
8 Web Crawling

Lab Objective: Gathering data from the internet often requires information from several web

pages. In this lab, we present two methods for crawling through multiple web pages without violating

copyright laws or straining the load on a server. We also demonstrate how to scrape data from

asynchronously loaded web pages and how to interact programmatically with web pages when needed.

Note

For grading purposes, before returning a value in each function of this lab, write the value being

returned to a pickle �le. Name the �le ans1 if it contains the returned value of Problem 1,

ans2 for Problem 2, and so on, so that you have �ve pickle �les saved. In order to create a

pickle �le, use the following code:

>>> import pickle

>>>

>>> # Write the answer of Problem 1, "value", to a pickle file

>>> with open("ans1", "wb") as fp:

>>> pickle.load(value, fp)

Scraping Etiquette
There are two main ways that web scraping can be problematic for a website owner.

1. The scraper doesn't respect the website's terms and conditions or gathers private or proprietary

data.

2. The scraper imposes too much extra server load by making requests too often or in quick

succession.

These are extremely important considerations in any web scraping program. Scraping copyrighted

information without the consent of the copyright owner can have severe legal consequences. Many

websites, in their terms and conditions, prohibit scraping parts or all of the site. Websites that do

1

2 Lab 8. Web Crawling

allow scraping usually have a �le called robots.txt (for example, www.google.com/robots.txt)

that speci�es which parts of the website are o�-limits, and how often requests can be made according

to the robots exclusion standard.1

Achtung!

Be careful and considerate when doing any sort of scraping, and take care when writing and

testing code to avoid unintended behavior. It is up to the programmer to create a scraper that

respects the rules found in the terms and conditions and in robots.txt. Make sure to scrape

websites legally. a

aPython provides a parsing library called urllib.robotparser for reading robot.txt �les. For more infor-

mation, see https://docs.python.org/3/library/urllib.robotparser.html.

The standard way to get the HTML source code of a website using Python is via the requests

library.2 Calling requests.get() sends an HTTP GET request to a speci�ed website; the result is

an object with a response code that indicates whether or not the request was successful and if so,

access to the website source code.

>>> import requests

Make a request and check the result. A status code of 200 is good.

>>> response = requests.get("http://www.example.com")

>>> print(response.status_code, response.ok, response.reason)

200 True OK

The HTML of the website is stored in the 'text' attribute.

>>> print(response.text)

<!doctype html>

<html>

<head>

<title>Example Domain</title>

<meta charset="utf-8" />

<meta http-equiv="Content-type" content="text/html; charset=utf-8" />

...

Recall that consecutive GET requests without pauses can strain a website's server and provoke

retaliation. Most servers are designed to identify such scrapers, block their access, and sometimes

even blacklist the user. This is especially common in smaller websites that aren't built to handle

enormous amounts of tra�c. To brie�y pause the program between requests, use time.sleep().

>>> import time

>>> time.sleep(3) # Pause execution for 3 seconds.

1See www.robotstxt.org/orig.html and en.wikipedia.org/wiki/Robots_exclusion_standard.
2Though requests is not part of the standard library, it is recognized as a standard tool in the data science

community. See http://docs.python-requests.org/.

www.google.com/robots.txt
https://docs.python.org/3/library/urllib.robotparser.html
http://www.robotstxt.org/orig.html
https://en.wikipedia.org/wiki/Robots_exclusion_standard
http://docs.python-requests.org/

3

The amount of necessary wait time depends on the website. Sometimes, robots.txt contains

a Request-rate directive which gives a ratio of the form <requests>/<seconds>. If this doesn't

exist, pausing for a half-second to a second between requests is typically su�cient. An email to the

site's webmaster is always the safest approach and may be necessary for large scraping operations.

Crawling Through Multiple Pages
While web scraping refers to the actual gathering of web-based data, web crawling refers to the

navigation of a program between webpages. Web crawling allows a program to gather related data

from multiple web pages and websites.

Consider books.toscrape.com, a site to practice web scraping that mimics a bookstore. The

page http://books.toscrape.com/catalogue/category/books/mystery_3/index.html lists mys-

tery books with overall ratings and review. More mystery books can be accessed by clicking on the

next link. The following example demonstrates how to navigate between webpages to collect all of

the mystery book titles.

def scrape_books(start_page = "index.html"):

""" Crawl through http://books.toscrape.com and extract mystery titles"""

Initialize variables, including a regex for finding the 'next' link.

base_url="http://books.toscrape.com/catalogue/category/books/mystery_3/"

titles = []

page = base_url + start_page # Complete page URL.

next_page_finder = re.compile(r"next") # We need this button.

current = None

for _ in range(2):

while current == None: # Try downloading until it works.

Download the page source and PAUSE before continuing.

page_source = requests.get(page).text

time.sleep(1) # PAUSE before continuing.

soup = BeautifulSoup(page_source, "html.parser")

current = soup.find_all(class_="product_pod")

Navigate to the correct tag and extract title

for book in current:

titles.append(book.h3.a["title"])

Find the URL for the page with the next data.

if "page-2" not in page:

new_page = soup.find(string=next_page_finder).parent["href"]

page = base_url + new_page # New complete page URL.

current = None

return titles

In this example, the for loop cycles through the pages of books, and the while loop ensures

that each website page loads properly: if the downloaded page_source doesn't have a tag whose

http://books.toscrape.com
http://books.toscrape.com/catalogue/category/books/mystery_3/index.html

4 Lab 8. Web Crawling

class is product_pod, the request is sent again. After recording all of the titles, the function locates

the link to the next page. This link is stored in the HTML as a relative website path (page-2.html);

the complete URL to the next day's page is the concatenation of the base URL http://books.

toscrape.com/catalogue/category/books/mystery_3/ with this relative link.

Problem 1. Modify scrape_books() so that it gathers the price for each �ction book and

returns the mean price, in £, of a �ction book.

An alternative approach that is often useful is to �rst identify the links to relevant pages,

then scrape each of these page in succession. For example, the Federal Reserve releases quarterly

data on large banks in the United States at http://www.federalreserve.gov/releases/lbr. The

following function extracts the four measurements of total consolidated assets for JPMorgan Chase

during 2004.

def bank_data():

"""Crawl through the Federal Reserve site and extract bank data."""

Compile regular expressions for finding certain tags.

link_finder = re.compile(r"2004$")

chase_bank_finder = re.compile(r"^JPMORGAN CHASE BK")

Get the base page and find the URLs to all other relevant pages.

base_url="https://www.federalreserve.gov/releases/lbr/"

base_page_source = requests.get(base_url).text

base_soup = BeautifulSoup(base_page_source, "html.parser")

link_tags = base_soup.find_all(name='a', href=True, string=link_finder)

pages = [base_url + tag.attrs["href"] for tag in link_tags]

Crawl through the individual pages and record the data.

chase_assets = []

for page in pages:

time.sleep(1) # PAUSE, then request the page.

soup = BeautifulSoup(requests.get(page).text, "html.parser")

Find the tag corresponding to Chase Banks's consolidated assets.

temp_tag = soup.find(name="td", string=chase_bank_finder)

for _ in range(10):

temp_tag = temp_tag.next_sibling

Extract the data, removing commas.

chase_assets.append(int(temp_tag.string.replace(',', '')))

return chase_assets

Problem 2. Modify bank_data() so that it extracts the total consolidated assets (�Consol

Assets�) for JPMorgan Chase, Bank of America, and Wells Fargo recorded each December from

2004 to the present. Return a list of lists where each list contains the assets of each bank.

http://books.toscrape.com/catalogue/category/books/mystery_3/
http://books.toscrape.com/catalogue/category/books/mystery_3/
http://www.federalreserve.gov/releases/lbr

5

Problem 3. The Basketball Reference website at https://www.basketball-reference.com

contains data on NBA athletes, including which player led di�erent categories for each season.

For the past ten seasons, identify which player had the most season points and �nd how many

points they scored during that season. Return a list of triples consisting of the season, the

player, and the points scored, ("season year", "player name", points scored).

Asynchronously Loaded Content and User Interaction
Web crawling with the methods presented in the previous section fails under a few circumstances.

First, many webpages use JavaScript, the standard client-side scripting language for the web, to

load portions of their content asynchronously. This means that at least some of the content isn't

initially accessible through the page's source code. Second, some pages require user interaction, such

as clicking buttons which aren't links (<a> tags which contain a URL that can be loaded) or entering

text into form �elds (like search bars).

The Selenium framework provides a solution to both of these problems. Originally developed

for writing unit tests for web applications, Selenium allows a program to open a web browser and

interact with it in the same way that a human user would, including clicking and typing. It also has

BeautifulSoup-esque tools for searching the HTML source of the current page.

Note

Selenium requires an executable driver �le for each kind of browser. The following examples

use Google Chrome, but Selenium supports Firefox, Internet Explorer, Safari, Opera, and

PhantomJS (a special browser without a user interface). See https://seleniumhq.github.io/

selenium/docs/api/py or http://selenium-python.readthedocs.io/installation.html

for installation instructions and driver download instructions.

To use Selenium, start up a browser using one of the drivers in selenium.webdriver. The

browser has a get() method for going to di�erent web pages, a page_source attribute containing

the HTML source of the current page, and a close() method to exit the browser.

>>> from selenium import webdriver

Start up a browser and go to example.com.

>>> browser = webdriver.Chrome()

>>> browser.get("https://www.example.com")

Feed the HTML source code for the page into BeautifulSoup for processing.

>>> soup = BeautifulSoup(browser.page_source, "html.parser")

>>> print(soup.prettify())

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>

Example Domain

</title>

https://www.basketball-reference.com
https://seleniumhq.github.io/selenium/docs/api/py
https://seleniumhq.github.io/selenium/docs/api/py
http://selenium-python.readthedocs.io/installation.html

6 Lab 8. Web Crawling

<meta charset="utf-8"/>

<meta content="text/html; charset=utf-8" http-equiv="Content-type"/>

...

>>> browser.close() # Close the browser.

Selenium can deliver the HTML page source to BeautifulSoup, but it also has its own tools for

�nding tags in the HTML.

Method Returns

find_element_by_tag_name() The �rst tag with the given name

find_element_by_name() The �rst tag with the speci�ed name attribute

find_element_by_class_name() The �rst tag with the given class attribute

find_element_by_id() The �rst tag with the given id attribute

find_element_by_link_text() The �rst tag with a matching href attribute

find_element_by_partial_link_text() The �rst tag with a partially matching href attribute

Table 8.1: Methods of the selenium.webdriver.Chrome class.

Each of the find_element_by_*() methods returns a single object representing a web element

(of type selenium.webdriver.remote.webelement.WebElement), much like a BeautifulSoup tag (of

type bs4.element.Tag). If no such element can be found, a Selenium NoSuchElementException is

raised. Each webdriver also has several find_elements_by_*() methods (elements, plural) that

return a list of all matching elements, or an empty list if there are no matches.

Web element objects have methods that allow the program to interact with them: click()

sends a click, send_keys() enters in text, and clear() deletes existing text. This functionality

makes it possible for Selenium to interact with a website in the same way that a human would. For

example, the following code opens up https://www.google.com, types �Python Selenium Docs� into

the search bar, and hits enter.

>>> from selenium.webdriver.common.keys import Keys

>>> from selenium.common.exceptions import NoSuchElementException

>>> browser = webdriver.Chrome()

>>> try:

... browser.get("https://www.google.com")

... try:

... # Get the search bar, type in some text, and press Enter.

... search_bar = browser.find_element_by_name('q')

... search_bar.clear() # Clear any pre-set text.

... search_bar.send_keys("Python Selenium Docs")

... search_bar.send_keys(Keys.RETURN) # Press Enter.

... except NoSuchElementException:

... print("Could not find the search bar!")

... raise

... finally:

... browser.close()

...

7

Problem 4. The website IMDB contains a variety of information on movies. Speci�cally,

information on the top 10 box o�ce movies of the week can be found at https://www.imdb.

com/chart/boxoffice. Using Beau�ulSoup, Selenium, or both, return a list of the top 10

movies of the week and order the list according to the total grossing of the movies, from most

money to the least.

Problem 5. The arXiv (pronounced �archive�) is an online repository of scienti�c publications,

hosted by Cornell University. Write a function that accepts a string to serve as a search

query defaulting to linkedin. Use Selenium to enter the query into the search bar of https:

//arxiv.org and press Enter. The resulting page has up to 50 links to the PDFs of technical

papers that match the query. Gather these URLs, then continue to the next page (if there are

more results) and continue gathering links until obtaining at most 150 URLs. Return the list

of URLs.

Note

Using Selenium to access a page's source code is typically much safer, though slower, than

using requests.get(), since Selenium waits for each web page to load before proceeding.

For instance, the arXiv is a somewhat defensive about scrapers (https://arxiv.org/help/

robots), but Selenium makes it possible to gather info from the website without o�ending the

administrators.

https://www.imdb.com/chart/boxoffice
https://www.imdb.com/chart/boxoffice
https://arxiv.org
https://arxiv.org
https://arxiv.org/help/robots
https://arxiv.org/help/robots

	Web Crawling

