
12 Visualizing
Complex-valued
Functions

Lab Objective: Functions that map from the complex plane into the complex plane are di�cult

to fully visualize because the domain and range are both 2-dimensional. However, such functions

can be visualized at the expense of partial information. In this lab we present methods for analyzing

complex-valued functions visually, including locating their zeros and poles in the complex plane. We

recommend completing the exercises in a Jupyter Notebook.

Representations of Complex Numbers
A complex number z = x+ iy can be written in polar coordinates as z = reiθ where

� r = |z| =
√
x2 + y2 is the magnitude of z, and

� θ = arg(z) = arctan(y/x) is the argument of z, the angle in radians between z and 0.

Conversely, Euler's formula is the relation reiθ = r cos(θ) + ir sin(θ). Then setting reiθ = x+ iy and

equating real and imaginary parts yields the equations x = r cos(θ) and y = r sin(θ).
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Figure 12.1: The complex number z can be represented in Cartesian coordinates as z = x + iy and

in polar coordinates as z = reiθ, when θ is in radians.

NumPy makes it easy to work with complex numbers and convert between coordinate systems.

The function np.angle() returns the argument θ of a complex number (between −π and π) and

np.abs() (or np.absolute()) returns the magnitude r. These functions also operate element-wise

on NumPy arrays.
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>>> import numpy as np

>>> z = 2 - 2*1j # 1j is the imaginary unit i = sqrt(-1).

>>> r, theta = np.abs(z), np.angle(z)

>>> print(r, theta) # The angle is between -pi and pi.

2.82842712475 -0.785398163397

# Check that z = r * e^(i*theta)

>>> np.isclose(z, r*np.exp(1j*theta))

True

# These function also work on entire arrays.

>>> np.abs(np.arange(5) + 2j*np.arange(5))

array([ 0. , 2.23606798, 4.47213595, 6.70820393, 8.94427191])

Complex Functions
A function f : C→ C is called a complex-valued function. Visualizing f is di�cult because C has 2

real dimensions, so the graph of f should be 4-dimensional. However, since it is possible to visualize

3-dimensional objects, f can be visualized by ignoring one dimension. There are two main strategies

for doing this: assign a color to each point z ∈ C corresponding to either the argument θ of f(z), or

to the magnitude r of f(z). The graph that uses the argument is called a complex color wheel graph.

Figure 12.2 displays the identity function f(z) = z using these two methods.

Figure 12.2: The identity function f : C → C de�ned by f(z) = z. On the left, the color at each

point z represents the angle θ = arg(f(z)). As θ goes from −π to π, the colors cycle smoothly

counterclockwise from white to blue to red and back to white (this colormap is called "twilight").

On the right, the color represents the magnitude r = |f(z)|. The further a point is from the origin,

the greater its magnitude (the colormap is the default, "viridis").
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The plots in Figure 12.2 use Cartesian coordinates in the domain and polar coordinates in

the codomain. The procedure for plotting in this way is fairly simple. Begin by creating a grid of

complex numbers: create the real and imaginary parts separately, then use np.meshgrid() to turn

them into a single array of complex numbers. Pass this array to the function f , compute the angle

and argument of the resulting array, and plot them using plt.pcolormesh(). The following code

sets up the complex domain grid.

>>> x = np.linspace(-1, 1, 400) # Real domain.

>>> y = np.linspace(-1, 1, 400) # Imaginary domain.

>>> X, Y = np.meshgrid(x, y) # Make grid matrices.

>>> Z = X + 1j*Y # Combine the grids into a complex array.

Visualizing the argument and the magnitude separately provides di�erent perspectives of the

function f . The angle plot is generally more useful for visualizing function behavior, though the

magnitude plot often makes it easy to spot important points such as zeros and poles.

Figure 12.3: Plots of f(z) =
√
z2 + 1 on {x+ iy | x, y ∈ [−3, 3]}. Notice how a discontinuity is clearly

visible in the angle plot on the left, but disappears from the magnitude plot on the right.

Problem 1. Write a function that accepts a function f : C→ C, bounds [rmin, rmax, imin, imax]

for the domain, an integer res that determines the resolution of the plot, and a string to set

the �gure title. Plot arg(f(z)) and |f(z)| on an equally-spaced res×res grid over the domain

{x+ iy | x ∈ [rmin, rmax], y ∈ [imin, imax]} in separate subplots.

1. For arg(f(z)), set the plt.pcolormesh() keyword arguments vmin and vmax to −π and

π, respectively. This forces the color spectrum to work well with np.angle(). Use the

colormap "twilight", which starts and ends white, so that the color is the same for −π
and π.



4 Lab 12. Visualizing Complex-valued Functions

2. For |f(z)|, set norm=matplotlib.colors.LogNorm() in plt.pcolormesh() so that the

color scale is logarithmic. Use a sequential colormap like "viridis" or "magma".

3. Set the aspect ratio to "equal" in each plot. Give each subplot a title, and set the overall

�gure title with the given input string.

Use your function to visualize f(z) = z on {x+ iy | x, y ∈ [−1, 1]} and f(z) =
√
z2 + 1 on

{x+ iy | x, y ∈ [−3, 3]}. Compare the resulting plots to Figures 12.2 and 12.3, respectively.

Interpreting Complex Plots
Plots of a complex function can be used to quickly identify important points in the function's domain.

Zeros

A complex number z0 is called a zero of the complex-valued function f if f(z0) = 0. The mutliplicity

or order of z0 is the largest integer n such that f can be written as f(z) = (z − z0)ng(z) where

g(z0) 6= 0. In other words, f has a zero of order n at z0 if the Taylor series of f centered at z0 can

be written as

f(z) =

∞∑
k=n

ak(z − z0)k, an 6= 0.

Angle and magnitude plots make it easy to locate a function's zeros and to determine their

multiplicities.

Problem 2. Use your function from Problem 1 to plot the following functions on the domain

{x+ iy | x, y ∈ [−1, 1]}.

� f(z) = zn for n = 2, 3, 4.

� f(z) = z3 − iz4 − 3z6. Compare the resulting plots to Figure 12.4.

Write a sentence or two about how the zeros of a function appear in angle and magnitude plots.

How can you tell the multiplicity of the zero from the plot?

Problem 2 shows that in an angle plot of f(z) = zn, the colors cycle n times counterclockwise

around 0. This is explained by looking at zn in polar coordinates,

zn = (reiθ)n = rnei(nθ).

Multiplying θ by a number greater than 1 compresses the graph along the �θ-axis� by a factor of n.

In other words, the output angle repeats itself n times in one cycle of θ. This is similar to taking a

scalar-valued function f : R→ R and replacing f(x) with f(nx).

Problem 2 also shows that the plot of f(z) = z3 − iz4 − 3z6 looks very similar to the plot of

f(z) = z3 near the origin. This is because when z is close to the origin, z4 and z6 are much smaller

in magnitude than z3, and so the behavior of z3 dominates the function. In terms of the Taylor series

centered at z0 = 0, the quantity |z − z0|n+k is much smaller than |z − z0|n for z close to z0, and so

the function behaves similar to an(z − z0)n.
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Figure 12.4: The angle plot of f(z) = z3 − iz4 − 3z6 on {x + iy | x, y ∈ [−1, 1]}. The angle plot

shows that f(z) has a zero of order 3 at the origin and 3 distinct zeros of order 1 scattered around

the origin. The magnitude plot makes it easier to pinpoint the location of the zeros.

Poles
A complex number z0 is called a pole of the complex-valued function f if f can be written as

f(z) = g(z)/(z − z0) where g(z0) 6= 0. From this de�nition it is easy to see that limz→z0 |f(z)| =∞,

but knowing that limz→z1 |f(z)| =∞ is not enough information to conclude that z1 is a pole of f .

The order of z0 is the largest integer n such that f can be written as f(z) = g(z)/(z − z0)n
with g(z0) 6= 0. In other words, f has a pole of order n at z0 if its Laurent series on a punctured

neighborhood of z0 can be written as

f(z) =

∞∑
k=−n

ak(z − z0)k , a−n 6= 0.

Problem 3. Plot the following functions on domains that show all of its zeros and/or poles.

� f(z) = z−n for n = 1, 2, 3.

� f(z) = z2 + iz−1 + z−3.

Write a sentence or two about how the poles of a function appear in angle and magnitude plots.

How can you tell the multiplicity of the poles from the plot?

Problem 3 shows that in angle plot of z−1, the colors cycle n times clockwise around 0, as

opposed to the counter-clockwise rotations seen around roots. Again, this can be explained by

looking at the polar representation,

z−n = (reiθ)−n = r−nei(−nθ).
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The minus sign on the θ reverses the direction of the colors, and the n makes them cycle n times.

From Problem 3 it is also clear that f(z) = z2 + iz−1 + z−3 behaves similarly to z−3 for z near

the pole at z0 = 0. Since |z − z0|−n+k is much smaller than |z − z0|−n when |z − z0| is small, near

z0 the function behaves like a−n(z − z0)−n. This is why the order of a pole can be estimated by

counting the number of times the colors circle a point in the clockwise direction.

Counting Zeros and Poles
The Fundamental Theorem of Algebra states that a polynomial f with highest degree n has exactly

n zeros, counting multiplicity. For example, f(z) = z2 + 1 has two zeros, and f(z) = (z − i)3 has

three zeros, all at z0 = i (that is, z0 = i is a zero with multiplicity 3).

The number of poles of function can also be apparent if it can be written as a quotient of

polynomials. For example, f(z) = z/(z+i)(z−i)2 has one zeros and three poles, counting multiplicity.

Problem 4. Plot the following functions and count the number and order of their zeros and

poles. Adjust the bounds of each plot until you have found all zeros and poles.

� f(z) = −4z5 + 2z4 − 2z3 − 4z2 + 4z − 4

� f(z) = z7 + 6z6 − 131z5 − 419z4 + 4906z3 − 131z2 − 420z + 4900

� f(z) = 16z4+32z3+32z2+16z+4
16z4−16z3+5z2

It is usually fairly easy to see how many zeros or poles a polynomial or quotient of polynomials

has. However, it can be much more di�cult to know how many zeros or poles a di�erent function

may or may not have without visualizing it.

Problem 5. Plot the following functions on the domain {x + iy | x, y ∈ [−8, 8]}. Explain

carefully what each graph reveals about the function and why the function behaves that way.

� f(z) = ez

� f(z) = tan(z)

(Hint: use the polar coordinate representation to mathematically examine the magnitude and

angle of each function.)

Essential Poles
A complex-valued function f has an essential pole at z0 if its Laurent series in a punctured neigh-

borhood of z0 requires in�nitely many terms with negative exponents. For example,

e1/z =

∞∑
k=0

1

n!zn
= 1 +

1

z
+

1

2

1

z2
+

1

6

1

z3
+ · · · .

An essential pole can be thought of as a pole of order ∞. Therefore, in an angle plot the colors cycle

in�nitely many times around an essential pole.
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Figure 12.5: Angle plot of f(z) = e1/z on the domain {x + iy | x, y ∈ [−1, 1]}. The colors circle

clockwise around the origin because it is a pole, not a zero. Because the pole is essential, the colors

repeat in�nitely many times.

Achtung!

Often, color plots like the ones presented in this lab can be deceptive because of a bad choice

of domain. Be careful to validate your observations mathematically.

Problem 6. For each of the following functions, plot the function on {x + iy | x, y ∈ [−1, 1]}
and describe what this view of the plot seems to imply about the function. Then plot the

function on a domain that allows you to see the true nature of the roots and poles and describe

how it is di�erent from what the original plot implied.

� f(z) = 100z2 + z

� f(z) = sin
(

1
100z

)
.

(Hint: zoom way in.)


	Visualizing Complex-valued Functions

