
1 Introduction to Python

Lab Objective: Python is a powerful, general-purpose programming language. It can be used

interactively, allowing for very rapid development. Python has many powerful scienti�c computing

tools, making it an ideal language for applied and computational mathematics. In this introductory

lab we introduce Python syntax, data types, functions, and control �ow tools. These Python basics

are an essential part of almost every problem you will solve and almost every program you will write.

Getting Started
Python is quickly gaining momentum as a fundamental tool in scienti�c computing. Anaconda is

a free distribution service by Continuum Analytics, Inc., that includes the cross-platform Python

interpreter (the software that actually executes Python code) and many Python libraries that are

commonly used for applied and computational mathematics. To install Python via Anaconda, go to

https://www.anaconda.com/download/, download the installer for Python 3.7 corresponding to

your operating system, and follow the on-screen instructions. Note that Python 2.7 is syntactically

di�erent than Python 3.7, and support for Python 2 will be phased out by the end of 2020.

Running Python
Python �les are saved with a .py extension. For beginners, we strongly recommend using a simple text

editor for writing Python �les. However, many free IDEs (Integrated Development Environments�

large applications that facilitate code development with some sophisticated tools) are also compatible

with Python. For now, the simpler the coding environment, the better.

A plain Python �le looks similar to the following code.

filename.py

"""This is the file header.

The header contains basic information about the file.

"""

if __name__ == "__main__":

pass # 'pass' is a temporary placeholder.

1

https://www.anaconda.com/download/

2 Lab 1. Introduction to Python

The # character creates a single-line comment. Comments are ignored by the interpreter and

serve as annotations for the accompanying source code. A pair of three quotes, """ """ or ''' ''',

creates a multi-line string literal, which may also be used as a multi-line comment. A triple-quoted

string literal at the top of the �le serves as the header for the �le. The header typically identi�es the

author and includes instructions on using the �le. Executable Python code comes after the header.

Problem 1. Open the �le named python_intro.py (or create the �le in a text editor if you

don't have it). Add your information to the header at the top, then add the following code.

if __name__ == "__main__":

print("Hello, world!") # Indent with four spaces (NOT a tab).

Open a command prompt (Terminal on Linux or Mac and Command Prompt or GitBash

on Windows) and navigate to the directory where the new �le is saved. Use the command ls (or

DIR on Windows) to list the �les and folders in the current directory, pwd (CD , on Windows)

to print the working directory, and cd to change directories.

$ pwd # Print the working directory.

/Users/Guest

$ ls # List the files and folders here.

Desktop Documents Downloads Pictures Music

$ cd Documents # Navigate to a different folder.

$ pwd

/Users/Guest/Documents

$ ls # Check to see that the file is here.

python_intro.py

Now the Python �le can be executed with the following command:

$ python python_intro.py

If Hello, world! is displayed on the screen, you have just successfully executed your

�rst Python program!

IPython
Python can be run interactively using several interfaces. The most basic of these is the Python

interpreter. In this and subsequent labs, the triple brackets >>> indicate that the given code is being

executed one line at a time via the Python interpreter.

$ python # Start the Python interpreter.

>>> print("This is plain Python.") # Execute some code.

This is plain Python.

There are, however, more useful interfaces. Chief among these is IPython,1 [PG07, jup] which

is included with the Anaconda distribution. To execute a script in IPython, use the %run command.

1See https://ipython.org/ and https://jupyter.org/.

https://ipython.org/
https://jupyter.org/

3

>>> exit() # Exit the Python interpreter.

$ ipython # Start IPython.

In [1]: print("This is IPython!") # Execute some code.

This is IPython!

In [2]: %run python_intro.py # Run a particular Python script.

Hello, world!

One of the biggest advantages of IPython is that it supports object introspection, whereas the

regular Python interpreter does not. Object introspection quickly reveals all methods and attributes

associated with an object. IPython also has a built-in help() function that provides interactive help.

A list is a basic Python data structure. To see the methods associated with

a list, type the object name (list), followed by a period, and press tab.

In [1]: list. # Press 'tab'.

append() count() insert() remove()

clear() extend() mro() reverse()

copy() index() pop() sort()

To learn more about a specific method, use a '?' and hit 'Enter'.

In [1]: list.append?

Docstring: L.append(object) -> None -- append object to end

Type: method_descriptor

In [2]: help() # Start IPython's interactive help utility.

help> list # Get documentation on the list class.

Help on class list in module __builtin__:

class list(object)

| list() -> new empty list

| # ... # Press 'q' to exit the info screen.

help> quit # End the interactive help session.

Note

Use IPython side-by-side with a text editor to quickly test syntax and small code snippets.

Testing small pieces of code in IPython before putting it into a program reveals errors and

greatly speeds up the coding process. Consult the internet with questions; stackoverflow.com

is a particularly valuable resource for answering common programming questions.

The best way to learn a new coding language is by actually writing code. Follow along

with the examples in the yellow code boxes in this lab by executing them in an IPython console.

Avoid copy and paste for now; your �ngers need to learn the language as well.

http://stackoverflow.com/

4 Lab 1. Introduction to Python

Python Basics
Arithmetic
Python can be used as a calculator with the regular +, -, *, and / operators. Use ** for exponentiation

and % for modular division.

>>> 3**2 + 2*5 # Python obeys the order of operations.

19

>>> 13 % 3 # The modulo operator % calculates the

1 # remainder: 13 = (3*4) + 1.

In most Python interpreters, the underscore character _ is a variable with the value of the

previous command's output, like the ANS button on many calculators.

>>> 12 * 3

36

>>> _ / 4

9.0

Data comparisons like < and > act as expected. The == operator checks for numerical equality

and the <= and >= operators correspond to ≤ and ≥, respectively. To connect multiple boolean

expressions, use the operators and, or, and not.2

>>> 3 > 2.99

True

>>> 1.0 <= 1 or 2 > 3

True

>>> 7 == 7 and not 4 < 4

True

>>> True and True and True and True and True and False

False

>>> False or False or False or False or False or True

True

>>> True or not True

True

Variables
Variables are used to temporarily store data. A single equals sign = assigns one or more values (on

the right) to one or more variable names (on the left). A double equals sign == is a comparison

operator that returns True or False, as in the previous code block.

Unlike many programming languages, Python does not require a variable's data type to be

speci�ed upon initialization. Because of this, Python is called a dynamically typed language.

2In many other programming languages, the and, or, and not operators are written as &&, ||, and !, respectively.

Python's convention is much more readable and does not require parentheses.

5

>>> x = 12 # Initialize x with the integer 12.

>>> y = 2 * 6 # Initialize y with the integer 2*6 = 12.

>>> x == y # Compare the two variable values.

True

>>> x, y = 2, 4 # Give both x and y new values in one line.

>>> x == y

False

Functions
To de�ne a function, use the def keyword followed by the function name, a parenthesized list of

parameters, and a colon. Then indent the function body using exactly four spaces.

>>> def add(x, y):

... return x + y # Indent with four spaces.

Achtung!

Many other languages use the curly braces {} to delimit blocks, but Python uses whitespace

indentation. In fact, whitespace is essentially the only thing that Python is particularly picky

about compared to other languages: mixing tabs and spaces confuses the interpreter

and causes problems. Most text editors have a setting to set the indentation type to spaces

so you can use the tab key on your keyboard to insert four spaces (sometimes called soft tabs).

For consistency, never use tabs; always use spaces.

Functions are de�ned with parameters and are called with arguments, although the terms are

often used interchangeably. Below, width and height are parameters for the function area(). The

values 2 and 5 are the arguments that are passed when calling the function.

>>> def area(width, height): # Define the function.

... return width * height

...

>>> area(2, 5) # Call the function.

10

Python functions can also return multiple values.

>>> def arithmetic(a, b):

... return a - b, a * b # Separate return values with commas.

...

>>> x, y = arithmetic(5, 2) # Unpack the returns into two variables.

>>> print(x, y)

3 10

6 Lab 1. Introduction to Python

The keyword lambda is a shortcut for creating one-line functions. For example, the polynomials

f(x) = 6x3 + 4x2 − x+ 3 and g(x, y, z) = x+ y2 − z3 can be de�ned as functions in one line each.

Define the polynomials the usual way using 'def'.

>>> def f(x):

... return 6*x**3 + 4*x**2 - x + 3

>>> def g(x, y, z):

... return x + y**2 - z**3

Equivalently, define the polynomials quickly using 'lambda'.

>>> f = lambda x: 6*x**3 + 4*x**2 - x + 3

>>> g = lambda x, y, z: x + y**2 - z**3

Note

Documentation is important in every programming language. Every function should have a

docstring�a string literal in triple quotes just under the function declaration�that describes

the purpose of the function, the expected inputs and return values, and any other notes that

are important to the user. Short docstrings are acceptable for very simple functions, but more

complicated functions require careful and detailed explanations.

>>> def add(x, y):

... """Return the sum of the two inputs."""

... return x + y

>>> def area(width, height):

... """Return the area of the rectangle with the specified width

... and height.

... """

... return width * height

...

>>> def arithmetic(a, b):

... """Return the difference and the product of the two inputs."""

... return a - b, a * b

Lambda functions cannot have custom docstrings, so the lambda keyword should only be

used as a shortcut for very simple or intuitive functions that do not need additional labeling.

Problem 2. The volume of a sphere with radius r is V = 4
3πr

3. In your Python �le from

Problem 1, de�ne a function called sphere_volume() that accepts a single parameter r. Return

the volume of the sphere of radius r, using 3.14159 as an approximation for π (for now). Also

write an appropriate docstring for your function.

To test your function, call it under the if __name__ == "__main__" clause and print the

returned value. Run your �le to see if your answer is what you expect it to be.

7

Achtung!

The return statement instantly ends the function call and passes the return value to the

function caller. However, functions are not required to have a return statement. A function

without a return statement implicitly returns the Python constant None, which is similar to

the special value null of many other languages. Calling print() at the end of a function does

not cause a function to return any values.

>>> def oops(i):

... """Increment i (but forget to return anything)."""

... print(i + 1)

...

>>> def increment(i):

... """Increment i."""

... return i + 1

...

>>> x = oops(1999) # x contains 'None' since oops()

2000 # doesn't have a return statement.

>>> y = increment(1999) # However, y contains a value.

>>> print(x, y)

None 2000

If you have any intention of using the results of a function, use a return statement.

It is also possible to specify default values for a function's parameters. In the following example,

the function pad() has three parameters, and the value of c defaults to 0. If it is not speci�ed in the

function call, the variable c will contain the value 0 when the function is executed.

>>> def pad(a, b, c=0):

... """Print the arguments, plus a zero if c is not specified."""

... print(a, b, c)

...

>>> pad(1, 2, 3) # Specify each parameter.

1 2 3

>>> pad(1, 2) # Specify only non-default parameters.

1 2 0

Arguments are passed to functions based on position or name, and positional arguments must

be de�ned before named arguments. For example, a and b must come before c in the function

de�nition of pad(). Examine the following code blocks demonstrating how positional and named

arguments are used to call a function.

Try defining printer with a named argument before a positional argument.

>>> def pad(c=0, a, b):

... print(a, b, c)

...

SyntaxError: non-default argument follows default argument

8 Lab 1. Introduction to Python

Correctly define pad() with the named argument after positional arguments.

>>> def pad(a, b, c=0):

... """Print the arguments, plus a zero if c is not specified."""

... print(a, b, c)

...

Call pad() with 3 positional arguments.

>>> pad(2, 4, 6)

2 4 6

Call pad() with 3 named arguments. Note the change in order.

>>> pad(b=3, c=5, a=7)

7 3 5

Call pad() with 2 named arguments, excluding c.

>>> pad(b=1, a=2)

2 1 0

Call pad() with 1 positional argument and 2 named arguments.

>>> pad(1, c=2, b=3)

1 3 2

Problem 3. The built-in print() function has the useful keyword arguments sep and end.

It accepts any number of positional arguments and prints them out with sep inserted between

values (defaulting to a space), then prints end (defaulting to the newline character '\n').

Write a function called isolate() that accepts �ve arguments. Print the �rst three

separated by 5 spaces, then print the rest with a single space between each output. For example,

>>> isolate(1, 2, 3, 4, 5)

1 2 3 4 5

Data Types and Structures
Numerical Types

Python has four numerical data types: int, long, float, and complex. Each stores a di�erent kind

of number. The built-in function type() identi�es an object's data type.

>>> type(3) # Numbers without periods are integers.

int

>>> type(3.0) # Floats have periods (3. is also a float).

float

9

Python has two types of division: integer and �oat. The / operator performs �oat division

(true fractional division), and the // operator performs integer division, which rounds the result

down to the next integer. If both operands for // are integers, the result will be an int. If one or

both operands are �oats, the result will be a float. Regular division with / always returns a float.

>>> 15 / 4 # Float division performs as expected.

3.75

>>> 15 // 4 # Integer division rounds the result down.

3

>>> 15. // 4

3.0

Python also supports computations of complex numbers by pairing two numbers as the real

and imaginary parts. Use the letter j, not i, for the imaginary part.

>>> x = complex(2,3) # Create a complex number this way...

>>> y = 4 + 5j # ...or this way, using j (not i).

>>> x.real # Access the real part of x.

2.0

>>> y.imag # Access the imaginary part of y.

5.0

Strings
In Python, strings are created with either single or double quotes. To concatenate two or more

strings, use the + operator between string variables or literals.

>>> str1 = "Hello"

>>> str2 = 'world'

>>> my_string = str1 + " " + str2 + '!'

>>> my_string

'Hello world!'

Parts of a string can be accessed using slicing, which is indicated by square brackets []. Slicing

syntax is [start:stop:step]. The parameters start and stop default to the beginning and end of

the string, respectively. The parameter step defaults to 1.

>>> my_string = "Hello world!"

>>> my_string[4] # Indexing begins at 0.

'o'

>>> my_string[-1] # Negative indices count backward from the end.

'!'

Slice from the 0th to the 5th character (not including the 5th character).

>>> my_string[:5]

'Hello'

Slice from the 6th character to the end.

10 Lab 1. Introduction to Python

>>> my_string[6:]

'world!'

Slice from the 3rd to the 8th character (not including the 8th character).

>>> my_string[3:8]

'lo wo'

Get every other character in the string.

>>> my_string[::2]

'Hlowrd'

Problem 4. Write two new functions called first_half() and backward().

1. first_half() should accept a parameter and return the �rst half of it, excluding the

middle character if there is an odd number of characters.

(Hint: the built-in function len() returns the length of the input.)

2. The backward() function should accept a parameter and reverse the order of its characters

using slicing, then return the reversed string.

(Hint: The step parameter used in slicing can be negative.)

Use IPython to quickly test your syntax for each function.

Lists
A Python list is created by enclosing comma-separated values with square brackets []. Entries

of a list do not have to be of the same type. Access entries in a list by using the same indexing or

slicing operations as used with strings.

>>> my_list = ["Hello", 93.8, "world", 10]

>>> my_list[0]

'Hello'

>>> my_list[-2]

'world'

>>> my_list[:2]

['Hello', 93.8]

Common list methods (functions) include append(), insert(), remove(), and pop(). Consult

IPython for details on each of these methods using object introspection.

>>> my_list = [1, 2] # Create a simple list of two integers.

>>> my_list.append(4) # Append the integer 4 to the end.

>>> my_list.insert(2, 3) # Insert 3 at location 2.

>>> my_list

[1, 2, 3, 4]

>>> my_list.remove(3) # Remove 3 from the list.

>>> my_list.pop() # Remove (and return) the last entry.

11

4

>>> my_list

[1, 2]

Slicing is also very useful for replacing values in a list.

>>> my_list = [10, 20, 30, 40, 50]

>>> my_list[0] = -1

>>> my_list[3:] = [8, 9]

>>> print(my_list)

[-1, 20, 30, 8, 9]

The in operator quickly checks if a given value is in a list (or another iterable, including strings).

>>> my_list = [1, 2, 3, 4, 5]

>>> 2 in my_list

True

>>> 6 in my_list

False

>>> 'a' in "xylophone" # 'in' also works on strings.

False

Tuples
A Python tuple is an ordered collection of elements, created by enclosing comma-separated values

with parentheses (and). Tuples are similar to lists, but they are much more rigid, have less built-

in operations, and cannot be altered after creation. Therefore, lists are preferable for managing

dynamic, ordered collections of objects.

When multiple objects are returned by a function, they are returned as a tuple. For example,

recall that the arithmetic() function returns two values.

>>> x, y = arithmetic(5,2) # Get each value individually,

>>> print(x, y)

3 10

>>> both = arithmetic(5,2) # or get them both as a tuple.

>>> print(both)

(3, 10)

Problem 5. Write a function called list_ops(). De�ne a list with the entries "bear", "ant",

"cat", and "dog", in that order. Then perform the following operations on the list:

1. Append "eagle".

2. Replace the entry at index 2 with "fox".

3. Remove (or pop) the entry at index 1.

12 Lab 1. Introduction to Python

4. Sort the list in reverse alphabetical order.

5. Replace "eagle" with "hawk".

(Hint: the list's index() method may be helpful.)

6. Add the string "hunter" to the last entry in the list.

Return the resulting list.

Work out (on paper) what the result should be, then check that your function returns the

correct list. Consider printing the list at each step to see the intermediate results.

Sets
A Python set is an unordered collection of distinct objects. Objects can be added to or removed

from a set after its creation. Initialize a set with curly braces { } and separate the values by commas,

or use set() to create an empty set. Like mathematical sets, Python sets have operations such as

union, intersection, di�erence, and symmetric di�erence.

Initialize some sets. Note that repeats are not added.

>>> gym_members = {"Doe, John", "Doe, John", "Smith, Jane", "Brown, Bob"}

>>> print(gym_members)

{'Doe, John', 'Brown, Bob', 'Smith, Jane'}

>>> gym_members.add("Lytle, Josh") # Add an object to the set.

>>> gym_members.discard("Doe, John") # Delete an object from the set.

>>> print(gym_members)

{'Lytle, Josh', 'Brown, Bob', 'Smith, Jane'}

>>> gym_members.intersection({"Lytle, Josh", "Henriksen, Ian", "Webb, Jared"})

{'Lytle, Josh'}

>>> gym_members.difference({"Brown, Bob", "Sharp, Sarah"})

{'Lytle, Josh', 'Smith, Jane'}

Dictionaries
Like a set, a Python dict (dictionary) is an unordered data type. A dictionary stores key-value

pairs, called items. The values of a dictionary are indexed by its keys. Dictionaries are initialized

with curly braces, colons, and commas. Use dict() or {} to create an empty dictionary.

>>> my_dictionary = {"business": 4121, "math": 2061, "visual arts": 7321}

>>> print(my_dictionary["math"])

2061

Add a value indexed by 'science' and delete the 'business' keypair.

>>> my_dictionary["science"] = 6284

>>> my_dictionary.pop("business") # Use 'pop' or 'popitem' to remove.

4121

>>> print(my_dictionary)

13

{'math': 2061, 'visual arts': 7321, 'science': 6284}

Display the keys and values.

>>> my_dictionary.keys()

dict_keys(['math', 'visual arts', 'science'])

>>> my_dictionary.values()

dict_values([2061, 7321, 6284])

As far as data access goes, lists are like dictionaries whose keys are the integers 0, 1, . . . , n− 1,

where n is the number of items in the list. The keys of a dictionary need not be integers, but they

must be immutable, which means that they must be objects that cannot be modi�ed after creation.

We will discuss mutability more thoroughly in the Standard Library lab.

Type Casting
The names of each of Python's data types can be used as functions to cast a value as that type. This

is particularly useful for converting between integers and �oats.

Cast numerical values as different kinds of numerical values.

>>> x = int(3.0)

>>> y = float(3)

>>> z = complex(3)

>>> print(x, y, z)

3 3.0 (3+0j)

Cast a list as a set and vice versa.

>>> set([1, 2, 3, 4, 4])

{1, 2, 3, 4}

>>> list({'a', 'a', 'b', 'b', 'c'})

['a', 'c', 'b']

Cast other objects as strings.

>>> str(['a', str(1), 'b', float(2)])

"['a', '1', 'b', 2.0]"

>>> str(list(set([complex(float(3))])))

'[(3+0j)]'

Control Flow Tools
Control �ow blocks dictate the order in which code is executed. Python supports the usual control

�ow statements including if statements, while loops, and for loops.

The If Statement
An if statement executes the indented code if (and only if) the given condition holds. The elif

statement is short for �else if� and can be used multiple times following an if statement, or not at

all. The else keyword may be used at most once at the end of a series of if/elif statements.

14 Lab 1. Introduction to Python

>>> food = "bagel"

>>> if food == "apple": # As with functions, the colon denotes

... print("72 calories") # the start of each code block.

... elif food == "banana" or food == "carrot":

... print("105 calories")

... else:

... print("calorie count unavailable")

...

calorie count unavailable

Problem 6. Write a function called pig_latin(). Accept a parameter word, translate it into

Pig Latin, then return the translation. Speci�cally, if word starts with a vowel, add �hay� to

the end; if word starts with a consonant, take the �rst character of word, move it to the end,

and add �ay�.

(Hint: use the in operator to check if the �rst letter is a vowel.)

The While Loop

A while loop executes an indented block of code while the given condition holds.

>>> i = 0

>>> while i < 10:

... print(i, end=' ') # Print a space instead of a newline.

... i += 1 # Shortcut syntax for i = i+1.

...

0 1 2 3 4 5 6 7 8 9

There are two additional useful statements to use inside of loops:

1. break manually exits the loop, regardless of which iteration the loop is on or if the termination

condition is met.

2. continue skips the current iteration and returns to the top of the loop block if the termination

condition is still not met.

>>> i = 0

>>> while True:

... print(i, end=' ')

... i += 1

... if i >= 10:

... break # Exit the loop.

...

0 1 2 3 4 5 6 7 8 9

>>> i = 0

15

>>> while i < 10:

... i += 1

... if i % 3 == 0:

... continue # Skip multiples of 3.

... print(i, end=' ')

1 2 4 5 7 8 10

The For Loop
A for loop iterates over the items in any iterable. Iterables include (but are not limited to) strings,

lists, sets, and dictionaries.

>>> colors = ["red", "green", "blue", "yellow"]

>>> for entry in colors:

... print(entry + "!")

...

red!

green!

blue!

yellow!

The break and continue statements also work in for loops. A continue in a for loop will

automatically increment the index or item, whereas a continue in a while loop makes no automatic

changes to any variable.

>>> for word in ["It", "definitely", "looks", "pretty", "bad", "today"]:

... if word == "definitely":

... continue

... elif word == "bad":

... break

... print(word, end=' ')

...

It looks pretty

In addition, Python has some very useful built-in functions that can be used in conjunction

with the for statement:

1. range(start, stop, step): Produces a sequence of integers, following slicing syntax. If

only one argument is speci�ed, it produces a sequence of integers from 0 to the argument,

incrementing by one. This function is used very often.

2. zip(): Joins multiple sequences so they can be iterated over simultaneously.

3. enumerate(): Yields both a count and a value from the sequence. Typically used to get both

the index of an item and the actual item simultaneously.

4. reversed(): Reverses the order of the iteration.

5. sorted(): Returns a new list of sorted items that can then be used for iteration.

16 Lab 1. Introduction to Python

Each of these functions, except for sorted(), returns an iterator, an object that is built speci�cally

for looping but not for creating actual lists. To put the items of the sequence in a collection, use

list(), set(), or tuple().

Strings and lists are both iterables.

>>> vowels = "aeiou"

>>> colors = ["red", "yellow", "white", "blue", "purple"]

Iterate by index.

>>> for i in range(5):

... print(i, vowels[i], colors[i])

...

0 a red

1 e yellow

2 i white

3 o blue

4 u purple

Iterate through both sequences at once.

>>> for letter, word in zip(vowels, colors):

... print(letter, word)

...

a red

e yellow

i white

o blue

u purple

Get the index and the item simultaneously.

>>> for i, color in enumerate(colors):

... print(i, color)

...

0 red

1 yellow

2 white

3 blue

4 purple

Iterate through the list in sorted (alphabetical) order.

>>> for item in sorted(colors):

... print(item, end=' ')

...

blue purple red white yellow

Iterate through the list backward.

>>> for item in reversed(colors):

... print(item, end=' ')

...

purple blue white yellow red

17

range() arguments follow slicing syntax.

>>> list(range(10)) # Integers from 0 to 10, exclusive.

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> list(range(4, 8)) # Integers from 4 to 8, exclusive.

[4, 5, 6, 7]

>>> set(range(2, 20, 3)) # Every third integer from 2 to 20, ←↩
exclusive.

{2, 5, 8, 11, 14, 17}

Problem 7. This problem originates from https://projecteuler.net, an excellent resource

for math-related coding problems.

A palindromic number reads the same both ways. The largest palindrome made from

the product of two 2-digit numbers is 9009 = 91 × 99. Write a function called palindrome()

that �nds and returns the largest palindromic number made from the product of two 3-digit

numbers.

List Comprehension
A list comprehension uses for loop syntax between square brackets to create a list. This is a powerful,

e�cient way to build lists. The code is concise and runs quickly.

>>> [float(n) for n in range(5)]

[0.0, 1.0, 2.0, 3.0, 4.0]

List comprehensions can be thought of as �inverted loops�, meaning that the body of the loop

comes before the looping condition. The following loop and list comprehension produce the same

list, but the list comprehension takes only about two-thirds the time to execute.

>>> loop_output = []

>>> for i in range(5):

... loop_output.append(i**2)

...

>>> list_output = [i**2 for i in range(5)]

Tuple, set, and dictionary comprehensions can be done in the same way as list comprehensions

by using the appropriate style of brackets on the end.

>>> colors = ["red", "blue", "yellow"]

>>> {c[0]:c for c in colors}

{'r': 'red', 'b': 'blue', 'y': 'yellow'}

>>> {"bright " + c for c in colors}

https://projecteuler.net

18 Lab 1. Introduction to Python

{'bright blue', 'bright red', 'bright yellow'}

Problem 8. The alternating harmonic series is de�ned as follows.

∞∑
n=1

(−1)(n+1)

n
= 1− 1

2
+

1

3
− 1

4
+

1

5
− . . . = ln(2)

Write a function called alt_harmonic() that accepts an integer n. Use a list comprehension

to quickly compute the sum of the �rst n terms of this series (be careful not to compute only

n−1 terms). The sum of the �rst 500,000 terms of this series approximates ln(2) to �ve decimal

places.

(Hint: consider using Python's built-in sum() function.)

19

Additional Material
Further Reading
Refer back to this and other introductory labs often as you continue getting used to Python syntax

and data types. As you continue your study of Python, we strongly recommend the following readings.

� The o�cial Python tutorial: http://docs.python.org/3.6/tutorial/introduction.html

(especially chapters 3, 4, and 5).

� Section 1.2 of the SciPy lecture notes: http://scipy-lectures.github.io/.

� PEP8 - Python style guide: http://www.python.org/dev/peps/pep-0008/.

Generalized Function Input
On rare occasion, it is necessary to de�ne a function without knowing exactly what the parameters

will be like or how many there will be. This is usually done by de�ning the function with the

parameters *args and **kwargs. Here *args is a list of the positional arguments and **kwargs is

a dictionary mapping the keywords to their argument. This is the most general form of a function

de�nition.

>>> def report(*args, **kwargs):

... for i, arg in enumerate(args):

... print("Argument " + str(i) + ":", arg)

... for key in kwargs:

... print("Keyword", key, "-->", kwargs[key])

...

>>> report("TK", 421, exceptional=False, missing=True)

Argument 0: TK

Argument 1: 421

Keyword exceptional --> False

Keyword missing --> True

See https://docs.python.org/3.6/tutorial/controlflow.html for more on this topic.

Function Decorators
A function decorator is a special function that �wraps� other functions. It takes in a function as

input and returns a new function that pre-processes the inputs or post-processes the outputs of the

original function.

>>> def typewriter(func):

... """Decorator for printing the type of output a function returns"""

... def wrapper(*args, **kwargs):

... output = func(*args, **kwargs) # Call the decorated function.

... print("output type:", type(output)) # Process before finishing.

... return output # Return the function output.

... return wrapper

http://docs.python.org/3.6/tutorial/introduction.html
http://scipy-lectures.github.io/
http://www.python.org/dev/peps/pep-0008/
https://docs.python.org/3.6/tutorial/controlflow.html

20 Lab 1. Introduction to Python

The outer function, typewriter(), returns the new function wrapper(). Since wrapper()

accepts *args and **kwargs as arguments, the input function func() accepts any number of

positional or keyword arguments.

Apply a decorator to a function by tagging the function's de�nition with an @ symbol and the

decorator name.

>>> @typewriter

... def combine(a, b, c):

... return a*b // c

Placing the tag above the de�nition is equivalent to adding the following line of code after the

function de�nition:

>>> combine = typewriter(combine)

Now, calling combine() actually calls wrapper(), which then calls the original combine().

>>> combine(3, 4, 6)

output type: <class 'int'>

2

>>> combine(3.0, 4, 6)

output type: <class 'float'>

2.0

Function decorators can also be customized with arguments. This requires another level of

nesting: the outermost function must de�ne and return a decorator that de�nes and returns a

wrapper.

>>> def repeat(times):

... """Decorator for calling a function several times."""

... def decorator(func):

... def wrapper(*args, **kwargs):

... for _ in range(times):

... output = func(*args, **kwargs)

... return output

... return wrapper

... return decorator

...

>>> @repeat(3)

... def hello_world():

... print("Hello, world!")

...

>>> hello_world()

Hello, world!

Hello, world!

Hello, world!

See https://www.python.org/dev/peps/pep-0318/ for more details.

https://www.python.org/dev/peps/pep-0318/

Bibliography

[jup] Jupyter notebooks�a publishing format for reproducible computational work�ows. pages

87�90. [2]

[PG07] Fernando Pérez and Brian E. Granger. IPython: a system for interactive scienti�c computing.

Computing in Science and Engineering, 9(3):21�29, may 2007. [2]

21

	Introduction to Python
	Bibliography

