
9 Polynomial
Interpolation

Lab Objective: Learn and compare three methods of polynomial interpolation: standard Lagrange

interpolation, Barycentric Lagrange interpolation and Chebyshev interpolation. Explore Runge's phe-

nomenon and how the choice of interpolating points a�ect the results. Use polynomial interpolation

to study air polution by approximating graphs of particulates in air.

Polynomial Interpolation
Polynomial interpolation is the method of �nding a polynomial that matches a function at speci�c

points in its range. More precisely, if f(x) is a function on the interval [a, b] and p(x) is a poly-

nomial then p(x) interpolates the function f(x) at the points x0, x1, . . . , xn if p(xj) = f(xj) for all

j = 0, 1, . . . , n. In this lab most of the discussion is focused on using interpolation as a means of

approximating functions or data, however, polynomial interpolation is useful in a much wider array

of applications.

Given a function f(x) and a set of unique points {xi}ni=0, it can be shown that there exists

a unique interpolating polynomial p(x). That is, there is one and only one polynomial of degree n

that interpolates f(x) through those points. This uniqueness property is why, for the remainder of

this lab, an interpolating polynomial is referred to as the interpolating polynomial. One approach to

�nding the unique interpolating polynomial of degree n is Lagrange interpolation.

Lagrange interpolation
Given a set {xi}ni=1 of n points to interpolate, a family of n basis functions with the following property

is constructed:

Lj(xi) =

{
0 if i 6= j

1 if i = j
.

The Lagrange form of this family of basis functions is

Lj(x) =

n∏
k=1,k 6=j

(x− xk)

n∏
k=1,k 6=j

(xj − xk)
(9.1)

1

2 Lab 9. Polynomial Interpolation

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(a) Interpolation using 5 equally spaced points.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(b) Interpolation using 11 equally spaced points.

Figure 9.1: Interpolations of Runge's function f(x) = 1
1+25x2 with equally spaced interpolating

points.

Each of these Lagrange basis functions is a polynomial of degree n−1 and has the necessary properties
as given above.

Problem 1. De�ne a function lagrange() that will be used to construct and evaluate an

interpolating polynomial on a domain of x values. The function should accept two NumPy

arrays of length n which contain the x and y values of the interpolating points as well as a

NumPy array of values of length m at which the interpolating polynomial will be evaluated.

Within lagrange(), write a subroutine that will evaluate each of the n Lagrange basis

functions at every point in the domain. It may be helpful to follow these steps:

1. Compute the denominator of each Lj (as in Equation 9.1) .

2. Using the previous step, evaluate Lj at all points in the computational domain (this will

give you m values for each Lj .)

3. Combine the results into an n×m NumPy array, consisting of each of the n Lj evaluated

at each of the m points in the domain.

You may �nd the functions np.product() and np.delete() to be useful while writing

this method.

Lagrange interpolation is completed by combining the Lagrange basis functions with the y-

values of the function to be interpolated yi = f(xi) in the following manner:

p(x) =

n∑
j=1

yjLj(x) (9.2)

This will create the unique interpolating polynomial.

Since polynomials are typically represented in their expanded form with coe�cients on each of

the terms, it may seem like the best option when working with polynomials would be to use Sympy, or

NumPy's poly1d class to compute the coe�cients of the interpolating polynomial individually. This

is rarely the best approach, however, since expanding out the large polynomials that are required can

quickly lead to instability (especially when using large numbers of interpolating points). Instead, it

3

is usually best just to leave the polynomials in unexpanded form (which is still a polynomial, just not

a pretty-looking one), and compute values of the polynomial directly from this unexpanded form.

Evaluate the polynomial (x-2)(x+1) at 10 points without expanding the ←↩
expression.

>>> pts = np.arange(10)

>>> (pts - 2) * (pts + 1)

array([2, 0, 0, 2, 6, 12, 20, 30, 42, 56])

In the given example, there would have been no instability if the expression had actually been

expanded but in the case of a large polynomial, stability issues can dominate the computation.

Although the coe�cients of the interpolating polynomials will not be explicitly computed in this lab,

polynomials are still being used, albeit in a di�erent form.

Problem 2. Complete the implementation of lagrange().

Evaluate the interpolating polynomial at each point in the domain by combining the y

values of the interpolation points and the evaluated Lagrange basis functions from Problem

1 as in Equation 9.2. Return the �nal array of length m that consists of the interpolating

polynomial evaluated at each point in the domain.

You can test your function by plotting Runge's function f(x) = 1
1+25x2 and your interpo-

lating polynomial on the same plot for di�erent values of n equally spaced interpolating values

then comparing your plot to the plots given in Figure 9.1.

The Lagrange form of polynomial interpolation is useful in some theoretical contexts and is

easier to understand than other methods, however, it has some serious drawbacks that prevent it

from being a useful method of interpolation. First, Lagrange interpolation is O(n2) where other

interpolation methods are O(n2) (or faster) at startup but only O(n) at run-time, Second, Lagrange

interpolation is an unstable algorithm which causes it to return innacurate answers when larger num-

bers of interpolating points are used. Thus, while useful in some situations, Lagrange interpolation

is not desirable in most instances.

Barycentric Lagrange interpolation
Barycentric Lagrange interpolation is simple variant of Lagrange interpolation that performs much

better than plain Lagrange interpolation. It is essentially just a rearrangement of the order of

operations in Lagrange multiplication which results in vastly improved perfomance, both in speed

and stability.

Barycentric Lagrange interpolation relies on the observation that each basis function Lj can be

rewritten as

Lj(x) =
w(x)

(x− xj)
wj

where

w(x) =

n∏
j=1

(x− xj)

and

wj =
1∏n

k=1,k 6=j(xj − xk)
.

4 Lab 9. Polynomial Interpolation

The wj 's are known as the barycentric weights.

Using the previous equations, the interpolating polynomial can be rewritten

p(x) = w(x)

n∑
j=1

wjyj
x− xj

which is the �rst barycentric form. The computation of w(x) can be avoided by �rst noting that

1 = w(x)

n∑
j=1

wj
x− xj

which allows the interpolating polynomial to be rewriten as

p(x) =

n∑
j=1

wjyj
x− xj

n∑
j=1

wj
x− xj

This form of the Lagrange interpolant is known as the second barycentric form which is the form

used in Barycentric Lagrange interpolation. So far, the changes made to Lagrange interpolation have

resulted in an algorithm that is O(n) once the barycentric weights (wj) are known. The following

adjustments will improve the algorithm so that it is numerically stable and later discussions will

allow for the quick addition of new interpolating points after startup.

The second barycentric form makes it clear that any factors that are common to the wk can

be ignored (since they will show up in both the numerator and denominator). This allows for an

important improvement to the formula that will prevent over�ow error in the arithmetic. When com-

puting the barycentric weights, each element of the product
∏n
k=1,k 6=j(xj − xk) should be multiplied

by C−1, where 4C is the width of the interval being interpolated (C is known as the capacity of

the interval). In e�ect, this scales each barycentric weight by C1−n which helps to prevent over�ow

during computation. Thus, the new barycentric weights are given by

wj =
1∏n

k=1,k 6=j [(xj − xk)/C]
.

Once again, this change is possible since the extra factor C1−n is cancelled out in the �nal product.

This process is summed up in the following code:

Given a NumPy array xint of interpolating x-values, calculate the weights.

>>> n = len(xint) # Number of interpolating points.

>>> w = np.ones(n) # Array for storing barycentric weights.

Calculate the capacity of the interval.

>>> C = (np.max(xint) - np.min(xint)) / 4

>>> shuffle = np.random.permutation(n-1)

>>> for j in range(n):

>>> temp = (xint[j] - np.delete(xint, j)) / C

>>> temp = temp[shuffle] # Randomize order of product.

>>> w[j] /= np.product(temp)

5

The order of temp was randomized so that the arithmetic does not over�ow due to poor ordering

(if standard ordering is used, over�ow errors can be encountered since all of the points of similar

magnitude are multiplied together at once). When these two �xes are combined, the Barycentric

Algorithm becomes numerically stable.

Problem 3. Create a class that performs Barycentric Lagrange interpolation. The constructor

of your class should accept two NumPy arrays which contain the x and y values of the interpo-

lation points. Store these arrays as attributes. In the constructor, compute the corresponding

barycentric weights and store the resulting array as a class attribute. Be sure that the relative

ordering of the arrays remains unchanged.

Implement the __call__() method so that it accepts a NumPy array of values at which

to evaluate the interpolating polynomial and returns an array of the evaluated points. Your

class can be tested in the same way as the Lagrange function written in Problem 2

Achtung!

As currently explained and implemented, the Barycentric class from Problem 3 will fail when

a point to be evaluated exactly matches one of the x-values of the interpolating points. This

happens because a divide by zero error is encountered in the �nal step of the algorithm. The

�x for this, although not required here, is quite easy: keep track of any problem points and

replace the �nal computed value with the corresponding y-value (since this is a point that is

exactly interpolated). If you do not implement this �x, just be sure not to pass in any points

that exactly match your interpolating values.

Another advantage of the barycentric method is that it allows for the addition of new interpolat-

ing points in O(n) time. Given a set of existing barycentric weights {wj}nj=1 and a new interpolating

point xi, the new barycentric weight is given by

wi =
1∏n

k=1(xi − xk)
.

In addition to calculating the new barycentric weight, all existing weights should be updated as

follows wj =
wj

xj−xi
.

Problem 4. Include a method in the class written in Problem 3 that allows for the addition of

new interpolating points by updating the barycentric weights. Your function should accept two

NumPy arrays which contain the x and y values of the new interpolation points. Update and

store the old weights then extend the class attribute arrays that store the weights, and the x

and y values of the interpolation points with the new data. When updating all class attributes,

make sure to maintain the same relative order.

The implementation outlined here calls for the y-values of the interpolating points to be known

during startup, however, these values are not needed until run-time This allows the y-values to be

changed without having to recompute the barycentric weights. This is an additional advantage of

Barycentric Lagrange interpolation.

6 Lab 9. Polynomial Interpolation

Scipy’s Barycentric Lagrange class

Scipy includes a Barycentric interpolator class. This class includes the same functionality as the class

described in Problems 3 and 4 in addition to the ability to update the y-values of the interpolation

points. The following code will produce a �gure similar to Figure 9.1b.

>>> from scipy.interpolate import BarycentricInterpolator

>>> f = lambda x: 1/(1+25 * x**2) # Function to be interpolated.

Obtain the Chebyshev extremal points on [-1,1].

>>> n = 11

>>> pts = np.linspace(-1, 1, n)

>>> domain = np.linspace(-1, 1, 200)

>>> poly = BarycentricInterpolator(pts[:-1])

>>> poly.add_xi(pts[-1]) # Oops, forgot one of the points.

>>> poly.set_yi(f(pts)) # Set the y values.

>>> plt.plot(domain, f(domain))

>>> plt.plot(domain, poly.eval(domain))

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.2

0.0

0.2

0.4

0.6

0.8

1.0

(a) Polynomial using 5 Chebyshev roots.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

(b) Polynomial using 11 Chebyshev roots.

Figure 9.2: Example of overcoming Runge's phenomenon by using Chebyshev nodes for

interpolating values. Plots made using Runge's function f(x) = 1
1+25x2 . Compare with Figure 9.1

Chebyshev Interpolation
Chebyshev Nodes

As has been mentioned previously, the Barycentric version of Lagrange interpolation is a stable

process that does not accumulate large errors, even with extreme inputs. However, polynomial

interpolation itself is, in general, an ill-conditioned problem. Thus, even small changes in the in-

terpolating values can give drastically di�erent interpolating polynomials. In fact, poorly chosen

interpolating points can result in a very bad approximation of a function. As more points are added,

this approximation can worsen. This increase in error is called Runge's phenomenon.

7

The set of equally spaced points is an example of a set of points that may seem like a reasonable

choice for interpolation but in reality produce very poor results. Figure 9.1 gives an example of

this using Runge's function. As the number of interpolating points increases, the quality of the

approximation deteriorates, especially near the endpoints.

Although polynomial interpolation has a great deal of potential error, a good set of interpolating

points can result in fast convergence to the original function as the number of interpolating points

is increased. One such set of points is the Chebyshev extremal points which are related to the

Chebyshev polynomials (to be discussed shortly). The n + 1 Chebyshev extremal points on the

interval [a, b] are given by the formula yj =
1
2 (a+ b+(b−a) cos(jπn)) for j = 0, 1, . . . , n. These points

are shown in Figure 9.3. One important feature of these points is that they are clustered near the

endpoints of the interval, this is key to preventing Runge's phenomenon.

Problem 5. Write a function that de�nes a domain x of 400 equally spaced points on the

interval [−1, 1]. For n = 22, 23, . . . , 28, repeat the following experiment.

1. Interpolate Runge's function f(x) = 1/(1+25x2) with n equally spaced points over [−1, 1]
using SciPy's BarycentricInterpolator class, resulting in an approximating function f̃ .

Compute the absolute error ‖f(x)− f̃(x)‖∞ of the approximation using la.norm() with

ord=np.inf.

2. Interpolate Runge's function with n + 1 Chebyshev extremal points, also via SciPy, and

compute the absolute error.

Plot the errors of each method against the number of interpolating points n in a log-log plot.

To verify that your �gure make sense, try plotting the interpolating polynomials with the

original function for a few of the larger values of n.

Figure 9.3: The Chebyshev extremal points. The n points where the Chebyshev polynomial of degree

n reaches its local extrema. These points are also the projection onto the x-axis of n equally spaced

points around the unit circle.

8 Lab 9. Polynomial Interpolation

Chebyshev Polynomials

The Chebyshev roots and Chebyshev extremal points are closely related to a set of polynomials

known as the Chebyshev polynomials. The �rst two Chebyshev polynomials are de�ned as T0(x) = 1

and T1(x) = x. The remaining polynomials are de�ned by the recursive algorithm Tn+1(x) =

2xTn(x) − Tn−1(x). The Chebyshev polynomials form a complete basis for the polynomials in R
which means that for any polynomial p(x), there exists a set of unique coe�cients {ak}nk=0 such that

p(x) =

n∑
k=0

akTk.

Finding the Chebyshev representation of an interpolating polynomial is a slow process (domi-

nated by matrix multiplication or solving a linear system), but when the interpolating values are the

Chebyshev extrema, there exists a fast algorithm for computing the Chebyshev coe�cients of the

interpolating polynomial. This algorithm is based on the Fast Fourier transform which has temporal

complexity O(n log n). Given the n + 1 Chebyshev extremal points yj = cos(jπn) for j = 0, 1, . . . , n

and a function f , the unique n-degree interpolating polynomial p(x) is given by

p(x) =

n∑
k=0

akTk

where

ak = γk< [DFT (f(y0), f(y1), . . . , f(y2n−1))]k .

Note that although this formulation includes yj for j > n, there are really only n+ 1 distinct values

being used since yn−k = yn+k. Also, < denotes the real part of the Fourier transform and γk is

de�ned as

γk =

{
1 k ∈ {0, n}
2 otherwise.

Problem 6. Write a function that accepts a function f and an integer n. Compute the n+ 1

Chebyshev coe�cients for the degree n interpolating polynomial of f using the Fourier transform

(np.real() and np.fft.fft() will be helpful). When using NumPy's fft() function, multiply

every entry of the resulting array by the scaling factor 1
2n to match the derivation given above.

Validate your function with np.polynomial.chebyshev.poly2cheb(). The results should

be exact for polynomials.

Define f(x) = -3 + 2x^2 - x^3 + x^4 by its (ascending) coefficients.

>>> f = lambda x: -3 + 2*x**2 - x**3 + x**4

>>> pcoeffs = [-3, 0, 2, -1, 1]

>>> ccoeffs = np.polynomial.chebyshev.poly2cheb(pcoeffs)

The following callable objects are equivalent to f().

>>> fpoly = np.polynomial.Polynomial(pcoeffs)

>>> fcheb = np.polynomial.Chebyshev(ccoeffs)

9

Lagrange vs. Chebyshev
As was previously stated, Barycentric Lagrange interpolation is O(n2) at startup and O(n) at runtime

while Chebyshev interpolation is O(n log n). This improved speed is one of the greatest advantages

of Chebyshev interpolation. Chebyshev interpolation is also more accurate than Barycentric inter-

polation, even when using the same points. Despite these signi�cant advantages in accuracy and

temporal complexity, Barycentric Lagrange interpolation has one very important advantage over

Chebyshev interpolation: Barycentric interpolation can be used on any set of interpolating points

while Chebyshev is restricted to the Chebyshev nodes. In general, because of their better accuracy,

the Chebyshev nodes are more desirable for interpolation, but there are situations when the Cheby-

shev nodes are not available or when speci�c points are needed in an interpolation. In these cases,

Chebyshev interpolation is not possible and Barycentric Lagrange interpolation must be used.

Utah Air Quality
The Utah Department of Environmental Quality has air quality stations throughout the state of

Utah that measure the concentration of particles found in the air. One particulate of particular

interest is PM2.5 which is a set of extremely �ne particles known to cause tissue damage to the

lungs. The �le airdata.npy has the hourly concentration of PM2.5 in micrograms per cubic meter

for a particular measuring station in Salt Lake County for the year 2016. The given data presents

a fairly smooth function which can be reasonably approximated by an interpolating polynomial.

Although Chebyshev interpolation would be preferable (because of its superior speed and accuracy),

it is not possible in this case because the data is not continous and the information at the Chebyshev

nodes is not known. In order to get the best possible interpolation, it is still preferable to use points

close to the Chebyshev extrema with Barycentric interpolation. The following code will take the

n+1 Chebyshev extrema and �nd the closest match in the non-continuous data found in the variable

data then calculate the barycentric weights.

>>> fx = lambda a, b, n: .5*(a+b + (b-a) * np.cos(np.arange(n+1) * np.pi / n))

>>> a, b = 0, 366 - 1/24

>>> domain = np.linspace(0, b, 8784)

>>> points = fx(a, b, n)

>>> temp = np.abs(points - domain.reshape(8784, 1))

>>> temp2 = np.argmin(temp, axis=0)

>>> poly = barycentric(domain[temp2], data[temp2])

Problem 7. Write a function that interpolates the given data along the whole interval at the

closest approximations to the n + 1 Chebyshev extremal nodes. The function should accept

n, perform the Barycentric interpolation then plot the original data and the approximating

polynomial on the same domain on two separate subplots. Your interpolating polynomial

should give a fairly good approximation starting at around 50 points. Note that beyond about

200 points, the given code will break down since it will attempt to return multiple of the same

points causing a divide by 0 error. If you did not perform the �x suggested in the ACHTUNG box,

make sure not to pass in any points that exactly match the interpolating values.

10 Lab 9. Polynomial Interpolation

Additional Material
The Clenshaw Algorithm is a fast algorithm commonly used to evaluate a polynomial given its

representation in Chebyshev coe�cients. This algorithm is based on the recursive relation between

Chebyshev polynomials and is the algorithm used by NumPy's polynomial.chebyshev module.

Algorithm 9.1 Accepts an array x of points at which to evaluate the polynomial and an array

a = [a0, a1, . . . , an−1] of Chebyshev coe�cients.

1: procedure ClenshawRecursion(x, a)

2: un+1 ← 0

3: un ← 0

4: k ← n− 1

5: while k ≥ 1 do

6: uk ← 2xuk+1 − uk+2 + ak
7: k ← k − 1

8: return a0 + xu1 − u2

	Polynomial Interpolation

