
6 Kalman Filter

Lab Objective: Understand how to implement the standard Kalman Filter. Apply to the problem

of projectile tracking.

Measured observations are often prone to signi�cant noise, due to restrictions on measurement

accuracy. For example, most commercial GPS devices can provide a good estimate of geolocation,

but only within a dozen meters or so. A Kalman �lter is an algorithm that takes a sequence of noisy

observations made over time and attempts to get rid of the noise, producing more accurate estimates

than the original observations. To do this, the algorithm needs information about the system being

observed.

Consider the problem of tracking a projectile as it travels through the air. Short-range projec-

tiles approximately trace out parabolas, but a sensor that is recording measurements of the projectile's

position over time will likely show a path that is much less smooth. Because we know something

about the laws of physics, we can �lter out the noise in the measurements using basic Newtonian

mechanics, recovering a more accurate estimate of the projectile's trajectory. In this lab, we will sim-

ulate measurements of a projectile and implement a Kalman �lter to estimate the complete trajectory

of the projectile.

Linear Dynamical Systems
The standard Kalman �lter assumes that: (1) we have a linear dynamical system, (2) the state of the

system evolves over time with some noise, and (3) we receive noisy measurements about the state of

the system at each iteration. More formally, letting xk denote the state of the system at time k, we

have

xk+1 = Fkxk +Bkuk + εk (6.1)

where Fk is a state-transition model, Bk is a control-input model, uk is a control vector, and εk
is the noise present in state k. This noise is assumed to be drawn from a multivariate Gaussian

distribution with zero mean and covariance matrix Qk. The control-input model and control vector

allow the assumption that the state can be additionally in�uenced by some other factor than the

linear state-transition model.

We further assume that the states are �hidden,� and we only get the noisy observations

zk = Hkxk + δk (6.2)

1

2 Lab 6. Kalman Filter

where Hk is the observation model mapping the state space to the observation space, and δk is the

observation noise present at iteration k. As with the aforementioned error, we assume that this noise

is drawn from a multivariate Gaussian distribution with zero mean and covariance matrix Rk.

The dynamics stated above are all taken to be linear. Thus, for our purposes, the operators

Fk, Bk, and Hk are all matrices, and xk, uk, zk, and δk are all vectors.

We will assume that the transition and observation models, the control vector, and the noise

covariances are constant, i.e. for each k, we will replace Fk, Hk,uk, Qk, and Rk with F,H,u, Q, and

R. We will also assume that B = I is the identity matrix, so it can safely be ignored.

Problem 1. Begin implementing a KalmanFilter class by writing an initialization method

that stores the transition and observation models, noise covariances, and control vector. We

provide an interface below:

class KalmanFilter(object):

def __init__(self,F,Q,H,R,u):

"""

Initialize the dynamical system models.

Parameters

F : ndarray of shape (n,n)

The state transition model.

Q : ndarray of shape (n,n)

The covariance matrix for the state noise.

H : ndarray of shape (m,n)

The observation model.

R : ndarray of shape (m,m)

The covariance matric for observation noise.

u : ndarray of shape (n,)

The control vector.

"""

pass

We now derive the linear dynamical system parameters for a projectile traveling through R2

undergoing a constant downward gravitational force of 9.8 m/s2. The relevant information needed to

describe how the projectile moves through space is its position and velocity. Thus, our state vector

has the form

x =

sx
sy
Vx
Vy

 ,

where sx and sy give the x and y coordinates of the position (in meters), and Vx and Vy give the

horizontal and vertical components of the velocity (in meters per second), respectively.

How does the system evolve from one time step to the next? Assuming each time step is 0.1

3

seconds, it is easy enough to calculate the new position:

s′x = sx + 0.1Vx

s′y = sy + 0.1Vy.

Further, since the only force acting on the projectile is gravity (we are ignoring things like wind

resistance), the horizontal velocity remains constant:

V ′x = Vx.

The vertical velocity, however, does change due to the e�ects of gravity. From basic Newtonian

mechanics, we have

V ′y = Vy − 0.1 · 9.8.
In summary, over one time step, the state evolves from x to x′, where

x′ =

sx + 0.1Vx
sy + 0.1Vy

Vx
Vy − 0.98

 .

From this equation, you can extract the state transition model F and the control vector u.

We now turn our attention to the observation model. Imagine that a radar sensor captures

(noisy) measurements of the projectile's position as it travels through the air. At each time step, the

radar transmits the observation z = (zx, zy) given by

zx = sx + δx

zy = sy + δy,

where (δx, δy) is a noise vector assumed to be drawn from a multivariate Gaussian with mean zero

and some known covariance. These equations indicate the appropriate choice of observation model.

Problem 2. Work out the transition and observation models F and H, along with the control

vector u, corresponding to the projectile. Assume that the noise covariances are given by

Q = 0.1 · I4
R = 5000 · I2.

Instantiate a KalmanFilter object with these values.

We now wish to simulate a sequence of states and observations from the dynamical system.

In addition to the system parameters, we need an initial state x0 to get started. Computing the

subsequent states and observations is simply a matter of following equations 6.1 and 6.2.

Problem 3. Add a method to your KalmanFilter class to generate a state and observa-

tion sequence by evolving the system from a given initial state (the function numpy.random

.multivariate_normal will be useful). To do this, implement the following:

def evolve(self,x0,N):

"""

Compute the first N states and observations generated by the Kalman ←↩

4 Lab 6. Kalman Filter

Figure 6.1: State sequence (left) and sampling of observation sequence (right).

system.

Parameters

x0 : ndarray of shape (n,)

The initial state.

N : integer

The number of time steps to evolve.

Returns

states : ndarray of shape (n,N)

States 0 through N-1, given by each column.

obs : ndarray of shape (m,N)

Observations 0 through N-1, given by each column.

"""

pass

Simulate the true and observed trajectory of a projectile with initial state

x0 =

0

0

300

600

 .

Approximately 1250 time steps should be su�cient for the projectile to hit the ground (i.e. for

the y coordinate to return to 0). Your results should qualitatively match those given in Figure

6.1.

State Estimation with the Kalman Filter
The Kalman �lter is a recursive estimator that smooths out the noise in real time, estimating each

current state based on the past state estimate and the current measurement. This process is done by

5

repeatedly invoking two steps: Predict and Update. The predict step is used to estimate the current

state based on the previous state. The update step then combines this prediction with the current

observation, yielding a more robust estimate of the current state.

To describe these steps in detail, we need additional notation. Let

� x̂n|m be the state estimate at time n given only measurements up through time m; and

� Pn|m be an error covariance matrix, measuring the estimated accuracy of the state at time n

given only measurements up through time m.

The elements x̂k|k and Pk|k represent the state of the �lter at time k, giving the state estimate

and the accuracy of the estimate.

We evolve the �lter recursively, as follows:

Predict x̂k|k−1 = F x̂k−1|k−1 + u

Pk|k−1 = FPk−1|k−1F
T +Q

Update ỹk = zk −Hx̂k|k−1

Sk = HPk|k−1H
T +R

Kk = Pk|k−1H
TS−1k

x̂k|k = x̂k|k−1 +Kkỹk

Pk|k = (I −KkH)Pk|k−1

The more observations we have, the greater the accuracy of these estimates becomes (i.e the

norm of the accuracy matrix converges to 0).

Problem 4. Add code to your KalmanFilter class to estimate a state sequence correspond-

ing to a given observation sequence and initial state estimate. Implement the following class

method:

def estimate(self,x,P,z):

"""

Compute the state estimates using the Kalman filter.

If x and P correspond to time step k, then z is a sequence of

observations starting at time step k+1.

Parameters

x : ndarray of shape (n,)

The initial state estimate.

P : ndarray of shape (n,n)

The initial error covariance matrix.

z : ndarray of shape(m,N)

Sequence of N observations (each column is an observation).

Returns

out : ndarray of shape (n,N)

Sequence of state estimates (each column is an estimate).

6 Lab 6. Kalman Filter

Figure 6.2: State estimates together with observations and true state sequence (detailed view on the

right).

"""

pass

Returning to the projectile example, we now assume that our radar sensor has taken observa-

tions from time steps 200 through 800 (take the corresponding slice of the observations produced

in Problem 3). Using these observations, we seek to estimate the corresponding true states of the

projectile. We must �rst come up with a state estimate x̂200 for time step 200, and then feed this

into the Kalman �lter to obtain estimates x̂201, . . . , x̂800.

Problem 5. Calculate an initial state estimate x̂200 as follows: For the horizontal and vertical

positions, simply use the observed position at time 200. For the velocity, compute the average

velocity between the observations zk and zk+1 for k = 200, . . . , 208, then average these 9 values

and take this as the initial velocity estimate. (Hint: the NumPy function diff is useful here.)

Using the initial state estimate, P200 = 106 ·Q, and your Kalman �lter, compute the next

600 state estimates, i.e. compute x̂201, . . . , x̂800. Plot these state estimates as a smooth green

curve together with the radar observations (as red dots) and the entire true state sequence (as

a blue curve). Zoom in to see how well it follows the true path. Your plots should be similar

to Figure 6.2.

In the absence of observations, we can still estimate some information about the state of the

system at some future time. We can do this by recognizing that the expected state noise E [εk] = 0

at any time k. Thus, given a current state estimate x̂n|m using only measurements up through time

m, the expected state at time n+ 1 is

x̂n+1|m = F x̂n|m + u

7

Figure 6.3: Predicted vs. actual point of impact (detailed view on right).

Problem 6. Add a function to your class that predicts the next k states given a current state

estimate but in the absence of observations. Do so by implementing the following function:

def predict(self,x,k):

"""

Predict the next k states in the absence of observations.

Parameters

x : ndarray of shape (n,)

The current state estimate.

k : integer

The number of states to predict.

Returns

out : ndarray of shape (n,k)

The next k predicted states.

"""

pass

We can use this prediction routine to estimate where the projectile will hit the surface.

Problem 7. Using the �nal state estimate x̂800 that you obtained in Problem 5, predict the

future states of the projectile until it hits the ground. Predicting approximately the next 450

states should be su�cient.

Plot the actual state sequence together with the predicted state sequence (as a yellow

curve), and observe how near the prediction is to the actual point of impact. Your results

should be similar to those shown in Figure 6.3.

8 Lab 6. Kalman Filter

In the absence of observations, we can also reverse the system and iterate backward in time to

infer information about states of the system prior to measured observations. The system is reversed

by

xk = F−1(xk+1 − u− εk+1).

Considering again that E [εk] = 0 at any time k, we can ignore this term, simplifying the recursive

estimation backward in time.

Figure 6.4: Predicted vs. actual point of origin (detailed view on right).

Problem 8. Add a function to you class that rewinds the system from a given state estimate,

returning predictions for the previous states. Do so by implementing the following function:

def rewind(self,x,k):

"""

Predict the k states preceding the current state estimate x.

Parameters

x : ndarray of shape (n,)

The current state estimate.

k : integer

The number of preceding states to predict.

Returns

out : ndarray of shape (n,k)

The k preceding predicted states.

"""

pass

Returning to the projectile example, we can now predict the point of origin.

9

Problem 9. Using your state estimate x̂250, predict the point of origin of the projectile along

with all states leading up to time step 250. (The point of origin is the �rst point along the

trajectory where the y coordinate is 0.) Plot these predicted states (in cyan) together with the

original state sequence. Zoom in to see how accurate your prediction is. Your plots should be

similar to Figure 6.4.

Repeat the prediction starting with x̂600. Compare to the previous results. Which is

better? Why?

	Kalman Filter

