
1 Principal Component
Analysis and Latent
Semantic Indexing

Lab Objective: Understand the basics of principal component analysis and latent semantic index-

ing.

Principal Component Analysis
Understanding the variance in complex data is one of the �rst tasks encountered in exploratory data

analysis. For an example, consider the scatter plot displaying the sepal and petal lengths of 100

di�erent irises shown in Figure 1.1.

2 3 4 5 6 7 8
Sepal Length (cm)

2

3

4

5

6

7

8

Pe
ta

l L
en

gt
h

(c
m

)

Figure 1.1: Sepal Length vs. Petal Length for 100 iris �owers. Note the strong correlation of these

variables.

There are three distinct types of iris �owers present: setosa, versicolor, and virginica. Con-

sidering this data, we might ask how to best distinguish the di�erent types of irises based on their

given sepal and petal lengths. We can answer this question by �nding the characteristic that causes

the greatest variance in the data. (Greater variance implies a greater ability to distinguish between

1

2 Lab 1. PCA and LSI

data points. If the variance is very small, the data are clustered tightly together, and it is di�cult

to distinguish well.)

Upon examination, we see that the petal length ranges between 3 and 7 cm, while the sepal

length only ranges between 5 and 8 cm. We might be tempted to say that the most distinguishing

aspect of irises is their petal length, but this is only considering the features of the data individu-

ally, and not collectively. The two features of the data are clearly correlated, and a more careful

consideration would lead us to conclude that the most distinguishing aspect of irises is their overall

size. Some irises are are much larger than others, while the sepal and petal lengths stay roughly in

proportion.

2 3 4 5 6 7 8
Sepal Length (cm)

2

3

4

5

6

7

8

Pe
ta

l L
en

gt
h

(c
m

)

Figure 1.2: The vectors indicate the two principal components, which are weighted by their contri-

bution to the variance.

Principal Component Analysis (PCA) is a multivariate statistical tool used to orthogonally

change the basis of a set of observations from the basis of original features (which may be correlated)

into a basis of uncorrelated (in fact, orthonormal) variables called the principal components. It is a

direct application of the singular value decomposition (SVD) from linear algebra. More speci�cally,

the �rst principal component will account for the greatest variance in the set of observations, the

second principal component will be orthogonal to the �rst, accounting for the second greatest variance

in the set of observations, etc. The �rst several principal components capture most of the variance in

the observation set, and hence provide a great deal of information about the data. By projecting the

observations onto the space spanned by the principal components, we can reduce the dimensionality

of the data in a manner that preserves most of the variance.

In our iris example, the two principal components are shown in Figure 1.2. The �rst principal

component, corresponding intuitively to iris size, accounts for 96% of the variance in the data. The

second, which accounts for only 4% of the variance, corresponds to the relative sepal and petal length

of irises of the same size.

Computing the Principal Components
We now explore how to use the SVD to compute the principal components of a dataset. Throughout

this lab we will use the sklearn iris data set, which can be obtained as follows:

3

>>> from scipy import linalg as la

>>> from sklearn import datasets

>>> iris = datasets.load_iris()

>>> X = iris.data

We represent the collection of observations as an n × m matrix X, where each row of X is an

observation, and each column is a speci�c feature. Let k = min(m,n). We will use this later. In the

iris example, X contains 150 observations, each consisting of 4 features (so k = 4), as shown below:

>>> X.shape

(150, 4)

>>> iris.feature_names

['sepal length (cm)',

'sepal width (cm)',

'petal length (cm)',

'petal width (cm)']

The �rst step in PCA is to pre-process the data. In particular, we �rst translate the columns

of X to have mean 0. While this is important, for some situations it may not make sense, as we will

see later on in this lab. The data may then be optionally scaled to remove discrepancies arising from

di�erent units of measure (i.e. centimeters vs meters), and we call the new matrix containing the

centered and scaled data Y . In this lab, we will not have any scaling issues, so we won't address this

issue any further.

We next compute the truncated SVD of our centered and scaled data,

Y = UΣV T

where U is n×k, Σ is a k×k diagonal matrix containing the singular values of Y in decreasing order

along the diagonal, and V is m× k. The columns of V are the principal components (which form an

orthonormal basis for the space spanned by the observations), and the corresponding singular values

provide us information about how much variance is captured in each principal component. More

speci�cally, let σi be the i-th non-zero singular value. Then the value

σ2
i∑k

j=1 σ
2
j

is the percentage of the variance captured by the i-th principal component. We compute the truncated

SVD of the iris data and show the variance percentages for each component below:

>>> U,S,VT = la.svd(Y, full_matrices=False)

>>> S**2/(S**2).sum() # variance percentages

array([0.92461621, 0.05301557, 0.01718514, 0.00518309])

In general, we are only interested with the �rst several principal components. But just how many

principal components should we keep? There are a number of ways to decide this. One is to only keep

the �rst two principal components, as these enable us to project the data into 2-dimensional space,

which is easy to visualize. Another way is to only keep the set of principal components accounting

for a certain percentage (say 80%) of the variance. A third method is to examine the scree plot of

the variance percentages for each principal component, as in Figure 1.3.

4 Lab 1. PCA and LSI

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Principal Components

0.0

0.2

0.4

0.6

0.8

Pe
rc

en
ta

ge
 o

f V
ar

ia
nc

e

Figure 1.3: Scree plot of the percentage of variance for PCA on the iris dataset.

Upon examination of the iris scree plot, we see that there is a distinct change after the �rst

principal component. This method is referred to as �nding the �elbow" of the scree plot, and we keep

all the principal components on the left of the elbow. In the case of the iris data, that is simply the

�rst principal component, which accounts for 92% of the variance.

Once we have decided how many principal components to keep (say the �rst L), we can project

the observations from the original feature space onto the principal component space by computing

Ŷ = U:,:lΣ:l,:l

Using the SVD formula, note that

Ŷ = Y V:,:l,

Where Σ:l,:l is the �rst l rows and columns of Σ and U:,:l is the �rst l columns of U , and V:,:l
is the �rst l columns of V . In this way, we see that the i-th row of Ŷ is simply the projection of the

i-th observation onto the orthonormal set of the �rst l principal components. Under this projection,

the data is represented in fewer dimensions, and in such a way that accentuates the variance (which

can help with �nding patterns within the data).

In Figure 1.4 we display the transformed iris data set, plotting the �rst principal component

against the second. This reduction helps us to see the distinctions between the three di�erent species,

using only two dimensions instead of the full four dimensions of the feature space.

5

4 3 2 1 0 1 2 3 4
First Principal Component

4

2

0

2

4

Se
co

nd
 P

rin
cip

al
 C

om
po

ne
nt Setosa

Versicolor
Virginica

Figure 1.4: Plot of the transformed iris data, keeping only the �rst two principal components.

Problem 1. Write a function that recreates the plot shown in Figure 1.4 by performing PCA

on the iris dataset, keeping the �rst two principal components.

Note: If Yhat is your 150× 2 array of transformed observations, you can access the rows

corresponding to the setosa �owers as follows:

>>> Yhat[iris.target==0]

To get the rows corresponding to versicolor and virginica specimens, simply replace the 0 with

1 and 2, respectively.

Latent Semantic Indexing
Latent Semantic Indexing (LSI) is an application of PCA which applies the ideas we have discussed

to the realm of natural language processing. In particular, LSI employs the SVD to reduce the

dimensionality of a large corpus of text documents in order to enable us to evaluate the similarity

between two documents. Many information-retrieval systems used in government and in industry are

based on LSI.

To motivate the problem, suppose we have a large collection of documents dealing with various

statistical and mathematical topics. How can we �nd an article about PCA? We might consider

simply choosing the article which contains the acronym PCA the greatest number of times, but this

is a crude method. A better way is to use a form of PCA on the collection of documents.

In order to do so, we need to represent the documents as numerical vectors. A standard

way of doing this is to de�ne an ordered set of words occurring in the collection of documents

(called the vocabulary), and then to represent each document as a vector of word counts from the

vocabulary. More formally, let our vocabulary be V = {w1, w2, . . . , wm}. Then a document is a vector

x = (x1, x2, . . . , xm) ∈ Rm such that xi is the number of occurrences of word wi in the document.

In this setup, we represent the entire collection of m documents as an n×m matrix X, where m is

6 Lab 1. PCA and LSI

the number of vocabulary words and n is the number of documents in our collection, each row being

a document vector. As expected, we let Xi,j be the number of times term j occurs in document

i. Note that X is often a sparse matrix, as any one document likely does not contain most of the

vocabulary words. This mode of representation is called the bag of words model for documents.

We calculate the SVD of X without centering or scaling the data so that we may retain the

sparsity. This is unique to this particular problem. We now have X = UΣV T . Once we have selected

the number of principal components to keep, say l, we can represent the corpus of documents by the

matrix

X̂ = U:,:lΣ:l,:l = XV:,:l.

Note that X̂ will no longer be a sparse matrix, but it has dimensions n × l, which is much smaller

than n×m when l� m.

Now that we have our documents represented in terms of the �rst l principal components, we

can �nd the similarity between two documents. Our measure for similarity is just the cosine of the

angle between the vectors; a small angle (large cosine) indicates greater similarity, while a large angle

(small cosine) indicates greater dissimilarity. Recall that we can use the inner product to �nd the

cosine of the angle between two vectors. Under this metric, the similarity between document i and

document j (represented by the i-th and j-th row of X̂, notated X̂i and X̂j , respectively) is just

〈X̂i, X̂j〉
‖X̂i‖‖X̂j‖

.

To �nd the document most similar to document i, we simply compute

argmaxj 6=i

〈X̂i, X̂j〉
‖X̂i‖‖X̂j‖

.

Problem 2. Create a function similar that takes in a sparse matrix Xhat and an index i and

returns the indices of the most similar and the least similar documents.

Application: State of the Union
We now discuss some practical issues involved in creating the bag of words representation X from

the raw text. Our dataset will consist of the US State of the Union addresses from 1945 through

2013, each contained in a separate text �le in the folder Addresses. We would like to avoid loading

in all of the text into memory at once, and so we will stream the documents one at a time.

The �rst thing we need to establish is the vocabulary set, i.e. the set of unique words that occur

throughout the collection of documents. A Python set object automatically preserves the uniqueness

of the elements, so we will create a set, and then iteratively read through the documents, adding the

unique words of each document to the set. As we read in each document, we will remove punctuation

and numerical characters and convert everything to lower case. The following code, found in the

document converter function, will accomplish this task:

Get list of file paths to each text file in the folder

>>> folder = "./Addresses/"

>>> paths = [folder+p for p in os.listdir(folder) if p.endswith(".txt")]

7

Helper function to get list of words in a string

>>> def extractWords(text):

... ignore = string.punctuation + string.digits

... cleaned = "".join([t for t in text.strip() if t not in ignore])

... return cleaned.lower().split()

...

Initialize vocab set, then read each file and add to the vocab set.

vocab = set()

>>> for p in paths:

... with open(p, 'r') as infile:

... for line in infile:

... vocab.update(extractWords(line))

We now a set containing all of the unique words in the corpus. However, many of the most

common words do not provide important information. We call these stop words. Examples in English

include the, a, an, and, I, we, you, it, there, etc; a list of common English stop words is given in

stopwords.txt. We remove the stop words from our vocabulary set as follows, and then �x an

ordering to the vocabulary by creating a dictionary whose key-value pairs are of the form (word,

index):

>>> # Load stopwords.

>>> with open("stopwords.txt", 'r') as f:

... stops = set([w.strip().lower() for w in f.readlines()])

>>> # Remove stopwords from vocabulary, create ordering.

>>> vocab = {w:i for i, w in enumerate(vocab.difference(stops))}

We are now ready to create the word count vectors for each document, and we store these in a

sparse matrix X. It is convenient to use the Counter object from the collections module, as this

object automatically counts the occurrences of each distinct element in a list.

>>> counts = [] # holds the entries of X

>>> doc_index = [] # holds the row index of X

>>> word_index = [] # holds the column index of X

Iterate through the documents.

>>> for doc, p in enumerate(paths):

... with open(p, 'r') as f:

... # create the word counter

... ctr = Counter()

... for line in f:

... ctr.update(extractWords(line))

... # Iterate through the word counter, storing counts

... for word, count in ctr.items():

... if word in vocab:

... word_index.append(vocab[word])

... counts.append(count)

... doc_index.append(doc)

8 Lab 1. PCA and LSI

Create sparse matrix holding these word counts.

>>> X = sparse.csr_matrix((counts, [doc_index, word_index]),

shape=(len(paths), len(vocab)), dtype=np.float)

Problem 3. Using the techniques of LSI discussed above�applied to the word count matrix

X, and keeping the �rst 7 principal components�write a function that takes in the path to a

single State of the Union address speech and returns a tuple of the addresses that are most and

least similar to speech. For Ronald Reagan's 1984 speech, your output should be as follows:

('1988-Reagan', '1946-Truman'). Be sure to format the strings accordingly.

Since X is a sparse matrix, you will need to use the SVD method found in scipy.

sparse.linalg. This method operates slightly di�erently than the SVD method found in

scipy.linalg, so be sure to read the documentation.

The simple bag of words representation is a bit crude, as it fails to consider how some words

may be more important than others in determining the similarity of documents. Words appearing

in few documents tend to provide more information than words occurring in every document. For

example, while the word war might not be considered a stop word, it is likely to appear in quite a few

addresses, whereas Afghanistan will not. Thus two speeches sharing the word Afghanistan ought to

be considered more related than two speeches sharing the word war. So while Xi,j is a good measure

of the importance of term j in document i, we also need to consider some kind of global weight for

each term j, indicating how important the term is over the entire collection. There are a number of

di�erent weights we could choose; we choose to employ the following approach: De�ne

pi,j =
Xi,j∑
j Xi,j

.

We then let

gj = 1 +

m∑
i=1

pi,j log(pi,j + 1)

logm
,

where m is the number of documents in the collection. We call gj the global weight of term j. We

replace each term frequency in the matrix X by weighting it globally. Speci�cally, we de�ne a matrix

A with entries

Ai,j = gj log(Xi,j + 1).

We can now perform LSI on the matrix A, whose entries are both locally and globally weighted.

To calculate the matrix A in a streaming manner, we must alter our document converter code.

Problem 4. Use the equation above to edit the function called weighted document converter

to calculate the sparse matrix A.

PCA with Sci-Kit Learn
Sci-Kit learn has a built-in PCA package. When initialized, the PCA function takes in parame-

ters for the number of components n_components and the type of SVD solver to use svd_solver,

among others. Additionally, the fit_transform method takes in a numpy array and returns the

9

decomposition with n_components. To see the additional parameters and the full documentation go

to

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA

>>> from sklearn.decomposition import PCA

>>> pca = PCA(n_components=5)

>>> Xhat = pca.fit_transform(X)

Problem 5. Repeat Problem 3 using the weighted document converter function and Sci-Kit

Learn's built-in PCA decomposition. Do your answers seem more reasonable than before?

For Bill Clinton's 1993 speech your code should return the following: ('1994-Clinton', '1951-

Truman').

(Hint: Note PCA's fit_transform does not accept sparse matrices).

Problem 6. Lastly, we turn back to the iris dataset in order to practice pipelines and grid

searches with PCA. Create a pipeline and grid search to �nd the best combination of PCA

truncation and Random Forest Classi�er for the iris dataset. Refer to the Sci-Kit Learn Intro.

lab for help on syntax. Attain a score of above .95. Return a tuple of the best parameters and

score.

	PCA and LSI

