
13 Geopandas

Lab Objective: Geopandas is a package designed to organize and manipulate geographic data,

It combines the data manipulation tools from Pandas and the geometric capabilities of the Shapely

package. In this lab, we explore the basic data structures of GeoSeries and GeoDataFrames and their

functionalities.

Installation
Geopandas is a new package designed to combine the functionalities of Pandas and Shapely, a package

used for geometric manipulation. Using Geopandas with geographic data is very useful, as it allows

the user to not only compare numerical data, but geometric attributes. Since Geopandas is currently

under development, the installation procedure requires that all dependencies are up to date. To

install Geopandas, run the following code.

>>> conda install geopandas

>>> conda install -c conda-forge gdal

A particular package needed for Geopandas is Fiona. Geopandas will not run without the

correct version of this package. To check the current version of Fiona that is installed, run the

following code. If the version is not at least 1.7.13, update Fiona.

Check version of Fiona

>>> conda list fiona

Update Fiona if necessary

>>> pip install fiona --upgrade

GeoSeries
A GeoSeries is a Pandas Series where each entry is a set of geometric objects. There are three classes

of geometric objects inherited from the Shapely package:

1. Points / Multi-Points

1

2 Lab 13. Geopandas

2. Lines / Multi-Lines

3. Polygons / Multi-Polygons

A point is used to identify objects like coordinates, where there is one small instance of the object.

A line could be used to describe a road, which is a collection of points. A polygon could be used to

identify regions, such as a country.

Since each object in the GeoSeries is also a Shapely object, the GeoSeries inherits many methods

and attributes of Shapely objects. Some of the key attributes and methods are listed in Table 13.1.

These attributes and methods can be used to calculate distances, �nd the sizes of countries, and

determine whether coordinates are within country's boundaries. The example below uses the method

bounds to �nd the maximum and minimum coordinates of Egypt in a built-in GeoDataFrame.

Table 13.1: Attributes and Methods for GeoSeries

Method Description

distance(other) returns minimum distance from GeoSeries to other

area returns shape area

contains(other) returns True if shape is contained in other

intersects(other) returns True if shape intersects other

>>> world = geopandas.read_file(geopandas.datasets.get_path('←↩
naturalearth_lowres'))

>>> # Get GeoSeries for Egypt

>>> egypt = world[world['name']=='Egypt']

>>>

>>> # Find bounds of Egypt

>>> egypt.bounds

minx miny maxx maxy

47 24.70007 22.0 36.86623 31.58568

Creating GeoDataFrames
The main structure used in GeoPandas is a GeoDataFrame, which is similar to a Pandas DataFrame.

A GeoDataFrame has one special column called geometry. This GeoSeries column can be accessed

through the .geometry attribute and is the column that is used when a spatial method, like distance

(), is used on the GeoDataFrame.

To make a GeoDataFrame, �rst create a Pandas DataFrame. At least one of the columns

in the DataFrame should contain geometric information. Convert a column containing geometric

information to a GeoSeries using the apply method. At this point, the Pandas DataFrame can be

cast as a GeoDataFrame. When creating a GeoDataFrame, if more than one column has geometric

data, assign which column will be the geometry using the set_geometry() method.

import pandas as pd

import geopandas

from shapely.geometry import Point

3

Create a Pandas DataFrame

df = pd.DataFrame({'City': ['Seoul', 'Lima', 'Johannesburg'],

'Country': ['South Korea', 'Peru', 'South Africa'],

'Latitude': [37.57, -12.05, -26.20],

'Longitude': [126.98, -77.04, 28.04]})

Create geometry column

df['Coordinates'] = list(zip(df.Longitude, df.Latitude))

Make geometry column Shapely objects

df['Coordinates'] = df['Coordinates'].apply(Point)

Cast as GeoDataFrame

gdf = geopandas.GeoDataFrame(df, geometry='Coordinates')

Note

Longitude is the angular measurement starting at the Prime Meridian, 0°, and going to 180°

to the east and −180° to the west. It is further divided into minutes and seconds. Latitude

is the angle between the equatorial plane and the normal line at a given point; a point along

the Equator has latitude 0, the North Pole has latitude +90° or 90°N , and the South Pole has

latitude −90° or 90°S.

In order to �nd the distance between two points in latitude and longitude using the distance

function, it is necessary to use the latitude and longitude to convert the points from spherical to

cartesian coordinates. Recall that

x = ρ sin(θ) cos(φ)

y = ρ sin(θ) cos(φ)

z = ρ cos(φ).

This means that the code above must be modi�ed such that the geometry column is a zipped list of

cartesian coordinates rather than latitudes and longitudes.

Problem 1. Read in the �le airports.csv as a Pandas DataFrame. Convert the DataFrame

into a GeoDataFrame. (Set the geometry column as Point objects).

Find the distance between the following airports:

1. Halifax / CFB Shearwater Heliport (Halifax, Canada) to Murtala Muhammed Interna-

tional Airport (Lagos, Nigeria)

2. Don Mueang International Airport (Bangkok, Thailand) to Beijing Capital International

Airport (Beijing, China)

4 Lab 13. Geopandas

3. Salt Lake City International Airport (Salt Lake City, USA) to Auckland International

Airport (Auckland, New Zealand)

GeoDataFrames
As previously mentioned, GeoDataFrames contain many of the functionalities of Pandas DataFrames.

For example, to create a new column, de�ne a new column name in the GeoDataFrame with the

needed information for each GeoSeries.

Create column in world GeoDataFrame for gdp_per_capita

world['gdp_per_cap'] = world.gdp_md_est / world.pop_est

While many Pandas functionalities are useful with GeoDataFrames, they can also be parsed by

geometric manipulations. For example, a useful way to index GeoDataFrames is with the cx indexer.

This splits the GeoDataFrame by the coordinates of each geometric object. It is used by calling the

method cx on a GeoDataFrame, followed by a slicing argument, where the �rst element refers to the

longitude and the second refers to latitude.

Create a GeoDataFrame containing the northern hemisphere

north = world.cx[: , 0:]

Create a GeoDataFrame containing the southeastern hemisphere

south_east = world.cx[0: , :0]

GeoSeries in a GeoDataFrame can also be dissolved, or merged, together into one GeoSeries

based on their geometry data. For example, all countries on one continent could be merged to

create a GeoSeries containing the information of that continent. The method designed for this is

called dissolve. It receives two parameters, by and aggfunc. by indicates which column to dissolve

according and aggfunc tells how to combine the information in all other columns. The default

aggfunc is first, which returns the �rst application entry.

world = world[['continent', 'geometry', 'gdp_per_cap']]

Dissolve world GeoDataFrame by continent

continent = world.dissolve(by = 'continent', aggfunc='sum')

Problem 2. Read in the built-in GeoDataFrame naturalearth_lowres. Create a GeoDataFrame

that only contains information about the southern hemisphere. Use this data to �nd the coun-

tries with the smallest and largest area in the southern hemisphere. Dissolve this GeoDataFrame

to �nd the continent with the largest and smallest area in the southern hemisphere.

Plotting with GeoPandas
GeoDataFrames can be easily plotted with GeoPlot. GeoPlot plots the information from a Geo-

DataFrame based on their geometry column and displays the data as geometry objects. To use

GeoPlots, import geoplot.

5

>>> import geoplot

>>> # Plot world GeoDataFrame

>>> world.plot()

With GeoPlot, multiple GeoDataFrames can be plotted at once. For example, if the information

in a GeoDataFrame contains the coordinates of capitals of countries, it can be plotted on top of a

GeoDataFrame containing the polygons of country boundaries to show a world map with capitals for

each country. This is done by by setting one GeoDataFrame as the base of the GeoPlot.

>>> # Set world map as base

>>> base = world.plot(color='white', edgecolor='black')

>>> # Plot airports on world map

>>> airport.plot(ax=base, marker='o', color='green', markersize=5)

Figure 13.1: Airport-map

6 Lab 13. Geopandas

When plotting, GeoPlot refers to the CRS (coordinate reference system) of a GeoDataFrame.

This reference system informs how coordinates should be spaced on a plot. GeoPandas accepts

many di�erent CRSs, and references to them can be found at www.spatialreference.org. Two of

the most commonly used CRS are WGS84 and WGS85. The crs of WGS84 is ESPG:4326, and it

does the standard latitude-longitude projection used by GPS. WGS85, also known as Mercator and

EPSG:3395 is the standard navigational projection.

When creating a new GeoDataFrame, it is important to set the crs attribute of the Geo-

DataFrame. This allows the plot to be done correctly. GeoDataFrames being layered should also

have the same CRS.

>>> import geoplot.crs as gcrs

>>> # Check crs of world GeoDataFrame

>>> world.crs

{'init': 'epsg:4326'}

Change CRS of world to Mercator

>>> world.to_crs({'init': 'epsg:3395'}

>>> world.crs

{'init': 'epsg:3395']

GeoDataFrames can also be plotted using GeoPlot by the values in the the other attributes of

the GeoSeries. This is done with a Choropleth map. The map plots the color of each geometry object

according to the value of the column selected. This is done by passing in the parameter column into

the plot method.

>>> # Plot world based on gdp

>>> world.plot(column='gdp_md_est', cmap='OrRd')

Figure 13.2: World Map Based on GDP

www.spatialreference.org

7

Problem 3. Using the built-in GeoDataFrame naturalearth_lowres and GeoPlots, create

population density plots for Asia and South America. Use Mercator maps.

Merging GeoDataFrames
As Pandas DataFrames can be merged, GeoDataFrames can be joined on either attributes or spatial

joins. An attribute join is similar to that of a merge in Pandas. It combines two GeoDataFrames on

a column (not the geometry column) and then combines the rest of the data into one GeoDataFrame.

>>> world = geopandas.read_file(geopandas.datasets.get_path('←↩
naturalearth_lowres'))

>>> cities = geopandas.read_file(geopandas.datasets.get_path('←↩
naturalearth_cities'))

>>> # Create subsets of the world and cities GeoDataFrames

>>> world = world[['continent', 'name', 'iso_a3']]

>>> cities = cities[['name', 'iso_a3']]

>>> # Attribute join the GeoDataFrames on their iso_a3 code

>>> # (The iso_a3 code for Afghanistan is AFG)

>>> countries = world.merge(cities, on='iso_a3')

A spatial join merges two GeoDataFrames based on their geometry data. The function used

for this is sjoin. sjoin accepts the two GeoDataFrames desired to be merged and then direction

on how to do the merge. It is imperative that two GeoDataFrames being joined spatially have the

same CRS. In the example below, we merge with an inner join with the option intersects. The

inner join tells us that we will use both geometry columns and retain only the left geometry column.

Intersects tells the GeoDataFrames to merge on GeoSeries that intersect each other.

>>> # Combine countries and cities on their geographic location

>>> # This will combine countries with their capital

countries = geopandas.sjoin(world, cities, how='inner', op='intersects')

Problem 4. Merge the airports GeoDataFrame and the world GeoDataFrame on their spa-

tial data. Use this new GeoDataFrame to �nd the airport in the country with the smallest

population estimate.

	Geopandas

