
3 SQL 1: Introduction

Lab Objective: Being able to store and manipulate large data sets quickly is a fundamental part of

data science. The SQL language is the classic database management system for working with tabular

data. In this lab we introduce the basics of SQL, including creating, reading, updating, and deleting

SQL tables, all via Python's standard SQL interaction modules.

Relational Databases
A relational database is a collection of tables called relations. A single row in a table, called a tuple,

corresponds to an individual instance of data. The columns, called attributes or features, are data

values of a particular category. The collection of column headings is called the schema of the table,

which describes the kind of information stored in each entry of the tuples.

For example, suppose a database contains demographic information forM individuals. If a table

had the schema (Name, Gender, Age), then each row of the table would be a 3-tuple corresponding

to a single individual, such as (Jane Doe, F, 20) or (Samuel Clemens, M, 74.4). The table

would therefore be M × 3 in shape. Note that including a person's age in a database means that

the data would quickly be outdated since people get older every year. A better choice would be to

use birth year. Another table with the schema (Name, Income) would be M × 2 if it included all M

individuals.

Tuple

Relation

Attribute

Figure 3.1: See https://en.wikipedia.org/wiki/Relational_database.

1

https://en.wikipedia.org/wiki/Relational_database

2 Lab 3. SQL 1: Introduction

SQLite
The most common database management systems (DBMS) for relational databases are based on

Structured Query Language, commonly called SQL (pronounced1 �sequel�). Though SQL is a language

in and of itself, most programming languages have tools for executing SQL routines. In Python, the

most common variant of SQL is SQLite, implemented as the sqlite3 module in the standard library.

A SQL database is stored in an external �le, usually marked with the �le extension db or mdf.

These �les should not be opened in Python with open() like text �les; instead, any interactions with

the database�creating, reading, updating, or deleting data�should occur as follows.

1. Create a connection to the database with sqlite3.connect(). This creates a database �le if

one does not already exist.

2. Get a cursor, an object that manages the actual traversal of the database, with the connection's

cursor() method.

3. Alter or read data with the cursor's execute() method, which accepts an actual SQL command

as a string.

4. Save any changes with the cursor's commit() method, or revert changes with rollback().

5. Close the connection.

>>> import sqlite3 as sql

Establish a connection to a database file or create one if it doesn't exist.

>>> conn = sql.connect("my_database.db")

>>> try:

... cur = conn.cursor() # Get a cursor object.

... cur.execute("SELECT * FROM MyTable") # Execute a SQL command.

... except sql.Error: # If there is an error,

... conn.rollback() # revert the changes

... raise # and raise the error.

... else: # If there are no errors,

... conn.commit() # save the changes.

... finally:

... conn.close() # Close the connection.

Achtung!

Some changes, such as creating and deleting tables, are automatically committed to the database

as part of the cursor's execute() method. Be extremely cautious when deleting tables, as

the action is immediate and permanent. Most changes, however, do not take e�ect in the

database �le until the connection's commit() method is called. Be careful not to close the

connection before committing desired changes, or those changes will not be recorded.

1See https://english.stackexchange.com/questions/7231/how-is-sql-pronounced for a brief history of the

somewhat controversial pronunciation of SQL.

https://english.stackexchange.com/questions/7231/how-is-sql-pronounced

3

The with statement can be used with open() so that �le streams are automatically closed, even

in the event of an error. Likewise, combining the with statement with sql.connect() automatically

rolls back changes if there is an error and commits them otherwise. However, the actual database

connection is not closed automatically. With this strategy, the previous code block can be reduced

to the following.

>>> try:

... with sql.connect("my_database.db") as conn:

... cur = conn.cursor() # Get the cursor.

... cur.execute("SELECT * FROM MyTable") # Execute a SQL command.

... finally: # Commit or revert, then

... conn.close() # close the connection.

Managing Database Tables
SQLite uses �ve native data types (relatively few compared to other SQL systems) that correspond

neatly to native Python data types.

Python Type SQLite Type

None NULL

int INTEGER

float REAL

str TEXT

bytes BLOB

The CREATE TABLE command, together with a table name and a schema, adds a new table to

a database. The schema is a comma-separated list where each entry speci�es the column name, the

column data type,2 and other optional parameters. For example, the following code adds a table

called MyTable with the schema (Name, ID, Age) with appropriate data types.

>>> with sql.connect("my_database.db") as conn:

... cur = conn.cursor()

... cur.execute("CREATE TABLE MyTable (Name TEXT, ID INTEGER, Age REAL)")

...

>>> conn.close()

The DROP TABLE command deletes a table. However, using CREATE TABLE to try to create a

table that already exists or using DROP TABLE to remove a nonexistent table raises an error. Use

DROP TABLE IF EXISTS to remove a table without raising an error if the table doesn't exist. See

Table 3.1 for more table management commands.

2Though SQLite does not force the data in a single column to be of the same type, most other SQL systems enforce

uniform column types, so it is good practice to specify data types in the schema.

4 Lab 3. SQL 1: Introduction

Operation SQLite Command

Create a new table CREATE TABLE <table> (<schema>);

Delete a table DROP TABLE <table>;

Delete a table if it exists DROP TABLE IF EXISTS <table>;

Add a new column to a table ALTER TABLE <table> ADD <column> <dtype>

Remove an existing column ALTER TABLE <table> DROP COLUMN <column>;

Rename an existing column ALTER TABLE <table> ALTER COLUMN <column> <dtype>;

Table 3.1: SQLite commands for managing tables and columns.

Note

SQL commands like CREATE TABLE are often written in all caps to distinguish them from other

parts of the query, like the table name. This is only a matter of style: SQLite, along with most

other versions of SQL, is case insensitive. In Python's SQLite interface, the trailing semicolon

is also unnecessary. However, most other database systems require it, so it's good practice to

include the semicolon in Python.

Problem 1. Write a function that accepts the name of a database �le. Connect to the database

(and create it if it doesn't exist). Drop the tables MajorInfo, CourseInfo, StudentInfo, and

StudentGrades from the database if they exist. Next, add the following tables to the database

with the speci�ed column names and types.

� MajorInfo: MajorID (integers) and MajorName (strings).

� CourseInfo: CourseID (integers) and CourseName (strings).

� StudentInfo: StudentID (integers), StudentName (strings), and MajorID (integers).

� StudentGrades: StudentID (integers), CourseID (integers), and Grade (strings).

Remember to commit and close the database. You should be able to execute your function

more than once with the same input without raising an error.

To check the database, use the following commands to get the column names of a speci�ed

table. Assume here that the database �le is called students.db.

>>> with sql.connect("students.db") as conn:

... cur = conn.cursor()

... cur.execute("SELECT * FROM StudentInfo;")

... print([d[0] for d in cur.description])

...

['StudentID', 'StudentName', 'MajorID']

5

Inserting, Removing, and Altering Data
Tuples are added to SQLite database tables with the INSERT INTO command.

Add the tuple (Samuel Clemens, 1910421, 74.4) to MyTable in my_database.db.

>>> with sql.connect("my_database.db") as conn:

... cur = conn.cursor()

... cur.execute("INSERT INTO MyTable "

... "VALUES('Samuel Clemens', 1910421, 74.4);")

With this syntax, SQLite assumes that values match sequentially with the schema of the table.

The schema of the table can also be written explicitly for clarity.

>>> with sql.connect("my_database.db") as conn:

... cur = conn.cursor()

... cur.execute("INSERT INTO MyTable(Name, ID, Age) "

... "VALUES('Samuel Clemens', 1910421, 74.4);")

Achtung!

Never use Python's string operations to construct a SQL query from variables. Doing so

makes the program susceptible to a SQL injection attack.a Instead, use parameter substitution

to construct dynamic commands: use a ? character within the command, then provide the

sequence of values as a second argument to execute().

>>> with sql.connect("my_database.db") as conn:

... cur = conn.cursor()

... values = ('Samuel Clemens', 1910421, 74.4)

... # Don't piece the command together with string operations!

... # cur.execute("INSERT INTO MyTable VALUES " + str(values)) # BAD!

... # Instead, use parameter substitution.

... cur.execute("INSERT INTO MyTable VALUES(?,?,?);", values) # Good.

aSee https://xkcd.com/327/ for an example.

To insert several rows at a time to the same table, use the cursor object's executemany()

method and parameter substitution with a list of tuples. This is typically much faster than using

execute() repeatedly.

Insert (Samuel Clemens, 1910421, 74.4) and (Jane Doe, 123, 20) to MyTable.

>>> with sql.connect("my_database.db") as conn:

... cur = conn.cursor()

... rows = [('John Smith', 456, 40.5), ('Jane Doe', 123, 20)]

... cur.executemany("INSERT INTO MyTable VALUES(?,?,?);", rows)

https://xkcd.com/327/

6 Lab 3. SQL 1: Introduction

Problem 2. Expand your function from Problem 1 so that it populates the tables with the

data given in Tables 3.2a�3.2d.

MajorID MajorName

1 Math

2 Science

3 Writing

4 Art

(a) MajorInfo

CourseID CourseName

1 Calculus

2 English

3 Pottery

4 History

(b) CourseInfo

StudentID StudentName MajorID

401767594 Michelle Fernandez 1

678665086 Gilbert Chapman NULL

553725811 Roberta Cook 2

886308195 Rene Cross 3

103066521 Cameron Kim 4

821568627 Mercedes Hall NULL

206208438 Kristopher Tran 2

341324754 Cassandra Holland 1

262019426 Alfonso Phelps NULL

622665098 Sammy Burke 2

(c) StudentInfo

StudentID CourseID Grade

401767594 4 C

401767594 3 B�

678665086 4 A+

678665086 3 A+

553725811 2 C

678665086 1 B

886308195 1 A

103066521 2 C

103066521 3 C�

821568627 4 D

821568627 2 A+

821568627 1 B

206208438 2 A

206208438 1 C+

341324754 2 D�

341324754 1 A�

103066521 4 A

262019426 2 B

262019426 3 C

622665098 1 A

622665098 2 A�

(d) StudentGrades

Table 3.2: Student database.

The StudentInfo and StudentGrades tables are also recorded in student_info.csv

and student_grades.csv, respectively, with NULL values represented as −1. A CSV (comma-

separated values) �le can be read like a normal text �le or with the csv module.

>>> import csv

>>> with open("student_info.csv", 'r') as infile:

... rows = list(csv.reader(infile))

To validate your database, use the following command to retrieve the rows from a table.

>>> with sql.connect("students.db") as conn:

... cur = conn.cursor()

... for row in cur.execute("SELECT * FROM MajorInfo;"):

... print(row)

(1, 'Math')

(2, 'Science')

(3, 'Writing')

(4, 'Art')

7

Problem 3. The data �le us_earthquakes.csva contains data from about 3,500 earthquakes

in the United States since the 1769. Each row records the year, month, day, hour, minute,

second, latitude, longitude, and magnitude of a single earthquake (in that order). Note that

latitude, longitude, and magnitude are �oats, while the remaining columns are integers.

Write a function that accepts the name of a database �le. Drop the table USEarthquakes

if it already exists, then create a new USEarthquakes table with schema (Year, Month, Day,

Hour, Minute, Second, Latitude, Longitude, Magnitude). Populate the table with the

data from us_earthquakes.csv. Remember to commit the changes and close the connection.

(Hint: using executemany() is much faster than using execute() in a loop.)

aRetrieved from https://datarepository.wolframcloud.com/resources/Sample-Data-US-Earthquakes.

The WHERE Clause

Deleting or altering existing data in a database requires some searching for the desired row or rows.

The WHERE clause is a predicate that �lters the rows based on a boolean condition. The operators

==, !=, <, >, <=, >=, AND, OR, and NOT all work as expected to create search conditions.

>>> with sql.connect("my_database.db") as conn:

... cur = conn.cursor()

... # Delete any rows where the Age column has a value less than 30.

... cur.execute("DELETE FROM MyTable WHERE Age < 30;")

... # Change the Name of "Samuel Clemens" to "Mark Twain".

... cur.execute("UPDATE MyTable SET Name='Mark Twain' WHERE ID==1910421;")

If the WHERE clause were omitted from either of the previous commands, every record in MyTable

would be a�ected. Always use a very speci�c WHERE clause when removing or updating data.

Operation SQLite Command

Add a new row to a table INSERT INTO table VALUES(<values>);

Remove rows from a table DELETE FROM <table> WHERE <condition>;

Change values in existing rows UPDATE <table> SET <column1>=<value1>, ... WHERE <condition>;

Table 3.3: SQLite commands for inserting, removing, and updating rows.

Problem 4. Modify your function from Problems 1 and 2 so that in the StudentInfo table,

values of −1 in the MajorID column are replaced with NULL values.

Also modify your function from Problem 3 in the following ways.

1. Remove rows from USEarthquakes that have a value of 0 for the Magnitude.

2. Replace 0 values in the Day, Hour, Minute, and Second columns with NULL values.

https://datarepository.wolframcloud.com/resources/Sample-Data-US-Earthquakes

8 Lab 3. SQL 1: Introduction

Reading and Analyzing Data
Constructing and managing databases is fundamental, but most time in SQL is spent analyzing

existing data. A query is a SQL command that reads all or part of a database without actually

modifying the data. Queries start with the SELECT command, followed by column and table names

and additional (optional) conditions. The results of a query, called the result set, are accessed

through the cursor object. After calling execute() with a SQL query, use fetchall() or another

cursor method from Table 3.4 to get the list of matching tuples.

Method Description

execute() Execute a single SQL command

executemany() Execute a single SQL command over di�erent values

executescript() Execute a SQL script (multiple SQL commands)

fetchone() Return a single tuple from the result set

fetchmany(n) Return the next n rows from the result set as a list of tuples

fetchall() Return the entire result set as a list of tuples

Table 3.4: Methods of database cursor objects.

>>> conn = sql.connect("students.db")

>>> cur = conn.cursor()

Get tuples of the form (StudentID, StudentName) from the StudentInfo table.

>>> cur.execute("SELECT StudentID, StudentName FROM StudentInfo;")

>>> cur.fetchone() # List the first match (a tuple).

(401767594, 'Michelle Fernandez')

>>> cur.fetchmany(3) # List the next three matches (a list of tuples).

[(678665086, 'Gilbert Chapman'),

(553725811, 'Roberta Cook'),

(886308195, 'Rene Cross')]

>>> cur.fetchall() # List the remaining matches.

[(103066521, 'Cameron Kim'),

(821568627, 'Mercedes Hall'),

(206208438, 'Kristopher Tran'),

(341324754, 'Cassandra Holland'),

(262019426, 'Alfonso Phelps'),

(622665098, 'Sammy Burke')]

Use * in place of column names to get all of the columns.

>>> cur.execute("SELECT * FROM MajorInfo;").fetchall()

[(1, 'Math'), (2, 'Science'), (3, 'Writing'), (4, 'Art')]

>>> conn.close()

The WHERE predicate can also re�ne a SELECT command. If the condition depends on a column

in a di�erent table from the data that is being a selected, create a table alias with the AS command

to specify columns in the form table.column.

9

>>> conn = sql.connect("students.db")

>>> cur = conn.cursor()

Get the names of all math majors.

>>> cur.execute("SELECT SI.StudentName "

... "FROM StudentInfo AS SI, MajorInfo AS MI "

... "WHERE SI.MajorID == MI.MajorID AND MI.MajorName == 'Math'")

The result set is a list of 1-tuples; extract the entry from each tuple.

>>> [t[0] for t in cur.fetchall()]

['Cassandra Holland', 'Michelle Fernandez']

Get the names and grades of everyone in English class.

>>> cur.execute("SELECT SI.StudentName, SG.Grade "

"FROM StudentInfo AS SI, StudentGrades AS SG "

"WHERE SI.StudentID == SG.StudentID AND CourseID == 2;")

>>> cur.fetchall()

[('Roberta Cook', 'C'),

('Cameron Kim', 'C'),

('Mercedes Hall', 'A+'),

('Kristopher Tran', 'A'),

('Cassandra Holland', 'D-'),

('Alfonso Phelps', 'B'),

('Sammy Burke', 'A-')]

>>> conn.close()

Problem 5. Write a function that accepts the name of a database �le. Assuming the database

to be in the format of the one created in Problems 1 and 2, query the database for all tuples

of the form (StudentName, CourseName) where that student has an �A� or �A+� grade in that

course. Return the list of tuples.

Aggregate Functions
A result set can be analyzed in Python using tools like NumPy, but SQL itself provides a few tools

for computing a few very basic statistics: AVG(), MIN(), MAX(), SUM(), and COUNT() are aggregate

functions that compress the columns of a result set into the desired quantity.

>>> conn = sql.connect("students.db")

>>> cur = conn.cursor()

Get the number of students and the lowest ID number in StudentInfo.

>>> cur.execute("SELECT COUNT(StudentName), MIN(StudentID) FROM StudentInfo;")

>>> cur.fetchall()

[(10, 103066521)]

10 Lab 3. SQL 1: Introduction

Problem 6. Write a function that accepts the name of a database �le. Assuming the database

to be in the format of the one created in Problem 3, query the USEarthquakes table for the

following information.

� The magnitudes of the earthquakes during the 19th century (1800�1899).

� The magnitudes of the earthquakes during the 20th century (1900�1999).

� The average magnitude of all earthquakes in the database.

Create a single �gure with two subplots: a histogram of the magnitudes of the earthquakes in

the 19th century, and a histogram of the magnitudes of the earthquakes in the 20th century.

Show the �gure, then return the average magnitude of all of the earthquakes in the database.

Be sure to return an actual number, not a list or a tuple.

(Hint: use np.ravel() to convert a result set of 1-tuples to a 1-D array.)

Note

Problem 6 raises an interesting question: are the number of earthquakes in the United States

increasing with time, and if so, how drastically? A closer look shows that only 3 earthquakes

were recorded (in this data set) from 1700�1799, 208 from 1800�1899, and a whopping 3049

from 1900�1999. Is the increase in earthquakes due to there actually being more earthquakes, or

to the improvement of earthquake detection technology? The best answer without conducting

additional research is �probably both.� Be careful to question the nature of your data�how it

was gathered, what it may be lacking, what biases or lurking variables might be present�before

jumping to strong conclusions.

See the following for more info on the sqlite3 and SQL in general.

� https://docs.python.org/3/library/sqlite3.html

� https://www.w3schools.com/sql/

� https://en.wikipedia.org/wiki/SQL_injection

https://docs.python.org/3/library/sqlite3.html
https://www.w3schools.com/sql/
https://en.wikipedia.org/wiki/SQL_injection

11

Additional Material
Shortcuts for WHERE Conditions
Complicated WHERE conditions can be simpli�ed with the following commands.

� IN: check for equality to one of several values quickly, similar to Python's in operator. In other

words, the following SQL commands are equivalent.

SELECT * FROM StudentInfo WHERE MajorID == 1 OR MajorID == 2;

SELECT * FROM StudentInfo WHERE MajorID IN (1,2);

� BETWEEN: check two (inclusive) inequalities quickly. The following are equivalent.

SELECT * FROM MyTable WHERE AGE >= 20 AND AGE <= 60;

SELECT * FROM MyTable WHERE AGE BETWEEN 20 AND 60;

	SQL 1: Introduction

