
15 CVXOPT

Lab Objective: CVXOPT is a package of Python functions and classes designed for the purpose

of convex optimization. In this lab we use these tools for linear and quadratic programming. We will

solve various optimization problems using CVXOPT and optimize eating healthily on a budget.

Linear Programs
A linear program is a linear constrained optimization problem. Such a problem can be stated in

several di�erent forms, one of which is

minimize cTx

subject to Gx � h

Ax = b.

The symbol � denotes that the components of Gx are less than the components of h. In other

words, if x � y, then xi < yi for all xi ∈ x and yi ∈ y.

De�ne vector s � 0 such that the constraint Gx + s = h. This vector is known as a slack

variable. Since s � 0, the constraint Gx+ s = h is equivalent to Gx � h.

With a slack variable, a new form of the linear program is found:

minimize cTx

subject to Gx+ s = h

Ax = b

s � 0.

This is the formulation used by CVXOPT. It requires that the matrix A has full row rank, and

that the block matrix [G A]T has full column rank.

Consider the following example:

minimize − 4x1 − 5x2

subject to x1 + 2x2 ≤ 3

2x1 + x2 = 3

x1, x2 ≥ 0

1

2 Lab 15. CVXOPT

Recall that all inequalities must be less than or equal to, so that Gx � h. Because the �nal two

constraints are x1, x2 ≥ 0, they need to be adjusted to be ≤ constraints. This is easily done by

multiplying by −1, resulting in the constraints −x1,−x2 ≤ 0. If we de�ne

G =

 1 2

−1 0

0 −1

 , h =

30
0

 , A =
[
2 1

]
, and b =

[
3
]

then we can express the constraints compactly as

Gx � h,

Ax = b,
where x =

[
x1

x2

]
.

By adding a slack variable s, we can write our constraints as

Gx+ s = h,

which matches the form discussed above.

To solve the problem using CVXOPT, initialize the arrays c, G, h, A, and b and pass them to

the appropriate function. CVXOPT uses its own data type for an array or matrix. While similar to

the NumPy array, it does have a few di�erences, especially when it comes to initialization. Below,

we initialize CVXOPT matrices for c, G, h, A, and b. We then use the CVXOPT function for linear

programming solvers.lp(), which accepts c, G, h, A, and b as arguments.

>>> from cvxopt import matrix, solvers

>>> c = matrix([-4., -5.])

>>> G = matrix([[1., -1., 0.],[2., 0., -1.]])

>>> h = matrix([3., 0., 0.])

>>> A = matrix([[2.],[1.]])

>>> b = matrix([3.])

>>> sol = solvers.lp(c, G, h, A, b)

pcost dcost gap pres dres k/t

0: -8.5714e+00 -1.4143e+01 4e+00 0e+00 3e-01 1e+00

1: -8.9385e+00 -9.2036e+00 2e-01 3e-16 1e-02 3e-02

2: -8.9994e+00 -9.0021e+00 2e-03 3e-16 1e-04 3e-04

3: -9.0000e+00 -9.0000e+00 2e-05 1e-16 1e-06 3e-06

4: -9.0000e+00 -9.0000e+00 2e-07 1e-16 1e-08 3e-08

Optimal solution found.

>>> print(sol['x'])

[1.00e+00]

[1.00e+00]

>>> print(sol['primal objective'])

-8.999999939019435

>>> print(type(sol['x']))

<class 'cvxopt.base.matrix'>

3

Achtung!

CVXOPT matrices only accept �oats. Other data types will raise a TypeError.

Additionally, CVXOPT matrices are initialized column-wise rather than row-wise (as in

the case of NumPy). Alternatively, we can initialize the arrays �rst in NumPy (a process with

which you should be familiar), and then simply convert them to the CVXOPT matrix data

type.

>>> import numpy as np

>>> c = np.array([-4., -5.])

>>> G = np.array([[1., 2.],[-1., 0.],[0., -1]])

>>> h = np.array([3., 0., 0.])

>>> A = np.array([[2., 1.]])

>>> b = np.array([3.])

Convert the arrays to the CVXOPT matrix type.

>>> c = matrix(c)

>>> G = matrix(G)

>>> h = matrix(h)

>>> A = matrix(A)

>>> b = matrix(b)

In this lab we will initialize non-trivial matrices �rst as NumPy arrays for consistency.

Note

Although it is often helpful to see the progress of each iteration of the algorithm, you may

suppress this output by �rst running,

solvers.options['show_progress'] = False

The function solvers.lp() returns a dictionary containing useful information. For now, we

will only focus on the value of x and the primal objective value (i.e. the minimum value achieved by

the objective function).

Achtung!

Note that the minimizer x returned by the solvers.lp() function is a cvxopt.base.matrix

object. np.ravel() is a NumPy function that takes an object and returns its values as

a �attened NumPy array. Use np.ravel() to return all minimizers in this lab as �attened

NumPy arrays.

4 Lab 15. CVXOPT

Problem 1. Solve the following convex optimization problem:

minimize 2x1 + x2 + 3x3

subject to x1 + 2x2 ≥ 3

2x1 + 10x2 + 3x3 ≥ 10

x1 ≥ 0

x2 ≥ 0

x3 ≥ 0

Return the minimizer x and the primal objective value.

(Hint: make the necessary adjustments so that all inequality constraints are ≤ rather than ≥).

l1 Norm
The l1 norm is de�ned

||x||1 =

n∑
i=1

|xi|.

A l1 minimization problem is minimizing a vector's l1 norm, while �tting certain constraints. It can

be written in the following form:

minimize ‖x‖1
subject to Ax = b.

This problem can be converted into a linear program by introducing an additional vector u of

length n. De�ne u such that |xi| ≤ ui. Thus, −ui− xi ≤ 0 and −ui + xi ≤ 0. These two inequalities

can be added to the linear system as constraints. Additionally, this means that ||x||1 ≤ ||u||1. So

minimizing ||u||1 subject to the given constraints will in turn minimize ||x||1. This can be written as

follows:

minimize
[
1T 0T

] [u
x

]

subject to

−I I

−I −I
−I 0

[u
x

]
�
[
0

0

]
,

[
0 A

] [u
x

]
= b.

Solving this gives values for the optimal u and the optimal x, but we only care about the optimal x.

Problem 2. Write a function called l1Min() that accepts a matrix A and vector b as NumPy

arrays and solves the l1 minimization problem. Return the minimizer x and the primal objective

value. Remember to �rst discard the unnecessary u values from the minimizer.

To test your function consider the matrix A and vector b below.

A =

[
1 2 1 1

0 3 −2 −1

]
b =

[
7

4

]

5

The linear system Ax = b has in�nitely many solutions. Use l1Min() to verify that the solution

which minimizes ||x||1 is approximately x = [0., 2.571, 1.857, 0.]T and the minimum objective

value is approximately 4.429.

The Transportation Problem
Consider the following transportation problem: A piano company needs to transport thirteen pianos

from their three supply centers (denoted by 1, 2, 3) to two demand centers (4, 5). Transporting a

piano from a supply center to a demand center incurs a cost, listed in Table 15.3. The company

wants to minimize shipping costs for the pianos while meeting the demand.

Supply Center Number of pianos available

1 7

2 2

3 4

Table 15.1: Number of pianos available at each supply center

Demand Center Number of pianos needed

4 5

5 8

Table 15.2: Number of pianos needed at each demand center

Supply Center Demand Center Cost of transportation Number of pianos

1 4 4 p1
1 5 7 p2
2 4 6 p3
2 5 8 p4
3 4 8 p5
3 5 9 p6

Table 15.3: Cost of transporting one piano from a supply center to a demand center

A system of constraints is de�ned for the variables p1, p2, p3, p4, p5, and p6, First, there cannot

be a negative number of pianos so the variables must be nonnegative. Next, the Tables 15.1 and 15.2

de�ne the following three supply constraints and two demand constraints:

p1 + p2 = 7

p3 + p4 = 2

p5 + p6 = 4

p1 + p3 + p5 = 5

p2 + p4 + p6 = 8

The objective function is the number of pianos shipped from each location multiplied by the

respective cost (found in Table 15.3):

4p1 + 7p2 + 6p3 + 8p4 + 8p5 + 9p6.

6 Lab 15. CVXOPT

Note

Since our answers must be integers, in general this problem turns out to be an NP-hard prob-

lem. There is a whole �eld devoted to dealing with integer constraints, called integer linear

programming, which is beyond the scope of this lab. Fortunately, we can treat this particular

problem as a standard linear program and still obtain integer solutions.

Recall the variables are nonnegative, so p1, p2, p3, p4, p5, p6 ≥ 0. Thus, G and h constrain the

variables to be non-negative. Because CVXOPT uses the format Gx � h, we see that this inequality

must be multiplied by −1. So, G must be a 6× 6 identity matrix multiplied by −1, and
h is a column vector of zeros. Since the supply and demand constraints are equality constraints,

they are A and b. Initialize these arrays and solve the linear program by entering the code below.

>>> c = matrix(np.array([4., 7., 6., 8., 8., 9.]))

>>> G = matrix(-1*np.eye(6))

>>> h = matrix(np.zeros(6))

>>> A = matrix(np.array([[1.,1.,0.,0.,0.,0.],

[0.,0.,1.,1.,0.,0.],

[0.,0.,0.,0.,1.,1.],

[1.,0.,1.,0.,1.,0.],

[0.,1.,0.,1.,0.,1.]]))

>>> b = matrix(np.array([7., 2., 4., 5., 8.]))

>>> sol = solvers.lp(c, G, h, A, b)

pcost dcost gap pres dres k/t

0: 8.9500e+01 8.9500e+01 2e+01 2e-16 2e-01 1e+00

1: 8.7023e+01 8.7044e+01 3e+00 1e-15 3e-02 2e-01

Terminated (singular KKT matrix).

>>> print(sol['x'])

[4.31e+00]

[2.69e+00]

[3.56e-01]

[1.64e+00]

[3.34e-01]

[3.67e+00]

>>> print(sol['primal objective'])

87.023

Notice that some problems occurred. First, CVXOPT alerted us to the fact that the algorithm

terminated prematurely (due to a singular matrix). Second, the minimizer and solution obtained do

not consist of integer entries.

So what went wrong? Recall that the matrix A is required to have full row rank, but we can

easily see that the rows of A are linearly dependent. We rectify this by converting the last row of the

equality constraints into two inequality constraints, so that the remaining equality constraints de�ne

a new matrix A with linearly independent rows.

This is done as follows:

Suppose we have the equality constraint

x1 + 2x2 − 3x3 = 4.

7

This is equivalent to the pair of inequality constraints

x1 + 2x2 − 3x3 ≤ 4,

x1 + 2x2 − 3x3 ≥ 4.

The linear program requires only ≤ constraints, so we obtain the pair of constraints

x1 + 2x2 − 3x3 ≤ 4,

−x1 − 2x2 + 3x3 ≤ −4.

Apply this process to the last equality constraint of the transportation problem. Then de�ne

a new matrix G with several additional rows (to account for the new inequality constraints), a new

vector h with more entries, a smaller matrix A, and a smaller vector b.

Problem 3. Solve the transportation problem by converting the last equality constraint into

an inequality constraint. Return the minimizer x and the primal objective value.

Quadratic Programming
Quadratic programming is similar to linear programming, but the objective function is quadratic

rather than linear. The constraints, if there are any, are still of the same form. Thus, G,h, A, and b

are optional. The formulation that we will use is

minimize
1

2
xTQx+ rTx

subject to Gx � h

Ax = b,

where Q is a positive semide�nite symmetric matrix. In this formulation, we require again that A

has full row rank and that the block matrix [Q G A]T has full column rank.

As an example, consider the quadratic function

f(x1, x2) = 2x2
1 + 2x1x2 + x2

2 + x1 − x2.

There are no constraints, so we only need to initialize the matrix Q and the vector r. To �nd these,

we �rst rewrite our function to match the formulation given above. If we let

Q =

[
a b

b c

]
, r =

[
d

e

]
, and x =

[
x1

x2

]
,

then

1

2
xTQx+ rTx =

1

2

[
x1

x2

]T [
a b

b c

] [
x1

x2

]
+

[
d

e

]T [
x1

x2

]
=

1

2
ax2

1 + bx1x2 +
1

2
cx2

2 + dx1 + ex2

Thus, we see that the proper values to initialize our matrix Q and vector r are:

a = 4 d = 1

b = 2 e = −1
c = 2

8 Lab 15. CVXOPT

Now that we have the matrix Q and vector r, we are ready to use the CVXOPT function for quadratic

programming solvers.qp().

>>> Q = matrix(np.array([[4., 2.], [2., 2.]]))

>>> r = matrix([1., -1.])

>>> sol=solvers.qp(Q, r)

>>> print(sol['x'])

[-1.00e+00]

[1.50e+00]

>>> print sol['primal objective']

-1.25

Problem 4. Find the minimizer and minimum of

g(x1, x2, x3) =
3

2
x2
1 + 2x1x2 + x1x3 + 2x2

2 + 2x2x3 +
3

2
x2
3 + 3x1 + x3

(Hint: Write the function g to match the formulation given above before coding.)

Problem 5. The l2 minimization problem is to

minimize ‖x‖2
subject to Ax = b.

This problem is equivalent to a quadratic program, since ‖x‖2 = xTx. Write a function

that accepts a matrix A and vector b and solves the l2 minimization problem. Return the

minimizer x and the primal objective value.

To test your function, use the matrix A and vector b from Problem 2. The minimizer

is approximately x = [0.966, 2.169, 0.809, 0.888]T and the minimum primal objective value is

approximately 7.079.

Eating on a Budget
In 2009, the inmates of Morgan County jail convinced Judge Clemon of the Federal District Court in

Birmingham to put Sheri� Barlett in jail for malnutrition. Under Alabama law, in order to encourage

less spending, "the chief lawman could go light on prisoners' meals and pocket the leftover change."1.

Sheri�s had to ensure a minimum amount of nutrition for inmates, but minimizing costs meant more

money for the sheri�s themselves. Judge Clemon jailed Sheri� Barlett one night until a plan was

made to use all allotted funds, 1.75 per inmate, to feed prisoners more nutritious meals. While this

case made national news, the controversy of feeding prisoners in Alabama continues as of 20192.

1Nossiter, Adam, 8 Jan 2009, "As His Inmates Grew Thinner, a Sheri�'s Wallet Grew Fatter", New York

Times,https://www.nytimes.com/2009/01/09/us/09sheriff.html
2Sheets, Connor, 31 January 2019, "Alabama sheri�s urge lawmakers to

get them out of the jail food business", https://www.al.com/news/2019/01/

alabama-sheriffs-urge-lawmakers-to-get-them-out-of-the-jail-food-business.html

https://www.nytimes.com/2009/01/09/us/09sheriff.html
https://www.al.com/news/2019/01/alabama-sheriffs-urge-lawmakers-to-get-them-out-of-the-jail-food-business.html
https://www.al.com/news/2019/01/alabama-sheriffs-urge-lawmakers-to-get-them-out-of-the-jail-food-business.html

9

The problem of minimizing cost while reaching healthy nutritional requirements can be ap-

proached as a convex optimization problem. Rather than viewing this problem from the sheri�'s

perspective, we view it from the perspective of a college student trying to minimize food cost in

order to pay for higher education, all while meeting standard nutritional guidelines.

The �le food.npy contains a dataset with nutritional facts for 18 foods that have been eaten

frequently by college students working on this text. A subset of this dataset can be found in Table

15.4, where the "Food" column contains the list of all 18 foods.

The columns of the full dataset are:

Column 1: p, price (dollars)

Column 2: s, number of servings

Column 3: c, calories per serving

Column 4: f , fat per serving (grams)

Column 5: ŝ, sugar per serving (grams)

Column 6: ĉ, calcium per serving (milligrams)

Column 7: f̂ , �ber per serving (grams)

Column 8: p̂, protein per serving (grams)

Food Price Serving Size Calories Fat Sugar Calcium Fiber Protein

p s c f ŝ ĉ f̂ p̂

dollars g g mg g g

Ramen 6.88 48 190 7 0 0 0 5

Potatoes 0.48 1 290 0.4 3.2 53.8 6.9 7.9

Milk 1.79 16 130 5 12 250 0 8

Eggs 1.32 12 70 5 0 28 0 6

Pasta 3.88 8 200 1 2 0 2 7

Frozen Pizza 2.78 5 350 11 5 150 2 14

Potato Chips 2.12 14 160 11 1 0 1 1

Frozen Broccoli 0.98 4 25 0 1 25 2 1

Carrots 0.98 2 52.5 0.3 6.1 42.2 3.6 1.2

Bananas 0.24 1 105 0.4 14.4 5.9 3.1 1.3

Tortillas 3.48 18 140 4 0 0 0 3

Cheese 1.88 8 110 8 0 191 0 6

Yogurt 3.47 5 90 0 7 190 0 17

Bread 1.28 6 120 2 2 60 0.01 4

Chicken 9.76 20 110 3 0 0 0 20

Rice 8.43 40 205 0.4 0.1 15.8 0.6 4.2

Pasta Sauce 3.57 15 60 1.5 7 20 2 2

Lettuce 1.78 6 8 0.1 0.6 15.5 1 0.6

Table 15.4: Subset of table containing food data

According to the FDA1 and US Department of Health, someone on a 2000 calorie diet should

have no more than 2000 calories, no more than 65 grams of fat, no more than 50 grams of sugar2, at

1urlhttps://www.accessdata.fda.gov/scripts/InteractiveNutritionFactsLabel/pdv.html
2https://www.today.com/health/4-rules-added-sugars-how-calculate-your-daily-limit-t34731

10 Lab 15. CVXOPT

least 1000 milligrams of calcium1, at least 25 grams of �ber, and at least 46 grams of protein2 per

day.

We can rewrite this as a convex optimization problem below.

minimize

18∑
i=1

pixi,

subject to

18∑
i=1

cixi ≤ 2000,

18∑
i=1

fixi ≤ 65,

18∑
i=1

ŝixi ≤ 50,

18∑
i=1

ĉixi ≥ 1000,

18∑
i=1

f̂ixi ≥ 25,

18∑
i=1

p̂ixi ≥ 46,

xi ≥ 0.

Problem 6. Read in the �le food.npy. Use CVXOPT to identify how much of each food item

a college student should each to minimize cost spent each day. Return the minimizing vector

and the total amount of money spent.

What is the food you should eat most each day? What are the three foods you should eat

most each week?

(Hint: Each nutritional value must be multiplied by the number of servings to get the

nutrition value of the whole product).

You can learn more about CVXOPT at http://cvxopt.org/index.html.

126 Sept 2018, https://ods.od.nih.gov/factsheets/Calcium-HealthProfessional/
2https://www.accessdata.fda.gov/scripts/InteractiveNutritionFactsLabel/protein.html

http://cvxopt.org/index.html
https://ods.od.nih.gov/factsheets/Calcium-HealthProfessional/
https://www.accessdata.fda.gov/scripts/InteractiveNutritionFactsLabel/protein.html

	CVXOPT

