
5 Regular Expressions

Lab Objective: Cleaning and formatting data are fundamental problems in data science. Regular

expressions are an important tool for working with text carefully and e�ciently, and are useful for both

gathering and cleaning data. This lab introduces regular expression syntax and common practices,

including an application to a data cleaning problem.

A regular expression or regex is a string of characters that follows a certain syntax to specify a

pattern. Strings that follow the pattern are said to match the expression (and vice versa). A single

regular expression can match a large set of strings, such as the set of all valid email addresses.

Achtung!

There are some universal standards for regular expression syntax, but the exact syntax varies

slightly depending on the program or language. However, the syntax presented in this lab

(for Python) is su�ciently similar to any other regex system. Consider learning to use regular

expressions in Vim or your favorite text editor, keeping in mind that there will be slight syntactic

di�erences from what is presented here.

Regular Expression Syntax in Python
The re module implements regular expressions in Python. The function re.compile() takes in a

regular expression string and returns a corresponding pattern object, which has methods for deter-

mining if and how other strings match the pattern. For example, the search() method returns None

for a string that doesn't match, and a match object for a string that does.

Note the match() method for pattern objects only matches strings that satisfy the pattern at

the beginning of the string. To answer the question �does any part of my target string match this

regular expression?� always use the search() method.

>>> import re

>>> pattern = re.compile("cat") # Make a pattern object for finding 'cat'.

>>> bool(pattern.search("cat")) # 'cat' matches 'cat', of course.

True

>>> bool(pattern.match("catfish")) # 'catfish' starts with 'cat'.

1

2 Lab 5. Regular Expressions

True

>>> bool(pattern.match("fishcat")) # 'fishcat' doesn't start with 'cat'.

False

>>> bool(pattern.search("fishcat")) # but it does contain 'cat'.

True

>>> bool(pattern.search("hat")) # 'hat' does not contain 'cat'.

False

Most of the functions in the re module are shortcuts for compiling a pattern object and calling

one of its methods. Using re.compile() is good practice because the resulting object is reusable,

while each call to re.search() compiles a new (but redundant) pattern object. For example, the

following lines of code are equivalent.

>>> bool(re.compile("cat").search("catfish"))

True

>>> bool(re.search("cat", "catfish"))

True

Problem 1. Write a function that compiles and returns a regular expression pattern object

with the pattern string "python".

Literal Characters and Metacharacters
The following string characters (separated by spaces) are metacharacters in Python's regular expres-

sions, meaning they have special signi�cance in a pattern string: . ^ $ * + ? { } [] \ | ().

A regular expression that matches strings with one or more metacharacters requires two things.

1. Use raw strings instead of regular Python strings by prefacing the string with an r, such as

r"cat". The resulting string interprets backslashes as actual backslash characters, rather than

the start of an escape sequence like \n or \t.

2. Preface any metacharacters with a backslash to indicate a literal character. For example, to

match the string "$3.99? Thanks.", use r"\$3\.99\? Thanks\.".

Without raw strings, every backslash in has to be written as a double backslash, which makes many

regular expression patterns hard to read ("\\$3\\.99\\? Thanks\\.").

Problem 2. Write a function that compiles and returns a regular expression pattern object

that matches the string "^{@}(?)[%]{.}(*)[_]{&}$".

The regular expressions of Problems 1 and 2 only match strings that are or include the exact

pattern. The metacharacters allow regular expressions to have much more �exibility and control

so that a single pattern can match a wide variety of strings, or a very speci�c set of strings. The

line anchor metacharacters ^ and $ are used to match the start and the end of a line of text,

respectively. This shrinks the matching set, even when using the search() method instead of the

3

match() method. For example, the only single-line string that the expression '^x$' matches is 'x',

whereas the expression 'x' can match any string with an 'x' in it.

The pipe character | is a logical OR in a regular expression: A|B matches A or B. The parentheses

() create a group in a regular expression. A group establishes an order of operations in an expression.

For example, in the regex "^one|two fish$", precedence is given to the invisible string concatenation

between "two" and "fish", while "^(one|two) fish$" gives precedence to the '|' metacharacter.

>>> fish = re.compile(r"^(one|two) fish$")

>>> for test in ["one fish", "two fish", "red fish", "one two fish"]:

... print(test + ':', bool(fish.search(test)))

...

one fish: True

two fish: True

red fish: False

one two fish: False

Problem 3. Write a function that compiles and returns a regular expression pattern object

that matches the following strings, and no other strings, even with re.search().

"Book store" "Mattress store" "Grocery store"

"Book supplier" "Mattress supplier" "Grocery supplier"

Character Classes
The hard bracket metacharacters [and] are used to create character classes, a part of a regular

expression that can match a variety of characters. For example, the pattern [abc] matches any of

the characters a, b, or c. This is di�erent than a group delimited by parentheses: a group can match

multiple characters, while a character class matches only one character. For instance, [abc] does

not match ab or abc, and (abc) matches abc but not ab or even a.

Within character classes, there are two additional metacharacters. When ^ appears as the

�rst character in a character class, right after the opening bracket [, the character class matches

anything not speci�ed instead. In other words, ^ is the set complement operation on the character

class. Additionally, the dash - speci�es a range of values. For instance, [0-9] matches any digit,

and [a-z] matches any lowercase letter. Thus [^0-9] matches any character except for a digit, and

[^a-z] matches any character except for lowercase letters. Keep in mind that the dash -, when at

the beginning or end of the character class, will match the literal '-'. Note that [0-27-9] acts like

[(0-2)|(7-9)].

>>> p1, p2 = re.compile(r"^[a-z][^0-7]$"), re.compile(r"^[^abcA-C][0-27-9]$")

>>> for test in ["d8", "aa", "E9", "EE", "d88"]:

... print(test + ':', bool(p1.search(test)), bool(p2.search(test)))

...

d8: True True

aa: True False # a is not in [^abcA-C] or [0-27-9].

E9: False True # E is not in [a-z].

EE: False False # E is not in [a-z] or [0-27-9].

d88: False False # Too many characters.

4 Lab 5. Regular Expressions

There are also a variety of shortcuts that represent common character classes, listed in Table

5.1. Familiarity with these shortcuts makes some regular expressions signi�cantly more readable.

Character Description

\b Matches the empty string, but only at the start or end of a word.

\s Matches any whitespace character; equivalent to [\t\n\r\f\v].

\S Matches any non-whitespace character; equivalent to [^\s].

\d Matches any decimal digit; equivalent to [0-9].

\D Matches any non-digit character; equivalent to [^\d].

\w Matches any alphanumeric character; equivalent to [a-zA-Z0-9_].

\W Matches any non-alphanumeric character; equivalent to [^\w].

Table 5.1: Character class shortcuts.

Any of the character class shortcuts can be used within other custom character classes. For

example, [_A-Z\s] matches an underscore, capital letter, or whitespace character.

Finally, a period . matches any character except for a line break. This is a very powerful

metacharacter; be careful to only use it when part of the regular expression really should match any

character.

Match any three-character string with a digit in the middle.

>>> pattern = re.compile(r"^.\d.$")

>>> for test in ["a0b", "888", "n2%", "abc", "cat"]:

... print(test + ':', bool(pattern.search(test)))

...

a0b: True

888: True

n2%: True

abc: False

cat: False

Match two letters followed by a number and two non-newline characters.

>>> pattern = re.compile(r"^[a-zA-Z][a-zA-Z]\d..$")

>>> for test in ["tk421", "bb8!?", "JB007", "Boba?"]:

... print(test + ':', bool(pattern.search(test)))

..

tk421: True

bb8!?: True

JB007: True

Boba?: False

The following table is a useful recap of some common regular expression metacharacters.

5

Character Description

. Matches any character except a newline.

^ Matches the start of the string.

$ Matches the end of the string or just before the newline at the end of the string.

| A|B creates an regular expression that will match either A or B.

[...] Indicates a set of characters. A ^ as the �rst character indicates a complementing set.

(...) Matches the regular expression inside the parentheses.

The contents can be retrieved or matched later in the string.

Table 5.2: Standard regular expression metacharacters in Python.

Repetition
The remaining metacharacters are for matching a speci�ed number of characters. This allows a single

regular expression to match strings of varying lengths.

Character Description

* Matches 0 or more repetitions of the preceding regular expression.

+ Matches 1 or more repetitions of the preceding regular expression.

? Matches 0 or 1 of the preceding regular expression.

{m,n} Matches from m to n repetitions of the preceding regular expression.

*?, +?, ??, {m,n}? Non-greedy versions of the previous four special characters.

Table 5.3: Repetition metacharacters for regular expressions in Python.

Each of the repetition operators acts on the expression immediately preceding it. This could

be a single character, a group, or a character class. For instance, (abc)+ matches abc, abcabc,

abcabcabc, and so on, but not aba or cba. On the other hand, [abc]* matches any sequence of a,

b, and c, including abcabc and aabbcc.

The curly braces {} specify a custom number of repetitions allowed. {,n} matches up to n

instances, {m,} matches at least m instances, {k} matches exactly k instances, and {m,n} matches

from m to n instances. Thus the ? operator is equivalent to {,1} and + is equivalent to {1,}.

Match exactly 3 'a' characters.

>>> pattern = re.compile(r"^a{3}$")

>>> for test in ["aa", "aaa", "aaaa", "aba"]:

... print(test + ':', bool(pattern.search(test)))

...

aa: False # Too few.

aaa: True

aaaa: False # Too many.

aba: False

Be aware that line anchors are especially important when using repetition operators. Consider

the following (bad) example and compare it to the previous example.

Match exactly 3 'a' characters, hopefully.

>>> pattern = re.compile(r"a{3}")

>>> for test in ["aaa", "aaaa", "aaaaa", "aaaab"]:

6 Lab 5. Regular Expressions

... print(test + ':', bool(pattern.search(test)))

...

aaa: True

aaaa: True # Should be too many!

aaaaa: True # Should be too many!

aaaab: True # Too many, and even with the 'b'?

The unexpected matches occur because "aaa" is at the beginning of each of the test strings. With

the line anchors ^ and $, the search truly only matches the exact string "aaa".

Problem 4. A valid Python identi�er (a valid variable name) is any string starting with an al-

phabetic character or an underscore, followed by any (possibly empty) sequence of alphanumeric

characters and underscores.

A valid python parameter de�nition is de�ned as the concatenation of the following strings:

� any valid python identi�er

� any number of spaces

� (optional) an equals sign followed by any number of spaces and ending with one of the

following: any real number, a single quote followed by any number of non-single-quote

characters followed by a single quote, or any valid python identi�er

De�ne a function that compiles and returns a regular expression pattern object that

matches any valid Python parameter de�nition.

(Hint: Use the \w character class shortcut to keep your regular expression clean.)

To help in debugging, the following examples may be useful. These test cases are a good

start, but are not exhaustive. The �rst table should match valid Python identi�ers. The second

should match a valid python parameter de�nition, as de�ned in this problem. Note that some

strings which would be valid in python will not be for this problem.

Matches: "Mouse" "compile" "_123456789" "__x__" "while"

Non-matches: "3rats" "err*r" "sq(x)" "sleep()" " x"

Matches: "max=4.2" "string= ''" "num_guesses"

Non-matches: "300" "is_4=(value==4)" "pattern = r'^one|two fish$'"

Manipulating Text with Regular Expressions

So far we have been solely concerned with whether or not a regular expression and a string match,

but the power of regular expressions comes with what can be done with a match. In addition to the

search() method, regular expression pattern objects have the following useful methods.

7

Method Description

match() Match a regular expression pattern to the beginning of a string.

fullmatch() Match a regular expression pattern to all of a string.

search() Search a string for the presence of a pattern.

sub() Substitute occurrences of a pattern found in a string.

subn() Same as sub, but also return the number of substitutions made.

split() Split a string by the occurrences of a pattern.

findall() Find all occurrences of a pattern in a string.

finditer() Return an iterator yielding a match object for each match.

Table 5.4: Methods of regular expression pattern objects.

Some substitutions require remembering part of the text that the regular expression matches.

Groups are useful here: each group in the regular expression can be represented in the substitution

string by \n, where n is an integer (starting at 1) specifying which group to use.

Find words that start with 'cat', remembering what comes after the 'cat'.

>>> pig_latin = re.compile(r"\bcat(\w*)")

>>> target = "Let's catch some catfish for the cat"

>>> pig_latin.sub(r"at\1clay", target) # \1 = (\w*) from the expression.

"Let's atchclay some atfishclay for the atclay"

The repetition operators ?, +, *, and {m,n} are greedy, meaning that they match the largest

string possible. On the other hand, the operators ??, +?, *?, and {m,n}? are non-greedy, meaning they

match the smallest strings possible. This is very often the desired behavior for a regular expression.

>>> target = "<abc> <def> <ghi>"

Match angle brackets and anything in between.

>>> greedy = re.compile(r"^<.*>$") # Greedy *

>>> greedy.findall(target)

['<abc> <def> <ghi>'] # The entire string matched!

Try again, using the non-greedy version.

>>> nongreedy = re.compile(r"<.*?>")# Non-greedy *?

>>> nongreedy.findall(target)

['<abc>', '<def>', '<ghi>'] # Each <> set is an individual match.

Finally, there are a few customizations that make searching larger texts manageable. Each of

these �ags can be used as keyword arguments to re.compile().

Flag Description

re.DOTALL . matches any character at all, including the newline.

re.IGNORECASE Perform case-insensitive matching.

re.MULTILINE ^ matches the beginning of lines (after a newline) as well as the string;

$ matches the end of lines (before a newline) as well as the end of the string.

Table 5.5: Regular expression �ags.

8 Lab 5. Regular Expressions

A bene�t of using '^' and '$' is that they allow you to search across multiple lines. For

example, how would we match "World" in the string "Hello\nWorld"? Using re.MULTILINE in the

re.search function will allow us to match at the beginning of each new line, instead of just the

beginning of the string. The following shows how to implement multiline searching:

>>>pattern1 = re.compile("^W")

>>>pattern2 = re.compile("^W", re.MULTILINE)

>>>bool(pattern1.search("Hello\nWorld"))

False

>>>bool(pattern2.search("Hello\nWorld"))

True

Problem 5. A Python block is composed of several lines of code with the same indentation

level. Blocks are delimited by key words and expressions, followed by a colon. Possible key

words are if, elif, else, for, while, try, except, finally, with, def, and class. Some of

these keywords require an expression to precede the colon (if, elif, for, etc.). Some require

no expressions to precede the colon (else, finally), and except may or may not have an

expression before the colon.

Write a function that accepts a string of Python code and uses regular expressions to

place colons in the appropriate spots. Assume that every colon is missing in the input string.

Return the string of code with colons in the correct places.

"""

k, i, p = 999, 1, 0

while k > i

i *= 2

p += 1

if k != 999

print("k should not have changed")

else

pass

print(p)

"""

The string given above should become this string.

"""

k, i, p = 999, 1, 0

while k > i:

i *= 2

p += 1

if k != 999:

print("k should not have changed")

else:

pass

print(p)

"""

9

Extracting Text with Regular Expressions
Regular expressions are useful for locating and extracting information that matches a certain format.

The method pattern.findall(string) returns a list containing all non-overlapping matches of

pattern found in string. The method scans the string from left to right and returns the matches

in that order. If two matches overlap, the match that begins �rst is returned.

When at least one group, indicated by (), is present in the pattern, then only information

contained in a group is returned. Each match is returned as a tuple containing the part of the string

that matches each group in the pattern.

>>> pattern = re.compile("\w* fish")

Without any groups, the entirety of each match is returned.

>>> pattern.findall("red fish, blue fish, one fish, two fish")

['red fish', 'blue fish', 'one fish', 'two fish']

When a group is present, only information contained in a group is returned.

>>> pattern2 = re.compile("(\w*) (fish|dish)")

>>> pattern2.findall("red dish, blue dish, one fish, two fish")

[('red', 'dish'), ('blue', 'dish'), ('one', 'fish'), ('two', 'fish')]

If you wish to extract the characters that match some groups, but not others, you can choose

to exclude a group from being returned using the syntax (?:)

>>> pattern = re.compile("(\w*) (?:fish|dish)")

>>> pattern.findall("red dish, blue dish, one fish, two fish")

['red', 'blue', 'one', 'two']

Problem 6. The �le fake_contacts.txt contains poorly formatted contact data for 2000

�ctitious individuals. Each line of the �le contains data for one person, including their name

and possibly their birthday, email address, and/or phone number. The formatting of the data

is not consistent, and much of it is missing.

Each contact name includes a �rst and last name. Some names have middle initials, in

the form Jane C. Doe. Each birthday lists the month, then the day, and then the year, though

the format varies from 1/1/11, 1/01/2011, etc. If century is not speci�ed for birth year, as in

1/01/XX, birth year is assumed to be 20XX. Remember, not all information is listed for each

contact.

Use regular expressions to extract the necessary data and format it uniformly, writing

birthdays as mm/dd/yyyy and phone numbers as (xxx)xxx-xxxx. Return a dictionary where the

key is the name of an individual and the value is another dictionary containing their information.

Each of these inner dictionaries should have the keys "birthday", "email", and "phone". In

the case of missing data, map the key to None.

10 Lab 5. Regular Expressions

The �rst two entries of the completed dictionary are given below.

{

"John Doe": {

"birthday": "01/01/1990",

"email": "john_doe90@hopefullynotarealaddress.com",

"phone": "(123)456-7890"

},

"Jane Smith": {

"birthday": None,

"email": None,

"phone": "(222)111-3333"

},

...

}

11

Additional Material

Regular Expressions in the Unix Shell
As we have seen� regular expressions are very useful when we want to match patterns. Regular

expressions can be used when matching patterns in the Unix Shell. Though there are many Unix

commands that take advantage of regular expressions, we will focus on grep and awk.

Regular Expressions and grep
Recall from Lab 1 that grep is used to match patterns in �les or output. It turns out we can use

regular expressions to de�ne the pattern we wish to match.

In general, we use the following syntax:

$ grep 'regexp' filename

We can also use regular expressions when piping output to grep.

List details of directories within current directory.

$ ls -l | grep ^d

Regular Expressions and awk
By incorporating regular expressions, the awk command becomes much more robust. Before GUI

spreedsheet programs like Microsoft Excel, awk was commonly used to visualize and query data from

a �le.

Including if statements inside awk commands gives us the ability to perform actions on lines

that match a given pattern. The following example prints the �lenames of all �les that are owned

by freddy.

$ ls -l | awk ' {if ($3 ~ /freddy/) print $9} '

Because there is a lot going on in this command, we will break it down piece-by-piece. The

output of ls -l is getting piped to awk. Then we have an if statement. The syntax here means if

the condition inside the parenthesis holds, print �eld 9 (the �eld with the �lename). The condition

is where we use regular expressions. The ~ checks to see if the contents of �eld 3 (the �eld with the

username) matches the regular expression found inside the forward slashes. To clarify, freddy is the

regular expression in this example and the expression must be surrounded by forward slashes.

Consider a similar example. In this example, we will list the names of the directories inside the

current directory. (This replicates the behavior of the Unix command ls -d */)

$ ls -l | awk ' {if ($1 ~ /^d/) print $9} '

Notice in this example, we printed the names of the directories, whereas in one of the example

using grep, we printed all the details of the directories as well.

12 Lab 5. Regular Expressions

Achtung!

Some of the de�nitions for character classes we used earlier in this lab will not work in the Unix

Shell. For example, \w and \d are not de�ned. Instead of \w, use [[:alnum:]]. Instead of

\d, use [[:digit:]]. For a complete list of similar character classes, search the internet for

POSIX Character Classes or Bracket Character Classes.

	Regular Expressions

