
9 Pandas 1: Introduction

Lab Objective: Though NumPy and SciPy are powerful tools for numerical computing, they lack

some of the high-level functionality necessary for many data science applications. Python's pandas

library, built on NumPy, is designed speci�cally for data management and analysis. In this lab,

we introduce pandas data structures, syntax, and explore its capabilities for quickly analyzing and

presenting data.

Note

This lab will be done using Colab Notebooks. These notebooks are similar to Jupyter Notebooks

but run remotely on Google's servers. Open a Google Colab notebook by going to your Google

Drive account and creating a new Colaboratory �le. If making a Colaboratory �le is not an

option, download the application Colaboratory onto your Google Drive. Once opening a new

Colab Notebook, upload the �le pandas1.ipynb. To make the data �les accessible, run the

following at the top of the lab:

>>> from google.colab import files

>>> uploaded = files.upload()

This will prompt you upload �les for this notebook. For this lab, upload budget.csv and

crime_data.csv.

Once the lab is complete, delete BOTH lines of code used for uploading �les (the import

statement and the upload statement) and download as a .py �le to your git repository. Push

the newly made pandas1.py �le.

Pandas Basics
Pandas is a python library used primarily to analyze data. It combines functionality of NumPy,

MatPlotLib, and SQL to create a easy to understand library that allows for the manipulation of data

in various ways. In this lab, we focus on the use of Pandas to analyze and manipulate data in ways

similar to NumPy and SQL.

1

2 Lab 9. Pandas 1: Introduction

Pandas Data Structures
Series

The �rst pandas data structure is a Series. A Series is a one-dimensional array that can hold any

datatype, similar to a ndarray. However, a Series has an index that gives a label to each entry.

An index generally is used to label the data.

Typically a Series contains information about one feature of the data. For example, the data

in a Series might show a class's grades on a test and the Index would indicate each student in the

class. To initialize a Series, the �rst parameter is the data and the second is the index.

>>> import pandas as pd

>>>

>>> # Initialize Series of student grades

>>> math = pd.Series(np.random.randint(0,100,4), ['Mark', 'Barbara', 'Eleanor',←↩
'David'])

>>> english = pd.Series(np.random.randint(0,100,5), ['Mark', 'Barbara', 'David'←↩
, 'Greg', 'Lauren'])

DataFrame

The second key pandas data structure is a DataFrame. A DataFrame is a collection of multiple

Series. It can be thought of as a 2-dimensional array, where each row is a separate datapoint and

each column is a feature of the data. The rows are label with an index (as in a Series) and the

columns are labelled in the attribute columns.

There are many di�erent ways to initialize a DataFrame. One way to initialize a DataFrame is

passing in a dictionary as the data of the DataFrame. The keys of the dictionary will become the

labels in columns and the values are the Series associated with the label.

>>> # Create a DataFrame of student grades

>>> grades = pd.DataFrame({"Math": math, "English": english}

>>> grades

Math English

Barbara 52.0 73.0

David 10.0 39.0

Eleanor 35.0 NaN

Greg NaN 26.0

Lauren NaN 99.0

Mark 81.0 68.0

Notice that pd.DataFrame automatically lines up data from both Series that have the same

index. If the data only appears in one of the Series, the entry for the second Series is NaN.

We can also initialize a DataFrame with a NumPy array. In this way, the data is passed in as

a 2-dimensional NumPy array, while the column labels and index are passed in as parameters. The

�rst column label goes with the �rst column of the array, the second with the second, etc. The same

holds for the index.

>>> import numpy as np

>>> # Initialize DataFrame with NumPy array

3

>>> data = np.array([[52.0, 73.0], [10.0, 39.0], [35.0, np.nan], [np.nan, ←↩
26.0], [np.nan, 99.0], [81.0, 68.0]])

>>> grades = pd.DataFrame(data, columns = ['Math', 'English'], index = ['←↩
Barbara', 'David', 'Eleanor', 'Greg', 'Lauren', 'Mark'])

>>> grades

Math English

Barbara 52.0 73.0

David 10.0 39.0

Eleanor 35.0 NaN

Greg NaN 26.0

Lauren NaN 99.0

Mark 81.0 68.0

A DataFrame can also be viewed as a NumPy array using the attribute values.

>>> # View the DataFrame as a NumPy array

>>> grades.values

array([[52., 73.],

[10., 39.],

[35., nan],

[nan, 26.],

[nan, 99.],

[81., 68.]])

Problem 1. Write a function random_dataframe() that accepts a dictionary d which defaults

to None. If a dictionary is passed in, initialize a Pandas DataFrame. Return a tuple of the

attributes index, columns, and values of the DataFrame.

If a dictionary is not passed in, generate random data as a ndarray and initialize a

DataFrame. The columns of the DataFrame should be the letters 'A' through 'E'. The index

of the DataFrame should be the roman numerals 1-6. Return a tuple of the attributes index,

columns, and values of the DataFrame.

(Hint: What should the dimension of the data be if no dictionary is passed in?)

Data I/O
The pandas library has functions that make importing and exporting data simple. The functions

allow for a variety of �le formats to be imported and exported, including CSV, Excel, HDF5, SQL,

JSON, HTML, and pickle �les.

Method Description

to_csv() Write the index and entries to a CSV �le

to_json() Convert the object to a JSON string

to_pickle() Serialize the object and store it in an external �le

to_sql() Write the object data to an open SQL database

Table 9.1: Methods for exporting data in a pandas Series or DataFrame.

4 Lab 9. Pandas 1: Introduction

The CSV (comma separated values) format is a simple way of storing tabular data in plain

text. Because CSV �les are one of the most popular �le formats for exchanging data, we will explore

the read_csv() function in more detail. To learn to read other types of �le formats, see the online

pandas documentation. To read a CSV data �le into a DataFrame, call the read_csv() function

with the path to the CSV �le, along with the appropriate keyword arguments. Below we list some

of the most important keyword arguments:

� delimiter: The character that separates data �elds. It is often a comma or a whitespace

character.

� header: The row number (0 indexed) in the CSV �le that contains the column names.

� index_col: The column (0 indexed) in the CSV �le that is the index for the DataFrame.

� skiprows: If an integer n, skip the �rst n rows of the �le, and then start reading in the data.

If a list of integers, skip the speci�ed rows.

� names: If the CSV �le does not contain the column names, or you wish to use other column

names, specify them in a list.

Data Manipulation
Accessing Data
While array slicing can be used to access data in a DataFrame, it is always preferable to use the

loc and iloc indexers. Accessing Series and DataFrame objects using these indexing operations

is more e�cient than slicing because the bracket indexing has to check many cases before it can

determine how to slice the data structure. Using loc/iloc explicitly, bypasses the extra checks. The

loc index selects rows and columns based on their labels, while iloc selects them based on their

integer position. When using these indexers, the �rst and second arguments refer to the rows and

columns, respectively, just as array slicing.

>>> grades

Math English

Barbara 52.0 73.0

David 10.0 39.0

Eleanor 35.0 NaN

Greg NaN 26.0

Lauren NaN 99.0

Mark 81.0 68.0

>>> # Use loc to select the Math scores of David and Greg

>>> grades.loc[['David', 'Greg'],'Math']

David 10.0

Greg NaN

Name: Math, dtype: float64

>>> # Use iloc to select the Math scores of David and Greg

>>> grades.iloc[[1,3], 0]

David 10.0

Greg NaN

5

An entire column of a DataFrame can be accessed using simple square brackets and the name

of the column. In addition, to create a new column or reset the values of an entire column, simply

call this column in the same fashion and set the value.

>>> # Set new History column with array of random values

>>> grades['History'] = np.random.randint(0,100,6)

>>> grades['History']

Barbara 4

David 92

Eleanor 25

Greg 79

Lauren 82

Mark 27

Name: History, dtype: int64

>>> # Reset the column such that everyone has a 100

>>> grades['History'] = 100.0

>>> grades

Math English History

Barbara 52.0 73.0 100.0

David 10.0 39.0 100.0

Eleanor 35.0 NaN 100.0

Greg NaN 26.0 100.0

Lauren NaN 99.0 100.0

Mark 81.0 68.0 100.0

Often datasets can be very large and di�cult to visualize. Pandas o�ers various methods to

make the data easier to visualize. The methods head and tail will show the �rst or last n data

points, respectively, where n defaults to 5. The method sample will draw n random entry of the

dataset, where n defaults to 1.

>>> # Use head to see the first n rows

>>> grades.head(n=2)

Math English History

Barbara 52.0 73.0 100.0

David 10.0 39.0 100.0

>>> # Use sample to sample a random entry

>>> grades.sample()

Math English History

Lauren NaN 99.0 100.0

It may also be useful to re-order the columns or rows or sort according to a given column.

>>> # Re-order columns

>>> grades.reindex(columns['English','Math','History'])

English Math History

6 Lab 9. Pandas 1: Introduction

Barbara 73.0 52.0 100.0

David 39.0 10.0 100.0

Eleanor NaN 35.0 100.0

Greg 26.0 NaN 100.0

Lauren 99.0 NaN 100.0

Mark 68.0 81.0 100.0

>>> # Sort descending according to Math grades

>>> grades.sort_values('Math', ascending=False)

Math English History

Mark 81.0 68.0 100.0

Barbara 52.0 73.0 100.0

Eleanor 35.0 NaN 100.0

David 10.0 39.0 100.0

Greg NaN 26.0 100.0

Lauren NaN 99.0 100.0

Other methods used for manipulating DataFrame and Series panda structures can be found

in Table 9.2.

Method Description

append() Concatenate two or more Series.

drop() Remove the entries with the speci�ed label or labels

drop_duplicates() Remove duplicate values

dropna() Drop null entries

fillna() Replace null entries with a speci�ed value or strategy

reindex() Replace the index

sample() Draw a random entry

shift() Shift the index

unique() Return unique values

Table 9.2: Methods for managing or modifying data in a pandas Series or DataFrame.

Problem 2. The �le budget.csv contains the budget of a college student over the course of 4

years. Write a function prob2() reads in budget.csv as a DataFrame. Perform the following

operations:

1. Reindex the columns such that amount spent on food is the �rst column and all other

columns maintain the same ordering.

2. Sort the DataFrame in descending order based on how much money was spent on Groceries

3. Reset all values in the 'Rent' column to 800.0

4. Reset all values in the �rst 5 data points to 0.0

Return the values of the updated DataFrame as a NumPy array.

7

Basic Data Manipulation
Because the primary pandas data structures are subclasses of ndarray, most NumPy functions work

with pandas structure. For example, basic vector operations work as expected:

>>> # Sum history and english grades of all students

>>> grades['English'] + grades['History']

Barbara 173.0

David 139.0

Eleanor NaN

Greg 126.0

Lauren 199.0

Mark 168.0

dtype: float64

>>> # Double all Math grades

>>> grades['Math']*2

Barbara 104.0

David 20.0

Eleanor 70.0

Greg NaN

Lauren NaN

Mark 162.0

Name: Math, dtype: float64

In addition to arithmetic, Series have a variety of other methods similar to NumPy arrays. A

collection of these methods is found in Table 9.3.

Method Returns

abs() Object with absolute values taken (of numerical data)

idxmax() The index label of the maximum value

idxmin() The index label of the minimum value

count() The number of non-null entries

cumprod() The cumulative product over an axis

cumsum() The cumulative sum over an axis

max() The maximum of the entries

mean() The average of the entries

median() The median of the entries

min() The minimum of the entries

mode() The most common element(s)

prod() The product of the elements

sum() The sum of the elements

var() The variance of the elements

Table 9.3: Numerical methods of the Series and DataFrame pandas classes.

Basic Statistical Functions
The pandas library allows us to easily calculate basic summary statistics of our data, useful when

we want a quick description of the data. The describe() function outputs several such summary

8 Lab 9. Pandas 1: Introduction

statistics for each column in a DataFrame:

>>> # Use describe to better understand the data

>>> grades.describe()

Math English History

count 4.000000 5.00000 6.0

mean 44.500000 61.00000 100.0

std 29.827281 28.92231 0.0

min 10.000000 26.00000 100.0

25% 28.750000 39.00000 100.0

50% 43.500000 68.00000 100.0

75% 59.250000 73.00000 100.0

max 81.000000 99.00000 100.0

Functions for calculating means and variances, the covariance and correlation matrices, and

other basic statistics are also available.

>>> # Find the average grade for each student

>>> grades.mean(axis=1)

Barbara 75.000000

David 49.666667

Eleanor 67.500000

Greg 63.000000

Lauren 99.500000

Mark 83.000000

dtype: float64

>>> # Solve for the unbiased variance between subjects

>>> grades.cov()

Math English History

Math 889.666667 557.0 0.0

English 557.000000 836.5 0.0

History 0.000000 0.0 0.0

>>> # Give correlation matrix between subjects

>>> grades.corr()

Math English History

Math 1.00000 0.84996 NaN

English 0.84996 1.00000 NaN

History NaN NaN NaN

The method rank gives a ranking based on methods such as average, minimum, and maximum.

This method defaults ranking in ascending order (the least will be ranked 1 and the greatest will be

ranked the highest number).

>>> # Rank each student's performance based on their highest grade in any class←↩
in descending order

>>> grades.rank(axis=1,method='max',ascending=False)

Math English History

9

Barbara 3.0 2.0 1.0

David 3.0 2.0 1.0

Eleanor 2.0 NaN 1.0

Greg NaN 2.0 1.0

Lauren NaN 2.0 1.0

Mark 2.0 3.0 1.0

These methods can be very e�ective in interpreting data. For example, the rank example above

shows use that Barbara does best in History, then English and then Math.

Dealing with Missing Data
Missing data is a ubiquitous problem in data science. Fortunately, pandas is particularly well-suited

to handling missing and anomalous data. As we have already seen, the pandas default for a missing

value is NaN. In basic arithmetic operations, if one of the operands is NaN, then the output is also NaN.

If we are not interested in the missing values, we can simply drop them from the data altogether:

>>> # Grades with all NaN values dropped

>>> grades.dropna()

Math English History

Barbara 52.0 73.0 100.0

David 10.0 39.0 100.0

Mark 81.0 68.0 100.0

This is not always the desired behavior, however. Missing data could actually correspond to

some default value, such as zero. For example, in the budget dataset, �lling NaN value with 0 indicates

that no money was spent on that item. In the grade dataset, we can replace all instances of NaN with

a speci�ed value:

>>> # fill missing data with 50.0

>>> grades.fillna(50.0)

Math English History

Barbara 52.0 73.0 100.0

David 10.0 39.0 100.0

Eleanor 35.0 50.0 100.0

Greg 50.0 26.0 100.0

Lauren 50.0 99.0 100.0

Mark 81.0 68.0 100.0

When dealing with missing data, make sure you are aware of the behavior of the pandas

functions you are using. For example, sum() and mean() ignore NaN values in the computation.

Achtung!

Always consider missing data carefully when analyzing a dataset. It may not always be helpful

to drop the data or �ll it in with a random number. Consider �lling the data with the mean

10 Lab 9. Pandas 1: Introduction

of surrounding data or the mean of the feature in question. Overall, the choice for how to �ll

missing data should make sense with the dataset.

Problem 3. Write a function prob3() that uses budget.csv to answer the questions "Which

category a�ects living expenses the most? Which a�ects other expenses the most? How much

is generally spent in these two categories?". Use the functions above to manipulate the data to

perform the following manipulations:

1. Fill all NaN values with 0.0.

2. Create two new columns, 'Living Expenses' and 'Other'. Sum the columns 'Rent'

, 'Groceries', 'Gas' and 'Utilities' and set as the value of 'Living Expenses'.

Sum the columns 'Dining Out', 'Out With Friends' and 'Netflix' and set as the

value of 'Other'.

3. Identify which column correlates most with 'Living Expenses' and which correlates

most with 'Other'. This can indicate which columns in the budget a�ects the overarching

categories the most.

Return the mean of each the two columns found in 3 as a tuple. The �rst mean should be of

the column corresponding to 'Living Expenses' and the second to 'Other'.

SQL Operations in pandas
DataFrames are tabular data structures bearing an obvious resemblance to a typical relational

database table. SQL is the standard for working with relational databases; however, pandas can

accomplish many of the same tasks as SQL. The SQL-like functionality of pandas is one of its

biggest advantages, eliminating the need to switch between programming languages for di�erent

tasks. Within pandas, we can handle both the querying and data analysis.

For the examples below, we will use the following data:

>>> name = ['Mylan', 'Regan', 'Justin', 'Jess', 'Jason', 'Remi', 'Matt', '←↩
Alexander', 'JeanMarie']

>>> sex = ['M', 'F', 'M', 'F', 'M', 'F', 'M', 'M', 'F']

>>> age = [20, 21, 18, 22, 19, 20, 20, 19, 20]

>>> rank = ['Sp', 'Se', 'Fr', 'Se', 'Sp', 'J', 'J', 'J', 'Se']

>>> ID = range(9)

>>> aid = ['y', 'n', 'n', 'y', 'n', 'n', 'n', 'y', 'n']

>>> GPA = [3.8, 3.5, 3.0, 3.9, 2.8, 2.9, 3.8, 3.4, 3.7]

>>> mathID = [0, 1, 5, 6, 3]

>>> mathGd = [4.0, 3.0, 3.5, 3.0, 4.0]

>>> major = ['y', 'n', 'y', 'n', 'n']

>>> studentInfo = pd.DataFrame({'ID': ID, 'Name': name, 'Sex': sex, 'Age': age,←↩
'Class': rank})

>>> otherInfo = pd.DataFrame({'ID': ID, 'GPA': GPA, 'Financial_Aid': aid})

>>> mathInfo = pd.DataFrame({'ID': mathID, 'Grade': mathGd, 'Math_Major': major←↩
})

11

Before querying our data, it is important to know some of its basic properties, such as number

of columns, number of rows, and the datatypes of the columns. This can be done by simply calling

the info() method on the desired DataFrame:

>>> mathInfo.info()

<class 'pandas.core.frame.DataFrame'>

Int64Index: 5 entries, 0 to 4

Data columns (total 3 columns):

Grade 5 non-null float64

ID 5 non-null int64

Math_Major 5 non-null object

dtypes: float64(1), int64(1), object(1)

SQL SELECT statements can be done by column indexing. WHERE statements can be in-

cluded by adding masks (just like in a NumPy array). The method isin() can also provide a useful

WHERE statement. This method accepts a list, dictionary, or Series containing possible values of

the DataFrame or Series. When called upon, it returns a Series of booleans, indicating whether

an entry contained a value in the parameter pass into isin().

>>> # SELECT ID, Age FROM studentInfo

>>> studentInfo[['ID', 'Age']]

ID Age

0 0 20

1 1 21

2 2 18

3 3 22

4 4 19

5 5 20

6 6 20

7 7 19

8 8 29

>>> # SELECT ID, GPA FROM otherInfo WHERE Financial_Aid = 'y'

>>> mask = otherInfo['Financial_Aid'] == 'y'

>>> otherInfomask][['ID', 'GPA']]

ID GPA

0 0 3.8

3 3 3.9

7 7 3.4

>>> # SELECT Name FROM studentInfo WHERE Class = 'J' OR Class = 'Sp'

>>> studentInfo[studentInfo['Class'].isin(['J','Sp'])]['Name']

0 Mylan

4 Jason

5 Remi

6 Matt

7 Alexander

12 Lab 9. Pandas 1: Introduction

Name: Name, dtype: object

Next, let's look at JOIN statements. In pandas, this is done with the merge function. merge

takes the two DataFrame objects to join as parameters, as well as keyword arguments specifying the

column on which to join, along with the type (left, right, inner, outer).

>>> # SELECT * FROM studentInfo INNER JOIN mathInfo ON studentInfo.ID = ←↩
mathInfo.ID

>>> pd.merge(studentInfo, mathInfo, on='ID') # INNER JOIN is the default

Age Class ID Name Sex Grade Math_Major

0 20 Sp 0 Mylan M 4.0 y

1 21 Se 1 Regan F 3.0 n

2 22 Se 3 Jess F 4.0 n

3 20 J 5 Remi F 3.5 y

4 20 J 6 Matt M 3.0 n

[5 rows x 7 columns]

>>> # SELECT GPA, Grade FROM otherInfo FULL OUTER JOIN mathInfo ON otherInfo.ID←↩
= mathInfo.ID

>>> pd.merge(otherInfo, mathInfo, on='ID', how='outer')[['GPA', 'Grade']]

GPA Grade

0 3.8 4.0

1 3.5 3.0

2 3.0 NaN

3 3.9 4.0

4 2.8 NaN

5 2.9 3.5

6 3.8 3.0

7 3.4 NaN

8 3.7 NaN

[9 rows x 2 columns]

Problem 4. Read in the �le crime_data.csv as a pandas object. The �le contains data on

types of crimes in the U.S. from 1960 to 2016. Set the index as the column 'Year'.

Create a new column Rate which contains the crime rate for each year. Using panda

commands, �nd the number of murders in the years where the crime rate was greater than 5%

and the number of Violent was more than on average. Return an array containing the number

of murders in these years.

(Hint: To do AND statements, use two masks. Use values attribute to create array.)

Problem 5. Answer the following questions using the �le crime_data.csv and the pandas

methods learned in this lab. The answer of each question should be saved as indicated. Return

the answers to each question as a tuple (i.e. (answer_1,answer_2,answer_3)).

13

1. Identify the three crimes that have a mean over 1,500,000. Of these three crimes, which

two are very correlated? Which of these two crimes has a greater maximum value? Save

the title of this column as a variable to return as the answer.

2. Examine the data since 2000. Sort this data (in ascending order) according to number

of murders. SELECT Aggravated Assault WHERE Aggravated Assault is greather than

850,000. Save the reordered and SQL queried DataFrame as a NumPy array to return as

the answer.

3. What decade had the most crime? In this decade, which crime was committed the most?

What percentage of the total crime that year was it? Save this value as a �oat.

	Pandas 1: Introduction

