
10 Gaussian Quadrature

Lab Objective: Learn the basics of Gaussian quadrature and its application to numerical inte-

gration. Build a class to perform numerical integration using Legendre and Chebyshev polynomials.

Compare the accuracy and speed of both types of Gaussian quadrature with the built-in Scipy package.

Perform multivariate Gaussian quadrature.

Legendre and Chebyshev Gaussian Quadrature
It can be shown that for any class of orthogonal polynomials p ∈ R[x; 2n + 1] with corresponding

weight function w(x), there exists a set of points {xi}ni=0 and weights {wi}ni=0 such that∫ b

a

p(x)w(x)dx =

n∑
i=0

p(xi)wi.

Since this relationship is exact, a good approximation for the integral∫ b

a

f(x)w(x)dx

can be expected as long as the function f(x) can be reasonably interpolated by a polynomial at the

points xi for i = 0, 1, . . . , n. In fact, it can be shown that if f(x) is 2n + 1 times di�erentiable, the

error of the approximation will decrease as n increases.

Gaussian quadrature can be performed using any basis of orthonormal polynomials, but the

most commonly used are the Legendre polynomials and the Chebyshev polynomials. Their weight

functions are wl(x) = 1 and wc(x) =
1√

1−x2
, respectively, both de�ned on the open interval (−1, 1).

Problem 1. De�ne a class for performing Gaussian quadrature. The constructor should accept

an integer n denoting the number of points and weights to use (this will be explained later)

and a label indicating which class of polynomials to use. If the label is not either "legendre"

or "chebyshev", raise a ValueError; otherwise, store it as an attribute.

The weight function w(x) will show up later in the denominator of certain computations.

De�ne the reciprocal function w(x)−1 = 1/w(x) as a lambda function and save it as an attribute.

1

2 Lab 10. Gaussian Quadrature

Calculating Points and Weights
All sets of orthogonal polynomials {uk}nk=0 satisfy the three-term recurrence relation

u0 = 1, u1 = x− α1, uk+1 = (x− αk)uk − βkuk−1

for some coe�cients {αk}nk=1 and {βk}nk=1. For the Legendre polynomials, they are given by

αk = 0, βk =
k2

4k2 − 1
,

and for the Chebyshev polynomials, they are

αk = 0, βk =

{
1
2 if k = 1
1
4 otherwise.

Given these values, the corresponding Jacobi matrix is de�ned as follows.

J =



α1

√
β1 0 . . . 0√

β1 α2

√
β2 . . . 0

0
√
β2 α3

. . . 0
...

. . .
. . .

...

0 . . .
√
βn−1

0 . . .
√
βn−1 αn


According to the Golub-Welsch algorithm,1 the n eigenvalues of J are the points xi to use in Gaussian

quadrature, and the corresponding weights are given by wi = µw(R)v2i,0 where vi,0 is the �rst entry of
the ith eigenvector and µw(R) =

∫∞
−∞ w(x)dx is the measure of the weight function. Since the weight

functions for Legendre and Chebyshev polynomials have compact support on the interval (−1, 1),
their measures are given as follows.

µwl
(R) =

∫ ∞
−∞

wl(x)dx =

∫ 1

−1
1dx = 2 µwc(R) =

∫ ∞
−∞

wc(x)dx =

∫ 1

−1

1√
1− x2

dx = π

Problem 2. Write a method for your class from Problem 1 that accepts an integer n. Construct

the n×n Jacobi matrix J for the polynomial family indicated in the constructor. Use SciPy to

compute the eigenvalues and eigenvectors of J , then compute the points {xi}ni=1 and weights

{wi}ni=1 for the quadrature. Return both the array of points and the array weights.

Test your method by checking your points and weights against the following values using
the Legendre polynomials with n = 5.

xi − 1
3

√
5 + 2

√
10
7
− 1

3

√
5− 2

√
10
7

0 1
3

√
5− 2

√
10
7

1
3

√
5 + 2

√
10
7

wi
322− 13

√
70

900

322 + 13
√
70

900

128

225

322 + 13
√
70

900

322− 13
√
70

900

Finally, modify the constructor of your class so that it calls your new function and stores

1See http://gubner.ece.wisc.edu/gaussquad.pdf for a complete treatment of the Golub-Welsch algorithm, in-

cluding the computation of the recurrence relation coe�cients for arbitrary orthogonal polynomials.

http://gubner.ece.wisc.edu/gaussquad.pdf

3

the resulting points and weights as attributes.

Integrating with Given Weights and Points

Now that the points and weights have been obtained, they can be used to approximate the integrals

of di�erent functions. For a given function f(x) with points xi and weights wi,∫ 1

−1
f(x)w(x)dx ≈

n∑
i=1

f(xi)wi.

There are two problems with the preceding formula. First, the weight function is part of the integral

being approximated, and second, the points obtained are only found on the interval (−1, 1) (in the

case of the Legendre and Chebyshev polynomials). To solve the �rst problem, de�ne a new function

g(x) = f(x)/w(x) so that ∫ 1

−1
f(x)dx =

∫ 1

−1
g(x)w(x)dx ≈

n∑
i=1

g(xi)wi. (10.1)

The integral of f(x) on [−1, 1] can thus be approximated with the inner product wTg(x), where

g(x) = [g(x1), . . . , g(xn)]
T and w = [w1, . . . , wn]

T.

Problem 3. Write a method for your class that accepts a callable function f . Use (10.1) and

the stored points and weights to approximate of the integral of f on the interval [−1, 1].
(Hint: Use w(x)−1 from Problem 1 to compute g(x) without division.)

Test your method with examples that are easy to compute by hand and by comparing

your results to scipy.integrate.quad().

>>> import numpy as np

>>> from scipy.integrate import quad

Integrate f(x) = 1 / sqrt(1 - x**2) from -1 to 1.

>>> f = lambda x: 1 / np.sqrt(1 - x**2)

>>> quad(f, -1, 1)[0]

3.141592653589591

Note

Since the points and weights for Gaussian quadrature do not depend on f , they only need to be

computed once and can then be reused to approximate the integral of any function. The class

structure in Problems 1�4 takes advantage of this fact, but scipy.integrate.quad() does not.

If a larger n is needed for higher accuracy, however, the computations must be repeated to get

a new set of points and weights.

4 Lab 10. Gaussian Quadrature

Shifting the Interval of Integration
Since the weight functions for the Legendre and Chebyshev polynomials have compact support on

the interval (−1, 1), all of the quadrature points are found on that interval as well. To integrate a

function on an arbitrary interval [a, b] requires a change of variables. Let

u =
2x− b− a
b− a

so that u = −1 when x = a and u = 1 when x = b. Then

x =
b− a
2

u+
a+ b

2
and dx =

b− a
2

du,

so the transformed integral is given by∫ b

a

f(x)dx =
b− a
2

∫ 1

−1
f

(
b− a
2

u+
a+ b

2

)
du.

By de�ning a new function h(x) as

h(x) = f

(
(b− a)

2
x+

(a+ b)

2

)
,

the integral of f can be approximated by integrating h over [−1, 1] with (10.1). This results in the

�nal quadrature formula∫ b

a

f(x)dx =
b− a
2

∫ 1

−1
h(x)dx =

b− a
2

∫ 1

−1
g(x)w(x)dx ≈ b− a

2

n∑
i=1

g(xi)wi, (10.2)

where now g(x) = h(x)/w(x).

Problem 4. Write a method for your class that accepts a callable function f and bounds of

integration a and b. Use (10.2) to approximate the integral of f from a to b.

(Hint: De�ne h(x) and use your method from Problem 3.)

Problem 5. The standard normal distribution has the following probability density function.

f(x) =
1√
2π
e−x

2/2

This function has no symbolic antiderivative, so it can only be integrated numerically. The

following code gives an �exact� value of the integral of f(x) from −∞ to a speci�ed value.

>>> from scipy.stats import norm

>>> norm.cdf(1) # Integrate f from -infty to 1.

0.84134474606854293

>>> norm.cdf(1) - norm.cdf(-1) # Integrate f from -1 to 1.

0.68268949213708585

5

Write a function that uses scipy.stats to calculate the �exact� value

F =

∫ 2

−3
f(x)dx.

Then repeat the following experiment for n = 5, 10, 15, . . . , 50.

1. Use your class from Problems 1�4 with the Legendre polynomials to approximate F using

n points and weights. Calculate and record the error of the approximation.

2. Use your class with the Chebyshev polynomials to approximate F using n points and

weights. Calculate and record the error of the approximation.

Plot the errors against the number of points and weights n, using a log scale for the y-axis.

Finally, plot a horizontal line showing the error of scipy.integrate.quad() (which doesn't

depend on n).

Multivariate Quadrature
The extension of Gaussian quadrature to higher dimensions is fairly straightforward. The same set

of points {zi}ni=1 and weights {wi}ni=1 can be used in each direction, so the only di�erence from 1-D

quadrature is how the function is shifted and scaled. To begin, let h : R2 → R and de�ne g : R2 → R
by g(x, y) = h(x, y)/(w(x)w(y)) so that∫ 1

−1

∫ 1

−1
h(x, y)dx dy. =

∫ 1

−1

∫ 1

−1
g(x, y)w(x)w(y)dx dy ≈

n∑
i=1

n∑
j=1

wiwjg(zi, zj). (10.3)

To integrate f : R2 → R over an arbitrary box [a1, b1]× [a2, b2], set

h(x, y) = f

(
b1 − a1

2
x+

a1 + b1
2

,
b2 − a2

2
y +

a2 + b2
2

)
so that ∫ b2

a2

∫ b1

a1

f(x)dx dy =
(b1 − a1)(b2 − a2)

4

∫ 1

−1

∫ 1

−1
h(x, y)dx dy. (10.4)

Combining (10.3) and (10.4) gives the �nal 2-D Gaussian quadrature formula. Compare it to (10.2).∫ b2

a2

∫ b1

a1

f(x)dx dy ≈ (b1 − a1)(b2 − a2)
4

n∑
i=1

n∑
j=1

wiwjg(zi, zj) (10.5)

Problem 6. Write a method for your class that accepts a function f : R2 → R (which actually

accepts two separate arguments, not one array with two elements) and bounds of integration

a1, a2, b1, and b2. Use (10.5) to compute the double integral∫ b2

a2

∫ b1

a1

f(x)dx dy.

Validate your method by comparing it scipy.integrate.nquad(). Note carefully that

this function has slightly di�erent syntax for the bounds of integration.

6 Lab 10. Gaussian Quadrature

>>> from scipy.integrate import nquad

Integrate f(x,y) = sin(x) + cos(y) over [-10,10] in x and [-1,1] in y.

>>> f = lambda x, y: np.sin(x) + np.cos(y)

>>> nquad(f, [[-10, 10], [-1, 1]])[0]

33.658839392315855

Note

Although Gaussian quadrature can obtain reasonable approximations in lower dimensions, it

quickly becomes intractable in higher dimensions due to the curse of dimensionality. In other

words, the number of points and weights required to obtain a good approximation becomes

so large that Gaussian quadrature become computationally infeasible. For this reason, high-

dimensional integrals are often computed via Monte Carlo methods, numerical integration tech-

niques based on random sampling. However, quadrature methods are generally signi�cantly

more accurate in lower dimensions than Monte Carlo methods.

	Gaussian Quadrature

