104). Note carefully that

the quantity on the right is slightly di�erent from the plain forward error introduced earlier.

Stability is desirable, but plain stability isn't the best possible condition. For example, if for

every input x there exists a x̃ such that ‖x̃−x‖/‖x‖ is small and f̃(x) = f(x̃) exactly, then f̃ is called

backward stable. Thus �A backward stable algorithm gives exactly the right answer to nearly the right

question� (Trefethen, Bao, 104). Backward stable algorithms are generally more trustworthy than

stable algorithms, but they are also less common.

Stabilty of Linear System Solvers
The algorithms presented so far in this manual have di�erent levels of stability. The LU decomposition

(with pivoting) is usually very good, but there are some pathological examples of matrices that

can cause it to break down. Even so, scipy.linalg.solve() uses the LU decomposition. The

QR decomposition (also with pivoting) is generally considered to be a better option than the LU

decomposition and is more stable. However, solving a linear system using the SVD is even more

stable than using the QR decomposition. For this reason, scipy.linalg.lstsq() uses the SVD.

Bibliography

[TB97] Lloyd N. Trefethen and David Bau, III. Numerical linear algebra. Society for Industrial and

Applied Mathematics (SIAM), Philadelphia, PA, 1997. [5]

11

	Conditioning and Stability
	Bibliography

