
11 Pandas 3: Grouping

Lab Objective: Many data sets contain categorical values that naturally sort the data into groups.

Analyzing and comparing such groups is an important part of data analysis. In this lab we explore

pandas tools for grouping data and presenting tabular data more compactly, primarily through groupby

and pivot tables.

Note

This lab will be done using Colab Notebooks. These notebooks are similar to Jupyter Notebooks

but run remotely on Google's servers. Open a Google Colab notebook by going to your Google

Drive account and creating a new Colaboratory �le. If making a Colaboratory �le is not an

option, download the application Colaboratory onto your Google Drive. Once opening a new

Colab Notebook, upload the �le pandas3.ipynb. To make the data �les accessible, run the

following at the top of the lab:

>>> from google.colab import files

>>> uploaded = files.upload()

This will prompt you upload �les for this notebook. For this lab, upload college.csv and

ohio_1999.csv.

Once the lab is complete, delete BOTH lines of code used for uploading �les (the import

statement and the upload statement) and download as a .py �le to your git repository. Push

the newly made pandas3.py �le.

Groupby
The �le mammal_sleep.csv1 contains data on the sleep cycles of di�erent mammals, classi�ed by

order, genus, species, and diet (carnivore, herbivore, omnivore, or insectivore). The "sleep_total"

1Proceedings of the National Academy of Sciences, 104 (3):1051�1056, 2007. Updates from V. M. Savage and G. B.
West, with additional variables supplemented by Wikipedia. Available in pydataset (with a few more columns) under
the key "msleep".
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column gives the total number of hours that each animal sleeps (on average) every 24 hours. To get

an idea of how many animals sleep for how long, we start o� with a histogram of the "sleep_total"

column.

>>> import pandas as pd

>>> from matplotlib import pyplot as plt

# Read in the data and print a few random entries.

>>> msleep = pd.read_csv("mammal_sleep.csv")

>>> msleep.sample(5)

name genus vore order sleep_total sleep_rem sleep_cycle

51 Jaguar Panthera carni Carnivora 10.4 NaN NaN

77 Tenrec Tenrec omni Afrosoricida 15.6 2.3 NaN

10 Goat Capri herbi Artiodactyla 5.3 0.6 NaN

80 Genet Genetta carni Carnivora 6.3 1.3 NaN

33 Human Homo omni Primates 8.0 1.9 1.5

# Plot the distribution of the sleep_total variable.

>>> msleep.plot(kind="hist", y="sleep_total", title="Mammalian Sleep Data")

>>> plt.xlabel("Hours")
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Figure 11.1: "sleep_total" frequencies from the mammalian sleep data set.

While this visualization is a good start, it doesn't provide any information about how di�erent

kinds of animals have di�erent sleeping habits. How long do carnivores sleep compared to herbivores?

Do mammals of the same genus have similar sleep patterns?

A powerful tool for answering these kinds of questions is the groupby() method of the pandas

DataFrame class, which partitions the original DataFrame into groups based on the values in one

or more columns. The groupby() method does not return a new DataFrame; it returns a pandas

GroupBy object, an interface for analyzing the original DataFrame by groups.
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For example, the columns "genus", "vore", and "order" in the mammal sleep data all have a

discrete number of categorical values that could be used to group the data. Since the "vore" column

has only a few unique values, we start by grouping the animals by diet.

# List all of the unique values in the 'vore' column.

>>> set(msleep["vore"])

{nan, 'herbi', 'omni', 'carni', 'insecti'}

# Group the data by the 'vore' column.

>>> vores = msleep.groupby("vore")

>>> list(vores.groups)

['carni', 'herbi', 'insecti', 'omni'] # NaN values for vore were dropped.

# Get a single group and sample a few rows. Note vore='carni' in each entry.

>>> vores.get_group("carni").sample(5)

name genus vore order sleep_total sleep_rem sleep_cycle

80 Genet Genetta carni Carnivora 6.3 1.3 NaN

50 Tiger Panthera carni Carnivora 15.8 NaN NaN

8 Dog Canis carni Carnivora 10.1 2.9 0.333

0 Cheetah Acinonyx carni Carnivora 12.1 NaN NaN

82 Red fox Vulpes carni Carnivora 9.8 2.4 0.350

As shown above, groupby() is useful for �ltering a DataFrame by column values; the command

df.groupby(col).get_group(value) returns the rows of df where the entry of the col column is

value. The real advantage of groupby(), however, is how easily it compares groups of data. Standard

DataFrame methods like describe(), mean(), std(), min(), and max() all work on GroupBy objects

to produce a new data frame that describes the statistics of each group.

# Get averages of the numerical columns for each group.

>>> vores.mean()

sleep_total sleep_rem sleep_cycle

vore

carni 10.379 2.290 0.373

herbi 9.509 1.367 0.418

insecti 14.940 3.525 0.161

omni 10.925 1.956 0.592

# Get more detailed statistics for 'sleep_total' by group.

>>> vores["sleep_total"].describe()

count mean std min 25% 50% 75% max

vore

carni 19.0 10.379 4.669 2.7 6.25 10.4 13.000 19.4

herbi 32.0 9.509 4.879 1.9 4.30 10.3 14.225 16.6

insecti 5.0 14.940 5.921 8.4 8.60 18.1 19.700 19.9

omni 20.0 10.925 2.949 8.0 9.10 9.9 10.925 18.0

Multiple columns can be used simultaneously for grouping. In this case, the get_group()

method of the GroupBy object requires a tuple specifying the values for each of the grouping columns.
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>>> msleep_small = msleep.drop(["sleep_rem", "sleep_cycle"], axis=1)

>>> vores_orders = msleep_small.groupby(["vore", "order"])

>>> vores_orders.get_group(("carni", "Cetacea"))

name genus vore order sleep_total

30 Pilot whale Globicephalus carni Cetacea 2.7

59 Common porpoise Phocoena carni Cetacea 5.6

79 Bottle-nosed dolphin Tursiops carni Cetacea 5.2

Problem 1. Read in the data college.csv containing information on various United States

universities in 1995. To access information on variable names, go to https://cran.r-project.

org/web/packages/ISLR/ISLR.pdf. Use a groupby object to group the colleges by private and

public universities. Read in the data as a DataFrame object and use groupby and describe to

examine the following columns by group:

1. Student to Faculty Ratio,

2. How many students from the top 25% of their high school class,

3. How many students from the top 10% of their high school class.

Determine whether private or public universities have a higher mean for each of these columns.

For the type of university with the higher mean, save the values of the describe function on

said column as an array using .values. Return a tuple with these arrays in the order described

above.

For example, if I were comparing whether the number of professors with PhDs was higher

at private or public universities, I would return the following array:

array([212., 76.83490566, 12.31752531, 33., 71., 78.5 , 86., 103.])

Visualizing Groups

There are a few ways that groupby() can simplify the process of visualizing groups of data. First of

all, groupby() makes it easy to visualize one group at a time using the plot method. The following

visualization improves on Figure 11.1 by grouping mammals by their diets.

# Plot histograms of 'sleep_total' for two separate groups.

>>> vores.get_group("carni").plot(kind="hist", y="sleep_total", legend="False",

title="Carnivore Sleep Data")

>>> plt.xlabel("Hours")

>>> vores.get_group("herbi").plot(kind="hist", y="sleep_total", legend="False",

title="Herbivore Sleep Data")

>>> plt.xlabel("Hours")

https://cran.r-project.org/web/packages/ISLR/ISLR.pdf
https://cran.r-project.org/web/packages/ISLR/ISLR.pdf
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Figure 11.2: "sleep_total" histograms for two groups in the mammalian sleep data set.

The statistical summaries from the GroupBy object's mean(), std(), or describe() methods

also lend themselves well to certain visualizations for comparing groups.

>>> vores[["sleep_total", "sleep_rem", "sleep_cycle"]].mean().plot(kind="barh",

xerr=vores.std(), title=r"Mammallian Sleep, $\mu\pm\sigma$")

>>> plt.xlabel("Hours")

>>> plt.ylabel("Mammal Diet Classification (vore)")
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Box plots are well suited for comparing similar distributions. The boxplot() method of the

GroupBy class creates one subplot per group, plotting each of the columns as a box plot.

# Use GroupBy.boxplot() to generate one box plot per group.

>>> vores.boxplot(grid=False)

>>> plt.tight_layout()
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Alternatively, the boxplot() method of the DataFrame class creates one subplot per column,

plotting each of the columns as a box plot. Specify the by keyword to group the data appropriately.

# Use DataFrame.boxplot() to generate one box plot per column.

>>> msleep.boxplot(["sleep_total", "sleep_rem"], by="vore", grid=False)
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Like groupby(), the by argument can be a single column label or a list of column labels. Similar

methods exist for creating histograms (GroupBy.hist() and DataFrame.hist() with by keyword),

but generally box plots are better for comparing multiple distributions.
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Problem 2. Create visualizations that give relevant information answering the following ques-

tions (using college.csv):

1. How do the number of applicants, number of accepted students, and number of enrolled

students compare between private and public universities?

2. How wide is the range of money spent on room and board at both private and public

universities?

Pivot Tables
One of the downfalls of groupby() is that a typical GroupBy object has too much information to

display coherently. A pivot table intelligently summarizes the results of a groupby() operation

by aggregating the data in a speci�ed way. The standard tool for making a pivot table is the

pivot_table() method of the DataFrame class. As an example, consider the "HairEyeColor" data

set from pydataset.

>>> from pydataset import data

>>> hec = data("HairEyeColor") # Load and preview the data.

>>> hec.sample(5)

Hair Eye Sex Freq

3 Red Brown Male 10

1 Black Brown Male 32

14 Brown Green Male 15

31 Red Green Female 7

21 Black Blue Female 9

>>> for col in ["Hair", "Eye", "Sex"]: # Get unique values per column.

... print("{}: {}".format(col, ", ".join(set(str(x) for x in hec[col]))))

...

Hair: Brown, Black, Blond, Red

Eye: Brown, Blue, Hazel, Green

Sex: Male, Female

There are several ways to group this data with groupby(). However, since there is only one

entry per unique hair-eye-sex combination, the data can be completely presented in a pivot table.

>>> hec.pivot_table(values="Freq", index=["Hair", "Eye"], columns="Sex")

Sex Female Male

Hair Eye

Black Blue 9 11

Brown 36 32

Green 2 3

Hazel 5 10

Blond Blue 64 30

Brown 4 3

Green 8 8

Hazel 5 5
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Brown Blue 34 50

Brown 66 53

Green 14 15

Hazel 29 25

Red Blue 7 10

Brown 16 10

Green 7 7

Hazel 7 7

Listing the data in this way makes it easy to locate data and compare the female and male

groups. For example, it is easy to see that brown hair is more common than red hair and that about

twice as many females have blond hair and blue eyes than males.

Unlike "HairEyeColor", many data sets have more than one entry in the data for each grouping.

An example in the previous dataset would be if there were two or more rows in the original data

for females with blond hair and blue eyes. To construct a pivot table, data of similar groups must

be aggregated together in some way. By default entries are aggregated by averaging the non-null

values. Other options include taking the min, max, standard deviation, or just counting the number

of occurrences.

Consider the Titanic data set found in titanic.csv2. For this analysis, take only the "

Survived", "Pclass", "Sex", "Age", "Fare", and "Embarked" columns, replace null age values

with the average age, then drop any rows that are missing data. To begin, we examine the average

survival rate grouped by sex and passenger class.

>>> titanic = pd.read_csv("titanic.csv")

>>> titanic = titanic[["Survived", "Pclass", "Sex", "Age", "Fare", "Embarked"]]

>>> titanic["Age"].fillna(titanic["Age"].mean(),)

>>> titanic.pivot_table(values="Survived", index="Sex", columns="Pclass")

Pclass 1.0 2.0 3.0

Sex

female 0.965 0.887 0.491

male 0.341 0.146 0.152

Note

The pivot_table() method is a convenient way of performing a potentially complicated

groupby() operation with aggregation and some reshaping. The following code is equivalent

to the previous example.

>>> titanic.groupby(["Sex", "Pclass"])["Survived"].mean().unstack()

Pclass 1.0 2.0 3.0

Sex

female 0.965 0.887 0.491

male 0.341 0.146 0.152

2There is a "Titanic" data set in pydataset, but it does not contain as much information as the data in titanic.csv.
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The stack(), unstack(), and pivot() methods provide more advanced shaping options.

Among other things, this pivot table clearly shows how much more likely females were to survive

than males. To see how many entries fall into each category, or how many survived in each category,

aggregate by counting or summing instead of taking the mean.

# See how many entries are in each category.

>>> titanic.pivot_table(values="Survived", index="Sex", columns="Pclass",

... aggfunc="count")

Pclass 1.0 2.0 3.0

Sex

female 144 106 216

male 179 171 493

# See how many people from each category survived.

>>> titanic.pivot_table(values="Survived", index="Sex", columns="Pclass",

... aggfunc="sum")

Pclass 1.0 2.0 3.0

Sex

female 137.0 94.0 106.0

male 61.0 25.0 75.0

Problem 3. The �le ohio_1999.csv contains data on workers in Ohio in the year 1999. Use

pivot tables to answer the following questions:

1. What was the highest paid race/sex combination?

2. What race/sex combination worked the least amount of hours?

3. What race/sex combination worked the most hours per week per person?

Return a tuple for each question (in order of the questions) where the �rst entry is the

numerical code corresponding to the race and the second entry is corresponding to the sex.

Some useful keys in understand the data are as follows:

1. In column Sex, {1: male, 2: female}.

2. In column Race, {1: White, 2: African-American, 3: Native American/Eskimo, 4:

Asian}.

Discretizing Continuous Data

In the Titanic data, we examined survival rates based on sex and passenger class. Another factor

that could have played into survival is age. Were male children as likely to die as females in general?

We can investigate this question by multi-indexing, or pivoting, on more than just two variables, by

adding in another index.
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In the original dataset, the "Age" column has a �oating point value for the age of each passenger.

If we add "Age" as another pivot, then the table would create a new row for each age present. Instead,

we partition the "Age" column into intervals with pd.cut(), thus creating a categorical that can

be used for grouping. Notice that when creating the pivot table, the index uses the categorical age

instead of the column name "Age".

# pd.cut() maps continuous entries to discrete intervals.

>>> pd.cut([1, 2, 3, 4, 5, 6, 7], [0, 4, 8])

[(4, 8], (0, 4], (0, 4], (0,4], (0, 4], (4, 8], (4, 8], (4, 8]]

Categories (2, interval[int64]): [(0, 4] < (4, 8]]

# Partition the passengers into 3 categories based on age.

>>> age = pd.cut(titanic['Age'], [0, 12, 18, 80])

>>> titanic.pivot_table(values="Survived", index=["Sex", age],

columns="Pclass", aggfunc="mean")

Pclass 1.0 2.0 3.0

Sex Age

female (0, 12] 0.000 1.000 0.467

(12, 18] 1.000 0.875 0.607

(18, 80] 0.969 0.871 0.475

male (0, 12] 1.000 1.000 0.343

(12, 18] 0.500 0.000 0.081

(18, 80] 0.322 0.093 0.143

From this table, it appears that male children (ages 0 to 12) in the 1st and 2nd class were very

likely to survive, whereas those in 3rd class were much less likely to. This clari�es the claim that

males were less likely to survive than females. However, there are a few oddities in this table: zero

percent of the female children in 1st class survived, and zero percent of teenage males in second class

survived. To further investigate, count the number of entries in each group.

>>> titanic.pivot_table(values="Survived", index=["Sex", age],

columns="Pclass", aggfunc="count")

Pclass 1.0 2.0 3.0

Sex Age

female (0, 12] 1 13 30

(12, 18] 12 8 28

(18, 80] 129 85 158

male (0, 12] 4 11 35

(12, 18] 4 10 37

(18, 80] 171 150 420

This table shows that there was only 1 female child in �rst class and only 10 male teenagers in

second class, which sheds light on the previous table.

Achtung!

The previous pivot table brings up an important point about partitioning datasets. The Titanic
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dataset includes data for about 1300 passengers, which is a somewhat reasonable sample size,

but half of the groupings include less than 30 entries, which is not a healthy sample size for

statistical analysis. Always carefully question the numbers from pivot tables before making any

conclusions.

Pandas also supports multi-indexing on the columns. As an example, consider the price of a

passenger tickets. This is another continuous feature that can be discretized with pd.cut(). Instead,

we use pd.qcut() to split the prices into 2 equal quantiles. Some of the resulting groups are empty;

to improve readability, specify fill_value as the empty string or a dash.

# pd.qcut() partitions entries into equally populated intervals.

>>> pd.qcut([1, 2, 5, 6, 8, 3], 2)

[(0.999, 4.0], (0.999, 4.0], (4.0, 8.0], (4.0, 8.0], (4.0, 8.0], (0.999, 4.0]]

Categories (2, interval[float64]): [(0.999, 4.0] < (4.0, 8.0]]

# Cut the ticket price into two intervals (cheap vs expensive).

>>> fare = pd.qcut(titanic["Fare"], 2)

>>> titanic.pivot_table(values="Survived",

index=["Sex", age], columns=[fare, "Pclass"],

aggfunc="count", fill_value='-')

Fare (-0.001, 14.454] (14.454, 512.329]

Pclass 1.0 2.0 3.0 1.0 2.0 3.0

Sex Age

female (0, 12] - - 7 1 13 23

(12, 18] - 4 23 12 4 5

(18, 80] - 31 101 129 54 57

male (0, 12] - - 8 4 11 27

(12, 18] - 5 26 4 5 11

(18, 80] 8 94 350 163 56 70

Not surprisingly, most of the cheap tickets went to passengers in 3rd class.

Problem 4. Use the employment data from Ohio in 1999 to answer the following questions:

1. The column Educational Attainment contains numbers 0-46. Any number less than 39

means the person did not get any form of degree. 39-42 refers to either a high-school or

associate's degree. A number greater than 43 means the person got at least a bachelor's

degree. What is the most common degree among workers?

2. Partition the Age column into 4 equally populated intervals. What is the most common

age range among workers?

3. What age/degree combination has the smallest yearly salary on average?

Return the answer to each question (in order) as an Interval. For part three, the answer

should be a tuple where the �rst entry in the Interval of the age and the second is the Interval

of the degree.
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An Interval is the object returned by pd.cut and pd.qcut. An example of getting an

Interval from a pivot table is shown below.

>>> # Create pivot table used in last example with titanic dataset

>>> table = titanic.pivot_table(values="Survived",

index=[age], columns=[fare, "Pclass"],

aggfunc="count")

>>> # Get index of maximum interval

>>> table.sum(axis=1).idxmax()

Interval(0, 12, closed='right')

Problem 5. Examine the college dataset using pivot tables and groupby objects. Determine

the answer to the following questions. If the answer is yes, save the answer as True. If the

answer the no, save the answer as False. For the last question, save the answer as a string

giving your explanation. Return a tuple containing your answers to the questions in order.

1. Is there a correlation between percent of alumni that donate and the amount the school

spends per student in BOTH private and public universities?

2. Partition Grad.Rate into intervals of 20%. Is the partition with the greatest number of

schools the same for private and public universities?

3. Divide the acceptance rate into partitions of 25%. Does having a lower acceptance rate

correlate with having more students from the top 10 percent of their high school class

being admitted on average for BOTH private and public universities?

4. Why is the average percentage of students admitted from the top 10 percent of their high

school class so high in private universities with very low acceptance rates?
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