
5 Introduction to
Matplotlib

Lab Objective: Matplotlib is the most commonly used data visualization library in Python. Being

able to visualize data helps to determine patterns and communicate results, and is a key component

of applied and computational mathematics. In this lab we introduce techniques for visualizing data

in 1, 2, and 3 dimensions. The plotting techniques presented here will be used in the remainder of

the labs in the manual.

Line Plots
Raw numerical data is rarely helpful unless it can be visualized. The quickest way to visualize a

simple 1-dimensional array is with a line plot. The following code creates an array of outputs of the

function f(x) = x2, then visualizes the array using the matplotlib module1 [Hun07].

>>> import numpy as np

>>> from matplotlib import pyplot as plt

>>> y = np.arange(-5,6)**2

>>> y

array([25, 16, 9, 4, 1, 0, 1, 4, 9, 16, 25])

Visualize the plot.

>>> plt.plot(y) # Draw the line plot.

[<matplotlib.lines.Line2D object at 0x1084762d0>]

>>> plt.show() # Reveal the resulting plot.

The result is shown in Figure 5.1a. Just as np is a standard alias for NumPy, plt is a standard

alias for matplotlib.pyplot in the Python community.

The call plt.plot(y) creates a �gure and draws straight lines connecting the entries of y

relative to the y-axis. The x-axis is (by default) the index of the array, which in this case is the

integers from 0 to 10. Calling plt.show() then displays the �gure.

1Like NumPy, Matplotlib is not part of the Python standard library, but it is included in most Python distributions.

See https://matplotlib.org/ for the complete Matplotlib documentation.

1

https://matplotlib.org/

2 Lab 5. Introduction to Matplotlib

0 2 4 6 8 10
0

5

10

15

20

25

(a) plt.plot(y) uses the indices of

the array for the x-axis.

4 2 0 2 4
0

5

10

15

20

25

(b) plt.plot(x,y) speci�es both the

domain and the range.

Figure 5.1: Plots of f(x) = x2 over the interval [−5, 5].

Problem 1. NumPy's random module has tools for sampling from probability distributions.

For instance, np.random.normal() draws samples from the normal (Gaussian) distribution.

The size parameter speci�es the shape of the resulting array.

>>> np.random.normal(size=(2,3)) # Get a 2x3 array of samples.

array([[1.65896515, -0.43236783, -0.99390897],

[-0.35753688, -0.76738306, 1.29683025]])

Write a function that accepts an integer n as input.

1. Use np.random.normal() to create an n× n array of values randomly sampled from the

standard normal distribution.

2. Compute the mean of each row of the array.

(Hint: Use np.mean() and specify the axis keyword argument.)

3. Return the variance of these means.

(Hint: Use np.var() to calculate the variance).

De�ne another function that creates an array of the results of the �rst function with inputs

n = 100, 200, . . . , 1000. Plot (and show) the resulting array.

Specifying a Domain

An obvious problem with Figure 5.1a is that the x-axis does not correspond correctly to the y-axis

for the function f(x) = x2 that is being drawn. To correct this, de�ne an array x for the domain,

then use it to calculate the image y = f(x). The command plt.plot(x,y) plots x against y by

drawing a line between the consecutive points (x[i], y[i]).

Another problem with Figure 5.1a is its poor resolution: the curve is visibly bumpy, especially

near the bottom of the curve. NumPy's linspace() function makes it easy to get a higher-resolution

domain. Recall that np.arange() returns an array of evenly-spaced values in a given interval, where

3

the spacing between the entries is speci�ed. In contrast, np.linspace() creates an array of evenly-

spaced values in a given interval where the number of elements is speci�ed.

Get 4 evenly-spaced values between 0 and 32 (including endpoints).

>>> np.linspace(0, 32, 4)

array([0. , 10.66666667, 21.33333333, 32.])

Get 50 evenly-spaced values from -5 to 5 (including endpoints).

>>> x = np.linspace(-5, 5, 50)

>>> y = x**2 # Calculate the range of f(x) = x**2.

>>> plt.plot(x, y)

>>> plt.show()

The resulting plot is shown in Figure 5.1b. This time, the x-axis correctly matches up with the

y-axis. The resolution is also much better because x and y have 50 entries each instead of only 10.

Subsequent calls to plt.plot() modify the same �gure until plt.show() is executed, which

displays the current �gure and resets the system. This behavior can be altered by specifying separate

�gures or axes, which we will discuss shortly.

Note

Plotting can seem a little mystical because the actual plot doesn't appear until plt.show() is

executed. Matplotlib's interactive mode allows the user to see the plot be constructed one piece

at a time. Use plt.ion() to turn interactive mode on and plt.ioff() to turn it o�. This is

very useful for quick experimentation. Try executing the following commands in IPython:

In [1]: import numpy as np

In [2]: from matplotlib import pyplot as plt

Turn interactive mode on and make some plots.

In [3]: plt.ion()

In [4]: x = np.linspace(1, 4, 100)

In [5]: plt.plot(x, np.log(x))

In [6]: plt.plot(x, np.exp(x))

Clear the figure, then turn interactive mode off.

In [7]: plt.clf()

In [8]: plt.ioff()

Use interactive mode only with IPython. Using interactive mode in a non-interactive

setting may freeze the window or cause other problems.

Problem 2. Write a function that plots the functions sin(x), cos(x), and arctan(x) on the

domain [−2π, 2π] (use np.pi for π). Make sure the domain is re�ned enough to produce a

�gure with good resolution.

4 Lab 5. Introduction to Matplotlib

Plot Customization
plt.plot() receives several keyword arguments for customizing the drawing. For example, the color

and style of the line are speci�ed by the following string arguments.

Key Color

'b' blue

'g' green

'r' red

'c' cyan

'k' black

Key Style

'-' solid line

'--' dashed line

'-.' dash-dot line

':' dotted line

'o' circle marker

Specify one or both of these string codes as the third argument to plt.plot() to change from

the default color and style. Other plt functions further customize a �gure.

Function Description

legend() Place a legend in the plot

title() Add a title to the plot

xlim() / ylim() Set the limits of the x- or y-axis

xlabel() / ylabel() Add a label to the x- or y-axis

>>> x1 = np.linspace(-2, 4, 100)

>>> plt.plot(x1, np.exp(x1), 'g:', linewidth=6, label="Exponential")

>>> plt.title("This is the title.", fontsize=18)

>>> plt.legend(loc="upper left") # plt.legend() uses the 'label' argument of

>>> plt.show() # plt.plot() to create a legend.

>>> x2 = np.linspace(1, 4, 100)

>>> plt.plot(x2, np.log(x2), 'r*', markersize=4)

>>> plt.xlim(0, 5) # Set the visible limits of the x axis.

>>> plt.xlabel("The x axis") # Give the x axis a label.

>>> plt.show()

2 1 0 1 2 3 4
The x axis.

0

10

20

30

40

50

This is the title.
Exponential

0 1 2 3 4 5
The x axis

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

This is the title.

5

Problem 3. Write a function to plot the curve f(x) = 1
x−1 on the domain [−2, 6].

1. Although f(x) has a discontinuity at x = 1, a single call to plt.plot() in the usual way

will make the curve look continuous. Split up the domain into [−2, 1) and (1, 6]. Plot the

two sides of the curve separately so that the graph looks discontinuous at x = 1.

2. Plot both curves with a dashed magenta line. Set the keyword argument linewidth (or

lw) of plt.plot() to 4 to make the line a little thicker than the default setting.

3. Use plt.xlim() and plt.ylim() to change the range of the x-axis to [−2, 6] and the

range of the y-axis to [−6, 6].

The plot should resemble the �gure below.

2 1 0 1 2 3 4 5 6
6

4

2

0

2

4

6

Figures, Axes, and Subplots

The window that plt.show() reveals is called a �gure, stored in Python as a plt.Figure object.

A space on a �gure where a plot is drawn is called an axes, a plt.Axes object. A �gure can have

multiple axes, and a single program may create several �gures. There are several ways to create or

grab �gures and axes with plt functions.

Function Description

axes() Add an axes to the current �gure

figure() Create a new �gure or grab an existing �gure

gca() Get the current axes

gcf() Get the current �gure

subplot() Add a single subplot to the current �gure

subplots() Create a �gure and add several subplots to it

Usually when a �gure has multiple axes, they are organized into non-overlapping subplots.

The command plt.subplot(nrows, ncols, plot_number) creates an axes in a subplot grid where

nrows is the number of rows of subplots in the �gure, ncols is the number of columns, and

plot_number speci�es which subplot to modify. If the inputs for plt.subplot() are all integers, the

commas between the entries can be omitted. For example, plt.subplot(3,2,2) can be shortened

to plt.subplot(322).

6 Lab 5. Introduction to Matplotlib

1 2 3

4 5 6
Figure 5.3: The layout of subplots with plt.subplot(2,3,i) (2 rows, 3 columns), where i is the

index pictured above. The outer border is the �gure that the axes belong to.

>>> x = np.linspace(.1, 2, 200)

Create a subplot to cover the left half of the figure.

>>> ax1 = plt.subplot(121)

>>> ax1.plot(x, np.exp(x), 'k', lw=2)

>>> ax1.plot(x, np.exp(2*x), 'b', lw=2)

>>> plt.title("Exponential", fontsize=18)

Create another subplot to cover the right half of the figure.

>>> ax2 = plt.subplot(122)

>>> ax2.plot(x, np.log(x), 'k', lw=2)

>>> ax2.plot(x, np.log(2*x), 'b', lw=2)

>>> ax2.set_title("Logarithmic", fontsize=18)

>>> plt.show()

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

10

20

30

40

50

Exponential

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

2

1

0

1

Logarithmic

7

Note

Plotting functions such as plt.plot() are shortcuts for accessing the current axes on the current

�gure and calling a method on that Axes object. Calling plt.subplot() changes the current

axis, and calling plt.figure() changes the current �gure. Use plt.gca() to get the current

axes and plt.gcf() to get the current �gure. Compare the following equivalent strategies for

producing a �gure with two subplots.

>>> x = np.linspace(-5, 5, 100)

1. Use plt.subplot() to switch the current.

>>> plt.subplot(121)

>>> plt.plot(x, 2*x)

>>> plt.subplot(122)

>>> plt.plot(x, x**2)

2. Use plt.subplot() to explicitly grab the two subplot axes.

>>> ax1 = plt.subplot(121)

>>> ax1.plot(x, 2*x)

>>> ax2 = plt.subplot(122)

>>> ax2.plot(x, x**2)

3. Use plt.subplots() to get the figure and all subplots simultaneously.

>>> fig, axes = plt.subplots(1, 2)

>>> axes[0].plot(x, 2*x)

>>> axes[1].plot(x, x**2)

Problem 4. Write a function that plots the functions sin(x), sin(2x), 2 sin(x), and 2 sin(2x)

on the domain [0, 2π], each in a separate subplot of a single �gure.

1. Arrange the plots in a 2× 2 grid of subplots.

2. Set the limits of each subplot to [0, 2π]× [−2, 2].
(Hint: Consider using plt.axis([xmin, xmax, ymin, ymax]) instead of plt.xlim()

and plt.ylim() to set all boundaries simultaneously.)

3. Use plt.title() or ax.set_title() to give each subplot an appropriate title.

4. Use plt.suptitle() or fig.suptitle() to give the overall �gure a title.

5. Use the following colors and line styles.

sin(x): green solid line. sin(2x): red dashed line.

2 sin(x): blue dashed line. 2 sin(2x): magenta dotted line.

8 Lab 5. Introduction to Matplotlib

Achtung!

Be careful not to mix up the following functions.

1. plt.axes() creates a new place to draw on the �gure, while plt.axis() (or ax.axis())

sets properties of the x- and y-axis in the current axes, such as the x and y limits.

2. plt.subplot() (singular) returns a single subplot belonging to the current �gure, while

plt.subplots() (plural) creates a new �gure and adds a collection of subplots to it.

Other Kinds of Plots
Line plots are not always the most illuminating choice of graph to describe a set of data. Matplotlib

provides several other easy ways to visualize data.

� A scatter plot plots two 1-dimensional arrays against each other without drawing lines between

the points. Scatter plots are particularly useful for data that is not correlated or ordered.

To create a scatter plot, use plt.plot() and specify a point marker (such as 'o' or '*') for

the line style, or use plt.scatter() (or ax.scatter()). Beware that plt.scatter() has

slightly di�erent arguments and syntax than plt.plot().

� A histogram groups entries of a 1-dimensional data set into a given number of intervals, called

bins. Each bin has a bar whose height indicates the number of values that fall in the range of

the bin. Histograms are best for displaying distributions, relating data values to frequency.

To create a histogram, use plt.hist() (or ax.hist()). Use the argument bins to specify the

edges of the bins or to choose a number of bins. The range argument speci�es the outer limits

of the �rst and last bins.

Get 500 random samples from two normal distributions.

>>> x = np.random.normal(scale=1.5, size=500)

>>> y = np.random.normal(scale=0.5, size=500)

Draw a scatter plot of x against y, using transparent circle markers.

>>> ax1 = plt.subplot(121)

>>> ax1.plot(x, y, 'o', markersize=5, alpha=.5)

Draw a histogram to display the distribution of the data in x.

>>> ax2 = plt.subplot(122)

>>> ax2.hist(x, bins=np.arange(-4.5, 5.5)) # Or, equivalently,

ax2.hist(x, bins=9, range=[-4.5, 4.5])

>>> plt.show()

9

4 2 0 2 4

1.5

1.0

0.5

0.0

0.5

1.0

1.5

4 2 0 2 4
0

20

40

60

80

100

120

Problem 5. The Fatality Analysis Reporting System (FARS) is a nationwide census that

provides yearly data regarding fatal injuries su�ered in motor vehicle tra�c crashes.a The

array contained in FARS.npy is a small subset of the FARS database from 2010�2014. Each of

the 148,206 rows in the array represents a di�erent car crash; the columns represent the hour

(in military time, as an integer), the longitude, and the latitude, in that order.

Write a function to visualize the data in FARS.npy. Use np.load() to load the data, then

create a single �gure with two subplots:

1. A scatter plot of longitudes against latitudes. Because of the large number of data points,

use black pixel markers (use "k," as the third argument to plt.plot()). Label both axes

using plt.xlabel() and plt.ylabel() (or ax.set_xlabel() and ax.set_ylabel()).

(Hint: Use plt.axis("equal") or ax.set_aspect("equal") so that the x- and y-axis

are scaled the same way.

2. A histogram of the hours of the day, with one bin per hour. Set the limits of the x-axis

appropriately. Label the x-axis. You should be able to clearly see which hours of the day

experience more tra�c.

aSee http://www.nhtsa.gov/FARS.

Matplotlib also has tools for creating other kinds of plots for visualizing 1-dimensional data,

including bar plots and box plots. See the Matplotlib Appendix for examples and syntax.

Visualizing 3-D Surfaces

Line plots, histograms, and scatter plots are good for visualizing 1- and 2-dimensional data, including

the domain and range of a function f : R→ R. However, visualizing 3-dimensional data or a function

g : R2 → R (two inputs, one output) requires a di�erent kind of plot. The process is similar to creating

a line plot but requires slightly more setup: �rst construct an appropriate domain, then calculate

the image of the function on that domain.

NumPy's np.meshgrid() function is the standard tool for creating a 2-dimensional domain

in the Cartesian plane. Given two 1-dimensional coordinate arrays, np.meshgrid() creates two

corresponding coordinate matrices. See Figure 5.6.

http://www.nhtsa.gov/FARS

10 Lab 5. Introduction to Matplotlib

(0,0)

(0,1)

(0,2)

(1,0)

(1,1)

(1,2)

(2,0)

(2,1)

(2,2)

0

1

2

0

1

2

0

1

2

0

0

0

1

1

1

2

2

2

Y=

X=

x=
[
0, 1, 2

]

y
= [2

,
1
,

0]
Figure 5.6: np.meshgrid(x, y), returns the arrays X and Y. The returned arrays give the x- and

y-coordinates of the points in the grid formed by x and y. Speci�cally, the arrays X and Y satisfy

(X[i,j], Y[i,j]) = (x[i],y[j]).

>>> x, y = [0, 1, 2], [3, 4, 5] # A rough domain over [0,2]x[3,5].

>>> X, Y = np.meshgrid(x, y) # Combine the 1-D data into 2-D data.

>>> for xrow, yrow in zip(X,Y):

... print(xrow, yrow, sep='\t')

...

[0 1 2] [3 3 3]

[0 1 2] [4 4 4]

[0 1 2] [5 5 5]

With a 2-dimensional domain, g(x, y) is usually visualized with two kinds of plots.

� A heat map assigns a color to each point in the domain, producing a 2-dimensional colored

picture describing a 3-dimensional shape. Darker colors typically correspond to lower values

while lighter colors typically correspond to higher values.

Use plt.pcolormesh() to create a heat map.

� A contour map draws several level curves of g on the 2-dimensional domain. A level curve

corresponding to the constant c is the collection of points {(x, y) | c = g(x, y)}. Coloring the

space between the level curves produces a discretized version of a heat map. Including more

and more level curves makes a �lled contour plot look more and more like the complete, blended

heat map.

Use plt.contour() to create a contour plot and plt.contourf() to create a �lled contour

plot. Specify either the number of level curves to draw, or a list of constants corresponding to

speci�c level curves.

These functions each receive the keyword argument cmap to specify a color scheme (some of

the better schemes are "viridis", "magma", and "coolwarm"). For the list of all Matplotlib color

schemes, see http://matplotlib.org/examples/color/colormaps_reference.html.

Finally, plt.colorbar() draws the color scale beside the plot to indicate how the colors relate

to the values of the function.

http://matplotlib.org/examples/color/colormaps_reference.html

11

Create a 2-D domain with np.meshgrid().

>>> x = np.linspace(-np.pi, np.pi, 100)

>>> y = x.copy()

>>> X, Y = np.meshgrid(x, y)

>>> Z = np.sin(X) * np.sin(Y) # Calculate g(x,y) = sin(x)sin(y).

Plot the heat map of f over the 2-D domain.

>>> plt.subplot(131)

>>> plt.pcolormesh(X, Y, Z, cmap="viridis")

>>> plt.colorbar()

>>> plt.xlim(-np.pi, np.pi)

>>> plt.ylim(-np.pi, np.pi)

Plot a contour map of f with 10 level curves.

>>> plt.subplot(132)

>>> plt.contour(X, Y, Z, 10, cmap="coolwarm")

>>> plt.colorbar()

Plot a filled contour map, specifying the level curves.

>>> plt.subplot(133)

>>> plt.contourf(X, Y, Z, [-1, -.8, -.5, 0, .5, .8, 1], cmap="magma")

>>> plt.colorbar()

>>> plt.show()

3 2 1 0 1 2 3
3

2

1

0

1

2

3

0.8
0.6
0.4
0.2

0.0
0.2
0.4
0.6
0.8

3 2 1 0 1 2 3
3

2

1

0

1

2

3

1.0

0.8

0.5

0.0

0.5

0.8

1.0

Problem 6. Write a function to plot g(x, y) = sin(x) sin(y)
xy on the domain [−2π, 2π]× [−2π, 2π].

1. Create 2 subplots: one with a heat map of g, and one with a contour map of g. Choose

an appropriate number of level curves, or specify the curves yourself.

2. Set the limits of each subplot to [−2π, 2π]× [−2π, 2π].

3. Choose a non-default color scheme.

4. Include the color scale bar for each subplot.

12 Lab 5. Introduction to Matplotlib

Additional Material
Further Reading and Tutorials

Plotting takes some getting used to. See the following materials for more examples.

� https://www.labri.fr/perso/nrougier/teaching/matplotlib/.

� https://matplotlib.org/users/pyplot_tutorial.html.

� http://scipy-lectures.org/intro/matplotlib/.

� The Matplotlib Appendix in this manual.

3-D Plotting

Matplotlib can also be used to plot 3-dimensional surfaces. The following code produces the surface

corresponding to g(x, y) = sin(x) sin(y).

Create the domain and calculate the range like usual.

>>> x = np.linspace(-np.pi, np.pi, 200)

>>> y = np.copy(x)

>>> X, Y = np.meshgrid(x, y)

>>> Z = np.sin(X) * np.sin(Y)

Draw the corresponding 3-D plot using some extra tools.

>>> from mpl_toolkits.mplot3d import Axes3D

>>> fig = plt.figure()

>>> ax = fig.add_subplot(1,1,1, projection='3d')

>>> ax.plot_surface(X, Y, Z)

>>> plt.show()

3 2 1 0 1 2 3 32
10
12

3

0.75
0.50
0.25

0.00
0.25
0.50
0.75

https://www.labri.fr/perso/nrougier/teaching/matplotlib/
https://matplotlib.org/users/pyplot_tutorial.html
http://scipy-lectures.org/intro/matplotlib/

13

Animations
Lines and other graphs can be altered dynamically to produce animations. Follow these steps to

create a Matplotlib animation:

1. Calculate all data that is needed for the animation.

2. De�ne a �gure explicitly with plt.figure() and set its window boundaries.

3. Draw empty objects that can be altered dynamically.

4. De�ne a function to update the drawing objects.

5. Use matplotlib.animation.FuncAnimation().

The submodule matplotlib.animation contains the tools for putting together and managing

animations. The function matplotlib.animation.FuncAnimation() accepts the �gure to animate,

the function that updates the �gure, the number of frames to show before repeating, and how fast

to run the animation (lower numbers mean faster animations).

from matplotlib.animation import FuncAnimation

def sine_animation():

Calculate the data to be animated.

x = np.linspace(0, 2*np.pi, 200)[:-1]

y = np.sin(x)

Create a figure and set the window boundaries of the axes.

fig = plt.figure()

plt.xlim(0, 2*np.pi)

plt.ylim(-1.2, 1.2)

Draw an empty line. The comma after 'drawing' is crucial.

drawing, = plt.plot([],[])

Define a function that updates the line data.

def update(index):

drawing.set_data(x[:index], y[:index])

return drawing, # Note the comma!

a = FuncAnimation(fig, update, frames=len(x), interval=10)

plt.show()

Try using the following function in place of update(). Can you explain why this animation is

di�erent from the original?

def wave(index):

drawing.set_data(x, np.roll(y, index))

return drawing,

To animate multiple objects at once, de�ne the objects separately and make sure the update

function returns both objects.

14 Lab 5. Introduction to Matplotlib

def sine_cosine_animation():

x = np.linspace(0, 2*np.pi, 200)[:-1]

y1, y2 = np.sin(x), np.cos(x)

fig = plt.figure()

plt.xlim(0, 2*np.pi)

plt.ylim(-1.2, 1.2)

sin_drawing, = plt.plot([],[])

cos_drawing, = plt.plot([],[])

def update(index):

sin_drawing.set_data(x[:index], y1[:index])

cos_drawing.set_data(x[:index], y2[:index])

return sin_drawing, cos_drawing,

a = FuncAnimation(fig, update, frames=len(x), interval=10)

plt.show()

Animations can also be 3-dimensional. The only major di�erence is an extra operation to

set the 3-dimensional component of the drawn object. The code below animates the space curve

parametrized by the following equations:

x(θ) = cos(θ) cos(6θ), y(θ) = sin(θ) cos(6θ), z(θ) = θ
10

def rose_animation_3D():

theta = np.linspace(0, 2*np.pi, 200)

x = np.cos(theta) * np.cos(6*theta)

y = np.sin(theta) * np.cos(6*theta)

z = theta / 10

fig = plt.figure()

ax = fig.gca(projection='3d') # Make the figure 3-D.

ax.set_xlim3d(-1.2, 1.2) # Use ax instead of plt.

ax.set_ylim3d(-1.2, 1.2)

ax.set_aspect("equal")

drawing, = ax.plot([],[],[]) # Provide 3 empty lists.

Update the first 2 dimensions like usual, then update the 3-D component.

def update(index):

drawing.set_data(x[:index], y[:index])

drawing.set_3d_properties(z[:index])

return drawing,

a = FuncAnimation(fig, update, frames=len(x), interval=10, repeat=False)

plt.show()

Bibliography

[Hun07] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing In Science & Engineering,

9(3):90�95, 2007. [1]

15

	Introduction to Matplotlib
	Bibliography

