
14 The Drazin Inverse

Lab Objective: The Drazin inverse of a matrix is a pseudoinverse which preserves certain spectral

properties of the matrix. In this lab we compute the Drazin inverse using the Schur decomposition,

then use it to compute the e�ective resistance of a graph and perform link prediction.

Definition of the Drazin Inverse
The index of an n×n matrix A is the smallest nonnegative integer k for which N (Ak) = N (Ak+1).

The Drazin inverse AD of A is the unique n× n matrix satisfying the following properties.

� AAD = ADA

� Ak+1AD = Ak

� ADAAD = AD

Note that if A is invertible, in which case k = 0, then AD = A−1. On the other hand, if A is nilpotent,

meaning Aj = 0 for some nonnegative integer j, then AD is the zero matrix.

Problem 1. Write a function that accepts an n× n matrix A, the index k of A, and an n× n

matrix AD. Use the criteria described above to determine whether or not AD is the Drazin

inverse of A. Return True if AD satis�es all three conditions; otherwise, return False.

Use the following matrices as test cases for your function.

A =


1 3 0 0

0 1 3 0

0 0 1 3

0 0 0 0

 , AD =


1 −3 9 81

0 1 −3 −18
0 0 1 3

0 0 0 0

 , k = 1

B =

 1 1 3

5 2 6

−2 −1 −3

 , BD =

 0 0 0

0 0 0

0 0 0

 , k = 3

(Hint: np.allclose() and np.linalg.matrix_power() may be useful).

1

2 Lab 14. The Drazin Inverse

Computing the Drazin Inverse
The Drazin inverse is often de�ned theoretically in terms of the eigenprojections of a matrix. However,

eigenprojections are often costly or unstable to calculate, so we resort to a di�erent method to

calculate the Drazin inverse.

Every n× n matrix A can be written in the form

A = S−1
[

M 0

0 N

]
S, (14.1)

where S is a change of basis matrix, M is nonsingular, and N is nilpotent. Then the Drazin inverse

can be calculated as

AD = S−1
[

M−1 0

0 0

]
S. (14.2)

To put A into the form in (14.1), we can use the Schur decomposition of A, given by

A = QTQ−1, (14.3)

where Q is orthonormal and T is upper triangular. Since T is similar to A, the eigenvalues of A are

listed along the diagonal of T . If A is singular, at least one diagonal entry of T must be 0.

In general, Schur decompositions are not unique; the eigenvalues along the diagonal of T can

be reordered. To �nd M , N , and S, we compute the Schur decomposition of A twice, ordering the

eigenvalues di�erently in each decomposition.

First, we sort so that the nonzero eigenvalues are listed �rst along the diagonal of T . Then, if

k is the number of nonzero eigenvalues, the upper left k× k block of T forms the nonsingular matrix

M , and the �rst k columns of Q form the �rst k columns of the change of basis matrix S.

Computing the decomposition a second time, we reorder so that the 0 eigenvalues are listed

�rst along the diagonal of T . Then the upper left (n− k)× (n− k) block forms the nilpotent matrix

N , and the �rst n − k columns of Q form the last n − k columns of S. This completes a change of

basis matrix that will put A into the desired block diagonal form. Lastly, we use (14.2) to compute

AD.

SciPy's la.schur() is a routine for computing the Schur decomposition of a matrix, but it

does not automatically sort it by eigenvalue. However, sorting can be accomplished by specifying the

sort keyword argument. Given an eigenvalue, the sorting function should return a boolean indicating

whether to sort that eigenvalue to the top left of the diagonal of T .

>>> from scipy import linalg as la

The standard Schur decomposition.

>>> A = np.array([[0,0,2],[-3,2,6],[0,0,1]])

>>> T,Z = la.schur(A)

>>> T # The eigenvalues (2, 0, and 1) are not sorted.

array([[2., -3., 6.],

[0., 0., 2.],

[0., 0., 1.]])

Specify a sorting function to get the desired result.

>>> f = lambda x: abs(x) > 0

>>> T1,Z1,k = la.schur(A, sort=f)

>>> T1

3

array([[2. , 0. , 6.70820393],

[0. , 1. , 2.],

[0. , 0. , 0.]])

>>> k # k is the number of columns satisfying the sort,

2 # which is the number of nonzero eigenvalues.

The procedure for �nding the Drazin inverse using the Schur decomposition is given in Algo-

rithm 14.1. Due to possible �oating point arithmetic errors, consider all eigenvalues smaller than a

certain tolerance to be 0.

Algorithm 14.1

1: procedure Drazin(A, tol)

2: (n, n)← shape(A)

3: T1, Q1, k1 ← schur(A, |x| > tol) . Sort the Schur decomposition with 0 eigenvalues last.

4: T2, Q2, k2 ← schur(A, |x| ≤ tol) . Sort the Schur decomposition with 0 eigenvalues �rst.

5: U ← [Q1:,:k1
| Q2:,:n−k1

] . Create change of basis matrix.

6: U−1 ← inverse(U)

7: V ← U−1AU . Find block diagonal matrix in (14.1)

8: Z ← 0n×n
9: if k1 6= 0 then

10: M−1 ← inverse(V:k1,:k1
)

11: Z:k1,:k1
←M−1

12: return UZU−1

Problem 2. Write a function that accepts an n × n matrix A and a tolerance for rounding

eigenvalues to zero. Use Algorithm 14.1 to compute the Drazin inverse AD. Use your function

from Problem 1 to verify your implementation.

Achtung!

Because the algorithm for the Drazin inverse requires calculation of the inverse of a matrix, it

is unstable when that matrix has a high condition number. If the algorithm does not �nd the

correct Drazin inverse, check the condition number of V from Algorithm 14.1

Note

The Drazin inverse is called a pseudoinverse because AD = A−1 for invertible A, and for

noninvertible A, AD always exists and acts similarly to an inverse. There are other matrix

pseudoinverses that preserve di�erent qualities of A, including theMoore-Penrose pseudoinverse

A†, which can be thought of as the least squares approximation to A−1.

4 Lab 14. The Drazin Inverse

Applications of the Drazin Inverse
Effective Resistance
The e�ective resistance between two nodes in a undirected graph is a measure of how connected

those nodes are. The concept originates from the study of circuits to measure the resistance between

two points on the circuit. A resistor is a device in a circuit which limits or regulates the �ow of

electricity. Two points that have more resistors between them have more resistance, while those with

fewer resistors between them have less resistance. The entire circuit can be represented by a graph

where the nodes are the points of interest and the number of edges connecting two nodes indicates

the number of resistors between the corresponding points. See Figure 14.1 for an example.

a c e

b d f

Figure 14.1: A graph with a resistor on each edge.

In electromagnetism, there are rules for manually calculating the e�ective resistance between

two nodes for relatively simple graphs. However, this is infeasible for large or complicated graphs.

Instead, we can use the Drazin inverse to calculate e�ective resistance for any graph.

First, create the adjacency matrix 1 of the graph, the matrix where the (ij)th entry is the

number of connections from node i to node j. Next, calculate the Laplacian L of the adjacency

matrix. Then if Rij is the e�ective resistance from node i to node j,

Rij =

{
(L̃j)Dii if i 6= j

0 if i = j,
(14.4)

where L̃j is the Laplacian with the jth row of the Laplacian replaced by the jth row of the identity

matrix, and (L̃j)D is its Drazin inverse.

Problem 3. Write a function that accepts the n×n adjacency matrix of an undirected graph.

Use (14.4) to compute the e�ective resistance from each node to every other node. Return an

n× n matrix where the (ij)th entry is the e�ective resistance from node i to node j. Keep the

following in mind:

� The resulting matrix should be symmetric.

� The e�ective resistance from a node to itself is 0.

1See Problem 1 of Image Segmentation for a refresher on adjacency matrices and the Laplacian.

5

� Consider creating the matrix column by column instead of entry by entry. Every time

you compute the Drazin inverse, the whole diagonal of the matrix can be used.

Test your function using the graphs and values from Figure 14.2.

a b c d

Rac = 2, Rad = 3

a b

Rab = 1

a b

c

Rab =
2
3 , Rac =

2
3 a b Rab =

1
3

a b Rab =
1
2 a b Rab =

1
4

Figure 14.2: The e�ective resistance between two points for several simple graphs. Nodes that are

farther apart have a larger e�ective resistance, while nodes that are nearer or better connected have

a smaller e�ective resistance.

Link Prediction
Link prediction is the problem of predicting the likelihood of a future association between two uncon-

nected nodes in a graph. Link prediction has application in many �elds, but the canonical example

is friend suggestions on Facebook. The Facebook network can be represented by a large graph where

each user is a node, and two nodes have an edge connecting them if they are �friends.� Facebook

aims to predict who you would like to become friends with in the future, based on who you are

friends with now, as well as discover which friends you may have in real life that you have not yet

connected with online. To do this, Facebook must have some way to measure how closely two users

are connected.

We will compute link prediction using e�ective resistance as a metric. E�ective resistance

measures how closely two nodes are connected, and nodes that are closely connected at present are

more likely to be connected in the future. Given an undirected graph, the next link should connect

the two unconnected nodes with the least e�ective resistance between them.

Problem 4. Write a class called LinkPredictor for performing link prediction. Implement

the __init__() method so that it accepts the name of a csv �le containing information about a

social network. Each row of the �le should contain the names of two nodes which are connected

by an (undirected) edge.

Store each of the names of the nodes of the graph as an ordered list. Next, create the

adjacency matrix for the network where the ith row and column of the matrix correspond to the

6 Lab 14. The Drazin Inverse

ith member of the list of node names. Finally, use your function from Problem 3 to compute

the e�ective resistance matrix. Save the list of names, the adjacency matrix, and the e�ective

resistance matrix as attributes.

Problem 5. Implement the following methods in the LinkPredictor class:

1. predict_link(): Accept a parameter node which is either None or a string representing a

node in the network. If node is None, return a tuple with the names of the nodes between

which the next link should occur. However, if node is a string, return the name of the

node which should be connected to node next out of all other nodes in the network. If

node is not in the network, raise a ValueError. Take the following into consideration:

(a) You want to �nd the two nodes which have the smallest e�ective resistance between

them which are not yet connected. Use information from the adjacency matrix to

zero out all entries of the e�ective resistance matrix that represent connected nodes.

The �*" operator multiplies arrays component-wise, which may be helpful.

(b) Find the next link by �nding the minimum value of the array that is nonzero. Your

array may be the whole matrix or just a column if you are only considering links for

a certain node. This can be accomplished by passing np.min() a masked version of

your matrix to exclude entries that are 0.

(c) NumPy's np.where() is useful for �nding the minimum value in an array:

>>> A = np.random.randint(-9,9,(3,3))

>>> A

array([[6, -8, -9],

[-2, 1, -1],

[4, 0, -3]])

Find the minimum value in the array.

>>> minval = np.min(A)

>>> minval

-9

Find the location of the minimum value.

>>> loc = np.where(A==minval)

>>> loc

(array([0], dtype=int64), array([2], dtype=int64))

2. add_link(): Take as input two names of nodes, and add a link between them. If either

name is not in the network, raise a ValueError. Add the link by updating the adjacency

matrix and the e�ective resistance matrix.

Figure 14.3 visualizes the data in social_network.csv. Use this graph to verify that

your class is suggesting plausible new links. You should observe the following:

7

� In the entire network, Emily and Oliver are most likely to become friends next.

� Melanie is predicted to become friends with Carol next.

� Alan is expected to become friends with Sonia, then with Piers, and then with Abigail.

Figure 14.3: The social network contained in social_network.csv. Adapted from data by Wayne.

W Zachary (see https://en.wikipedia.org/wiki/Zachary%27s_karate_club).

1. Piers

2. Abigail

3. Oliver

4. Stephanie

5. Carol

6. Melanie

7. Stephen

8. Sally

9. Penelope

10. Alan

11. Trevor

12. Jake

13. Mary

14. Anna

15. Ruth

16. Evan

17. Connor

18. John

19. Max

20. Eric

21. Theresa

22. Paul

23. Alexander

24. Colin

25. Jake

26. Jane

27. Brandon

28. Thomas

29. Christopher

30. Charles

31. Madeleine

32. Tracey

33. Sonia

34. Emily

https://en.wikipedia.org/wiki/Zachary%27s_karate_club

	The Drazin Inverse

