
8 Data Visualization

Lab Objective: This lab demonstrates how to communicate information through clean, concise,

and honest data visualization. We recommend completing the exercises in a Jupyter Notebook.

The Importance of Visualizations
Visualizations of data can reveal insights that are not immediately obvious from simple statistics.

The data set in the following exercise is known as Anscombe's quartet. It is famous for demonstrating

the importance of data visualization.

Problem 1. The �le anscombe.npy contains the quartet of data points shown in the table

below. For each section of the quartet,

� Plot the data as a scatter plot on the box [0, 20]× [0, 13].

� Use scipy.stats.linregress() to calculate the slope and intercept of the least squares

regression line for the data and its correlation coe�cient (the �rst three return values).

� Plot the least squares regression line over the scatter plot on the domain x ∈ [0, 20].

� Report the mean and variance in x and y, the slope and intercept of the regression line,

and the correlation coe�cient. Compare these statistics to those of the other sections.

� Describe how the section is similar to the others and how it is di�erent.

I II III IV

x y x y x y x y

10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58

8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76

13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71

9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84

11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47

14.0 9.96 14.0 8.10 14.0 8.84 8.0 7.04

6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25

4.0 4.26 4.0 3.10 4.0 5.39 19.0 12.50

12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56

7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91

5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89
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Improving Specific Types of Visualizations
E�ective data visualizations show speci�c comparisons and relationships in the data. Before designing

a visualization, decide what to look for or what needs to be communicated. Then choose the visual

scheme that makes sense for the data. The following sections demonstrate how to improve commonly

used plots to communicate information visually.

Line Plots
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Figure 8.1: Line plots can be used to visualize and compare mathematical functions. For example,

this �gure shows the �rst nine Chebyshev polynomials in one plot (left) and small multiples (right).

Using small multiples makes comparison easy and shows how each polynomial changes as n increases.

>>> import numpy as np

>>> from matplotlib import pyplot as plt

# Plot the first 9 Chebyshev polynomials in the same plot.

>>> T = np.polynomial.Chebyshev.basis

>>> x = np.linspace(-1, 1, 200)

>>> for n in range(9):

... plt.plot(x, T(n)(x), label="n = "+str(n))

...

>>> plt.axis([-1.1, 1.1, -1.1, 1.1]) # Set the window limits.

>>> plt.legend(loc="right")

A line plot connects ordered (x, y) points with straight lines, and is best for visualizing one or

two ordered arrays, such as functional outputs over an ordered domain or a sequence of values over

time. Sometimes, plotting multiple lines on the same plot helps the viewer compare two di�erent

data sets. However, plotting several lines on top of each other makes the visualization di�cult to

read, even with a legend. For example, Figure 8.1 shows the �rst nine Chebyshev polynomials, a

family of orthogonal polynomials that satis�es the recursive relation

T0(x) = 1, T1(x) = x, Tn+1 = 2xTn(x)− Tn−1(x).
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The plot on the right makes comparison easier by using small multiples. Instead of using a legend,

the �gure makes a separate subplot with a title for each polynomial. Adjusting the �gure size and

the line thickness also makes the information easier to read.

Note

Matplotlib titles and annotations can be formatted with LATEX, a system for creating technical

documents.a To do so, use an r before the string quotation mark and surround the text with

dollar signs. For example, add the following line of code to the loop from the previous example.

... plt.title(r"$T_{}(x)$".format(n))

The format() method inserts the input n at the curly braces. The title of the sixth

subplot, instead of being �n = 5,� will then be �T5(x).�

aSee http://www.latex-project.org/ for more information.

Problem 2. The n+ 1 Bernstein basis polynomials of degree n are de�ned as follows:

bv,n(x) =

(
n

v

)
xv(1− x)n−v, v = 0, 1, . . . , n

Plot the �rst 10 Bernstein basis polynomials (n = 0, 1, 2, 3) as small multiples on the

domain [0, 1]× [0, 1]. Label the subplots for clarity, adjust tick marks and labels for simplicity,

and set the window limits of each plot to be the same. Consider arranging the subplots so that

the rows correspond with n and the columns with v.

Hint: The constant
(
n
v

)
= n!

v!(n−v)! is called the binomial coe�cient and can be e�ciently

computed with scipy.special.comb().

Bar Charts

Lobster ThermadorBaked BeansCrispy BaconSmoked SausageHannibal HamEggs Spam
0

5

10

15

20

0 5 10 15 20

Lobster Thermador

Baked Beans

Crispy Bacon

Smoked Sausage

Hannibal Ham

Eggs

Spam

Figure 8.2: Bar charts are used to compare quantities between categorical variables. The labels on

the vertical bar chart (left) are more di�cult to read than the labels on the horizontal bar chart

(right). Although the labels can be rotated, horizontal text is much easier to read than vertical text.

http://www.latex-project.org/
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>>> labels = ["Lobster Thermador", "Baked Beans", "Crispy Bacon",

... "Smoked Sausage", "Hannibal Ham", "Eggs", "Spam"]

>>> values = [10, 11, 18, 19, 20, 21, 22]

>>> positions = np.arange(len(labels))

>>> plt.bar(positions, values, align="center") # Vertical bar chart.

>>> plt.xticks(positions, labels)

>>> plt.show()

>>> plt.barh(positions, values, align="center") # Horizontal bar char (better).

>>> plt.yticks(positions, labels)

>>> plt.tight_layout()

>>> plt.show()

A bar chart plots categorical data in a sequence of bars. They are best for small, discrete, one-

dimensional data sets. In Matplotlib, plt.bar() creates a vertical bar chart or plt.barh() creates

a horizontal bar chart. These functions receive the locations of each bar followed by the height of

each bar (as lists or arrays). In most situations, horizontal bar charts are preferable to vertical bar

charts because horizontal labels are easier to read than vertical labels. Data in a bar chart should

also be sorted in a logical way, such as alphabetically, by size, or by importance.

Histograms
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Figure 8.3: Histograms are used to show the distribution of one-dimensional data. Experimenting

with di�erent values for the bin size is important when plotting a histogram. Using only 10 bins

(left) doesn't give a good sense for how the randomly generated data is distributed. However, using

35 bins (right) reveals the shape of a normal distribution.

>>> data = np.random.normal(size=10000)

>>> fig, ax = plt.subplots(1, 2)

>>> ax[0].hist(data, bins=10)

>>> ax[1].hist(data, bins=35)

A histogram partitions an interval into a number of bins and counts the number of values

that fall into each bin. Histograms are ideal for visualizing how unordered data in a single array
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is distributed over an interval. For example, if data are drawn from a probability distribution, a

histogram approximates the distribution's probability density function. Use plt.hist() to create

a histogram. The arguments bins and range specify the number of bins to draw and over what

domain. A histogram with too few or too many bins will not give a clear view of the distribution.

Scatter Plots
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Figure 8.4: Scatter plots show correlations between variables by plotting markers at coordinate

points. The �gure above displays randomly perturbed data that is visualized using two scatter plots

with alpha=.5 and edgecolor='none'. The default (left) makes it harder to see correlation and

pattern whereas making the axes equal better reveals the oscillatory behavior in the perturbed sine

wave.

>>> np.random.seed(0)

>>> x = np.linspace(0,10*np.pi,200) + np.random.normal(size=200)

>>> y = np.sin(x) + np.random.normal(size=200)

>>> plt.scatter(x, y, alpha=.5, edgecolor='none')

>>> plt.show()

>>> plt.scatter(x, y, alpha=.5, edgecolor='none')

>>> plt.axis('equal')

>>> plt.show()

A scatter plot draws (x, y) points without connecting them. Scatter plots are best for displaying

data sets without a natural order, or where each point is a distinct, individual instance. They are

frequently used to show correlation between variables in a data set. Use plt.scatter() to create a

scatter plot.1

Similar data points in a scatter plot may overlap, as in Figure 8.4. Specifying an alpha value

reveals overlapping data by making the markers transparent (see Figure 8.5 for an example). The

keyword alpha accepts values between 0 (completely transparent) and 1 (completely opaque). When

plotting lots of overlapping points, the outlines on the markers can make the visualization look

cluttered. Setting the edgecolor keyword to zero removes the outline and improves the visualization.

1Scatter plots can also be drawn with plt.plot() by specifying a point marker such as '.', ',', 'o', or '+'. The

keywords s and c can be used to change the marker size and marker color, respectively.
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Problem 3. The �le MLB.npy contains measurements from over 1,000 recent Major League

Baseball players, compiled by UCLA.a Each row in the array represents a player; the columns

are the player's height (in inches), weight (in pounds), and age (in years), in that order.

Create several visualizations to show the correlations between height, weight, and age in

the MLB data set. Use at least one scatter plot. Adjust the marker size, plot a regression line,

change the window limits, and use small multiples where appropriate.

aSee http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_MLB_HeightsWeights.

Problem 4. The �le earthquakes.npy contains data from over 17,000 earthquakes between

2000 and 2010 that were at least a 5 on the Richter scale.a Each row in the array represents an

earthquake; the columns are the earthquake's date (as a fraction of the year), magnitude (on

the Richter scale), longitude, and latitude, in that order.

Because each earthquake is a distinct event, a good way to start visualizing this data

might be a scatter plot of the years versus the magnitudes of each earthquake.

>>> year, magnitude, longitude, latitude = np.load("earthquakes.npy").T

>>> plt.plot(year, magnitude, '.')

>>> plt.xlabel("Year")

>>> plt.ylabel("Magnitude")
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Unfortunately, this plot communicates very little information because the data is so clut-

tered. Describe the data with at least two better visualizations. Include line plots, scatter plots,

and histograms as appropriate. Your plots should answer the following questions:

1. How many earthquakes happened every year?

2. How often do stronger earthquakes happen compared to weaker ones?

http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_MLB_HeightsWeights
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3. Where do earthquakes happen? Where do the strongest earthquakes happen?

(Hint: Use plt.axis("equal") or ax.set_aspect("equal") to �x the aspect ratio,

which may improve comparisons between longitude and latitude.)

aSee http://earthquake.usgs.gov/earthquakes/search/.

Hexbins
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Figure 8.5: Hexbins can be used instead of using a three-dimensional histogram to show the distribu-

tion of two-dimensional data. Choosing the right gridsize will give a better picture of the distribution.

The �gure above shows random data plotted as hexbins with a gridsize of 10 (left) and 25 (right).

Hexbins use color to show height via a colormap and both histograms above use the 'inferno'

colormap.

# Add random draws from various distributions in two dimensions.

>>> a = np.random.exponential(size=1000) + np.random.normal(size=1000) + 5

>>> b = np.random.exponential(size=1000) + 2*np.random.normal(size=1000)

>>> x = np.hstack((a, b, 2*np.random.normal(size=1000)))

>>> y = np.hstack((b, a, np.random.normal(size=1000)))

# Plot the samples with hexbins of gridsize 10 and 25.

>>> fig, axes = plt.subplots(1, 2)

>>> window = [x.min(), x.max(), y.min(), y.max()]

>>> for ax, size in zip(axes, [10, 25]):

... ax.hexbin(x, y, gridsize=size, cmap='inferno')

... ax.axis(window)

... ax.set_aspect("equal")

...

>>> plt.show()

http://earthquake.usgs.gov/earthquakes/search/


8 Lab 8. Data Visualization

A hexbin is a way of representing the frequency of ocurrances in a two-dimensional plane. Similar

to a histogram, which sorts one-dimensional data into bins, a hexbin sorts two-dimensional data into

hexagonal bins arranged in a grid and uses color instead of height to show frequency. Creating

an e�ective hexbin relies on choosing an appropriate gridsize and colormap. The colormap is a

function that assigns data points to an ordering of colors. Use plt.hexbin() to create a hexbin and

use the cmap keyword to specify the colormap.

Heat Maps and Contour Plots
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Figure 8.6: Heat maps visualize three-dimensional functions or surfaces by using color to represent

the value in one dimension. With continuous data, it can be hard to identify regions of interest.

Contour plots solve this problem by visualizing the level curves of the surface. Top left: heat map.

Top right: contour plot. Bottom left: heat map. Bottom right: contours plotted on a heat map.

# Construct a 2-D domain with np.meshgrid() and calculate f on the domain.

>>> x = np.linspace(-1.5, 1.5, 200)

>>> X, Y = np.meshgrid(x, x)

>>> Z = Y**2 - X**3 + X**2

# Plot f using a heat map, a contour map, and a filled contour map.

>>> fig, ax = plt.subplots(2,2)

>>> ax[0,0].pcolormesh(X, Y, Z, cmap="viridis") # Heat map.

>>> ax[0,1].contour(X, Y, Z, 6, cmap="viridis") # Contour map.

>>> ax[1,0].contourf(X, Y, Z, 12, cmap="magma") # Filled contour map.
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# Plot specific level curves and a heat map with a colorbar.

>>> ax[1,1].contour(X, Y, Z, [-1, -.25, 0, .25, 1, 4], colors="white")

>>> cax = ax[1,1].pcolormesh(X, Y, Z, cmap="magma")

>>> fig.colorbar(cax, ax=ax[1,1])

>>> plt.show()

Let f : R2 → R be a scalar-valued function on a 2-dimensional domain. A heat map of f

assigns a color to each (x, y) point in the domain based on the value of f(x, y), while a contour plot

is a drawing of the level curves of f . The level curve corresponding to the constant c is the set

{(x, y) | c = f(x, y)}. A �lled contour plot colors in the sections between the level curves and is a

discretized version of a heat map. The values of c corresponding to the level curves are automatically

chosen to be evenly spaced over the range of values of f on the domain. However, it is sometimes

better to strategically specify the curves by providing a list of c constants.

Consider the function f(x, y) = y2 − x3 + x2 on the domain [− 3
2 ,

3
2 ] × [− 3

2 ,
3
2 ]. A heat map of

f reveals that it has a large basin around the origin. Since f(0, 0) = 0, choosing several level curves

close to 0 more closely describes the topography of the basin. The fourth subplot in 8.6 uses the

curves with c = −1, − 1
4 , 0, 1

4 , 1, and 4.

When plotting hexbins, heat maps, and contour plots, be sure to choose a colormap that best

represents the data. Avoid using spectral or rainbow colormaps like "jet" because they are not

perceptually uniform, meaning that the rate of change in color is not constant. Because of this, data

points may appear to be closer together or farther apart than they actually are. This creates visual

false positives or false negatives in the visualization and can a�ect the interpretation of the data.

As a default, we recommend using the sequential colormaps "viridis" or "inferno" because they

are designed to be perceptually uniform and colorblind friendly. For the complete list of Matplotlib

color maps, see http://matplotlib.org/examples/color/colormaps_reference.html.

Problem 5. The Rosenbrock function is de�ned as

f(x, y) = (1− x)2 + 100(y − x2)2.

The minimum value of f is 0, which occurs at the point (1, 1) at the bottom of a steep, banana-

shaped valley of the function.

Use a heat map and a contour plot to visualize the Rosenbrock function. Also plot the

minimizer (1, 1). Use a di�erent sequential colormap for each visualization.

Best Practices
Good scienti�c visualizations make comparison easy and clear. The eye is very good at detecting

variation in one dimension and poor in two or more dimensions. For example, consider Figure 8.7.

Despite the di�culty, most people can probably guess which slice of a pie chart is the largest or

smallest. However, it's almost impossible to con�dently answer the question by how much? The bar

charts may not be as aesthetically pleasing but they make it much easier to precisely compare the

data. Avoid using pie charts as well as other visualizations that make accurate comparison di�cult,

such as radar charts, bubble charts, and stacked bar charts.

http://matplotlib.org/examples/color/colormaps_reference.html
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Figure 8.7: The pie charts on the left may be more colorful but it's extremely di�cult to quantify

the di�erence between each slice. Instead, the horizontal bar charts on the right make it very easy

to see the di�erence between each variable.

No visualization perfectly represents data, but some are better than others. Finding the best

visualization for a data set is an iterative process. Experiment with di�erent visualizations by ad-

justing their parameters: color, scale, size, shape, position, and length. It may be necessary to use a

data transformation or visualize various subsets of the data. As you iterate, keep in mind the saying

attributed to George Box: �All models are wrong, but some are useful.� Do whatever is needed to

make the visualization useful and e�ective.
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Figure 8.8: Chartjunk refers to anything that does not communicate data. In the image on the

left, the cartoon monster distorts the bar chart and manipulates the feelings of the viewer to think

negatively about the results. The image on the right shows the same data without chartjunk, making

it simple and very easy to interpret the data objectively.

Good visualizations are as simple as possible and no simpler. Edward Tufte coined the term

chartjunk to mean anything (pictures, icons, colors, and text) that does not represent data or is

distracting. Though chartjunk might appear to make data graphics more memorable than plain

visualizations, it is more important to be clear and precise in order to prevent misin-

terpretation. The physicist Richard Feynman said, �For a successful technology, reality must take

precedence over public relations, for Nature cannot be fooled.� Remove chartjunk and anything that

prevents the viewer from objectively interpreting the data.
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Figure 8.9: The chart on the left is an example of a dishonest graphic shown at a United States

congressional hearing in 2015. The chart on the right shows a more accurate representation of the

data by showing the y-axis and revealing the missing data from 2008. Source: PolitiFact.

Visualizations should be honest. Figure 8.9 shows how visualizations can be dishonest. The

misleading graphic on the left was used as evidence in a United States congressional hearing in 2015.
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With the y-axis completely removed, it is easy to miss that each line is shown on a di�erent y-axis

even though they are measured in the same units. Furthermore, the chart fails to indicate that data

is missing from the year 2008. The graphic on the right shows a more accurate representation of the

data.2

Never use data visualizations to deceive or manipulate. Always present information on who

created it, where the data came from, how it was collected, whether it was cleaned or transformed,

and whether there are con�icts of interest or possible biases present. Use speci�c titles and axis

labels, and include units of measure. Choose an appropriate window size and use a legend or other

annotations where appropriate.

Problem 6. The �le countries.npy contains information from 20 di�erent countries. Each

row in the array represents a di�erent country; the columns are the 2015 population (in millions

of people), the 2015 GDP (in billions of US dollars), the average male height (in centimeters),

and the average female height (in centimeters), in that order.a

The countries corresponding are listed below in order.

countries = ["Austria", "Bolivia", "Brazil", "China",

"Finland", "Germany", "Hungary", "India",

"Japan", "North Korea", "Montenegro", "Norway",

"Peru", "South Korea", "Sri Lanka", "Switzerland",

"Turkey", "United Kingdom", "United States", "Vietnam"]

Visualize this data set with at least four plots, using at least one scatter plot, one his-

togram, and one bar chart. List the major insights that your visualizations reveal.

(Hint: consider using np.argsort() and fancy indexing to sort the data for the bar chart.)

a See https://en.wikipedia.org/wiki/List_of_countries_by_GDP_(nominal),

https://en.wikipedia.org/wiki/List_of_countries_and_dependencies_by_population, and

http://www.averageheight.co/.

For more about data visualization, we recommend the following books and websites.

� How to Lie with Statistics by Darrell Hu� (1954).

� The Visual Display of Quantitative Information by Edward Tufte (2nd edition).

� Visual Explanations by Edward Tufte.

� Envisioning Information by Edward Tufte.

� Beautiful Evidence by Edward Tufte.

� The Functional Art by Alberto Cairo.

� Visualization Analysis and Design by Tamara Munzner.

� Designing New Default Colormaps: https://bids.github.io/colormap/.

2For more information about this graphic, visit http://www.politifact.com/truth-o-meter/statements/2015/

oct/01/jason-chaffetz/chart-shown-planned-parenthood-hearing-misleading-/.

https://en.wikipedia.org/wiki/List_of_countries_by_GDP_(nominal)
https://en.wikipedia.org/wiki/List_of_countries_and_dependencies_by_population
http://www.averageheight.co/
https://bids.github.io/colormap/
http://www.politifact.com/truth-o-meter/statements/2015/oct/01/jason-chaffetz/chart-shown-planned-parenthood-hearing-misleading-/
http://www.politifact.com/truth-o-meter/statements/2015/oct/01/jason-chaffetz/chart-shown-planned-parenthood-hearing-misleading-/
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