
7 ARMA Models

Lab Objective: ARMA(p, q) models combine autoregressive and moving-average models in order

to forecast future observations using time-series. In this lab, we will build an ARMA(p, q) model to

analyze and predict future weather data and then compare this model to statsmodels built-in ARMA

package. Then we will forecast the future height of the Rio Negro.

Time Series
A time series is any discrete-time stochastic process. In other words, it is a sequence of random

variables, {yt}nt=1, that are determined by their time t. Examples of time series include heart rate

readings over time, pollution readings over time, stock prices at the closing of each day, and air

temperature. Often when analyzing time series, we want to forecast future data, such as what will

the stock price of a company be in a week and what will the temperature be in 10 days.

ARMA(p, q) Models
One way to forecast a time series is using an ARMA model. An ARMA(p, q) model combines an

autoregressive model of order p and a moving average model of order q on a time series {yt}nt=1. This

model is a dependent model as it is non-independent of previous data. Because of this, the model

needs to become stationary in order to compensate for the dependency of the data. To make data

stationary, we look at the time series {zt}nt=1 where zt = yt − yt−1. The model itself is a stochastic

process on zt, satisfying the equation

zt =

(
p∑

i=1

φizt−i

)
︸ ︷︷ ︸

AR(p)

+εt +

 q∑
j=1

θjεt−j


︸ ︷︷ ︸

MA(q)

(7.1)

where each εt is an identically-distributed Gaussian variable N (µ, σ2), and φi and θj are constants.

AR(p) Models
An AR(p) model works similar to a weighted random walk. Recall that in a random walk, the

current position depends on the immediate past position. In the autogregressive model, the current

1



2 Lab 7. ARMA Models

data point in the time series depends on the past p data points. However, the importance of each of

the past p data points is not uniform. With an error term to represent white noise and a constant

term to adjust the model along the y-axis, we can model the stochastic process with the following

equation:

zt = c+ εt +

p∑
i=1

φizt−i (7.2)

If there is a high correlation between the current and previous values of the time series, then

the AR(p) model is a good representation of the data, and thus the ARMA(p, q) model will most

likely be a good representation. The coe�cients {φi}pi=1 are larger when the correlation is stronger.

In this lab, we will be using weather data from Provo, Utah1. To check that the data can be

represented well, we need to look at the correlation between the current and previous values.
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Correlations of Weather Data

Figure 7.1: These graphs show that the weather data is correlated to its previous values. The

correlation is weaker in each graph successively, showing that the further in the past the data is, the

less correlated the data becomes.

MA(q)

A moving average model of order q is used to factor in the varying error of the time series. This model

uses the error of the current data point and the previous data points to predict the next datapoint.

Similar to an AR(p) model, this model uses a linear combination (which includes a constant term to

adjust along the y-axis..

zt = c+ εt +

q∑
i=1

θiεt−i (7.3)

This part of the model simulates shock e�ects in the time series. Examples of shock e�ects

include volatility in the stock market or sudden cold fronts in the temperature.

Combining both the AR(p) and MA(q) models, we get an ARMA(p, q) model which forecasts

based on previous observations and error trends in the data.

1This data was taken from https://forecast.weather.gov/data/obhistory/metric/KPVU.html
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Finding Parameters

One of the most di�cult parts of using an ARMA(p, q) model is identifying the proper parameters

of the model. These parameters include {φi}pi=1, {θi}
q
i=1, µ, and σ, where µ and σ are the mean and

variance of the error. Note that {φi}pi=1 and {θi}
q
i=1 determine the order of the ARMA model.

A naive way to use an ARMA model is to choose p and q based on intuition. Figure 7.1 showed

that there is a strong correlation between zt and zt−1 and between zt and zt−2. The correlation is

weaker between zt and zt−3. Intuition then suggests to choose p = 2. By looking at the correlations

between the current noise with previous noise, similar to Figure 7.1, it can also be seen that there

is a weak correlation between zt and εt and between zt and εt−1. Between zt and εt−2 there is no

correlation. For more on how these error correlations were found, see Additional Materials. Intuition

from these correlations suggests to choose q = 1. Thus, a naive choice for our model is an ARMA(2, 1)

model.
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Figure 7.2: Naive forecast on weather.npy

Problem 1. Write a function arma_forecast_naive() that builds an ARMA(p,q) model

where the values of φi = .5 and θi = .1 for all i. Let εi ∼ N (0, 1) for all i. Use your

function to predict the next n values of the time series. The function should accept a parame-

ter p, q, and n (the number of observations to predict). Plot {zt}nt=1 followed by your predicted

observations of zt.

The �le weather.npy contains data on the temperature in Provo, Utah from 7:56 PM

May 13, 2019 to 6:56 PM May 16, 2019, taken every hour. Use this �le to test your code. For

p = 2, q = 1, and n = 20, your plot should look similar to Figure 7.2, however, due to the

variance of the error εt, the plot will not look exactly like Figure ??. The predictions may be

higher or lower on the x-axis.

Let Θ = {φi, θj , µ, σ2
a} be the set of parameters for an ARMA(p, q) model. Suppose we have

a set of observations {zt}nt=1. Our goal is to �nd the p, q, and Θ that maximize the likelihood of
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the ARMA model given the data. Using the chain rule, we can factorize the likelihood of the model

given this data as

p({zt}|Θ) =

n∏
t=1

p(zt|zt−1, . . . , z1,Θ) (7.4)

State Space Representation

In a general ARMA(p, q) model, the likelihood is a function of the unobserved error terms at and

is not trivial to compute. Simple approximations can be made, but these may be inaccurate under

certain circumstances. Explicit derivations of the likelihood are possible, but tedious. However, when

the ARMA model is placed in state-space, the Kalman �lter a�ords a straightforward, recursive way

to compute the likelihood.

We demonstrate one possible state-space representation of an ARMA(p, q) model. Let r =

max(p, q + 1). De�ne

x̂t|t−1 =
[
xt−1 xt−2 · · · xt−r

]T
(7.5)

F =


φ1 φ2 · · · φr−1 φr
1 0 · · · 0 0

0 1 · · · 0 0
...

... · · ·
...

...

0 0 · · · 1 0

 (7.6)

H =
[
1 θ1 θ2 · · · θr−1

]
(7.7)

Q =


σ2
a 0 · · · 0

0 0 · · · 0
...

... · · ·
...

0 0 · · · 0

 (7.8)

wt ∼ MVN(0, Q), (7.9)

where φi = 0 for i > p, and θj = 0 for j > q. Note that Equation 7.2 gives

F x̂t−1|t−2 + wt =



∑r
i=1 φixt−i
xt−1
xt−2
...

xt−(r−1)

+


εt
0

0
...

0

 (7.10)

=
[
xt xt−1 · · · xt−(r−1)

]T
(7.11)

= x̂t|t−1 (7.12)

We note that zt|t−1 = Hx̂t|t−1 + µ.2

Then the linear stochastic dynamical system

x̂t+1|t = F x̂t|t−1 + wt (7.13)

zt|t−1 = Hx̂t|t−1 + µ (7.14)

describes the same process as the original ARMA model.

2For a proof of this fact, see Additional Materials.
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Note

Equation 7.14 involves a deterministic component, namely µ. The Kalman �lter theory devel-

oped in the previous lab, however, assumed E[εt] = 0 for the observations zt|t−1,. This means

you should subtract o� the mean µ of the error from the time series observations zt|t−1 when

using them in the predict and update steps.

Likelihood via Kalman Filter

We assumed in Equation 7.9 that the error terms of the model are Gaussian. This means that each

conditional distribution in 7.4 is also Gaussian, and is completely characterized by its mean and

variance. These two quantities are easily found via the Kalman �lter:

mean Hx̂t|t−1 + µ (7.15)

variance HPt|t−1H
T (7.16)

where x̂t|t−1 and Pt|t−1 are found during the Predict step. Given that each conditional distribution

is Gaussian, the likelihood can then be found as follows:

p({zt}|Θ) =

n∏
t=1

N(zt | Hx̂t|t−1 + µ, HPt|t−1H
T ) (7.17)

Problem 2. Write a function arma_likelihood() that returns the log-likelihood of an ARMA

model, given a time series {zt}nt=1. This function should accept a file with the observations

and each of the parameters in Θ. Return the log-likelihood of the ARMA(p, q) model as a

float.

Use the state_space_rep() function provided to create F,Q, and H. A kalman() �lter

has been provided to calculate the means and covariances of each observation.

(Hint: Calling the function kalman() on a time series will return an array whose values

are xk|k−1 and an array whose values are Pk|k−1 for each k ≤ n. Remember that the time series
should have µ subtracted when using kalman().)

When done correctly, your function should match the following output:

>>> arma_likelihood(file='weather.npy', phis=np.array([0.9]), thetas=np.←↩
array([0]), mu=17., std=0.4)

-1375.1805469978776

Model Identification

Now that we can compute the likelihood of a given ARMA model, we want to �nd the best choice

of parameters given our time series. In this lab, we de�ne the model with the "best" choice of

parameters as the model which minimizes the AIC. The bene�t of minimizing the AIC is that it

rewards goodness of �t while penalizing over�tting. The AIC is expressed by

2k

(
1 +

k + 1

n− k

)
− 2`(Θ) (7.18)
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where n is the sample size, k = p+ q + 2 is the number of parameters in the model, and `(Θ) is the

maximum likelihood for the model class.

To compute the maximum likelihood for a model class, we need to optimize 7.17 over the space

of parameters Θ. We can do so by using an optimization routine such as scipy.optimize.fmin on

the function arma_likelihood() from Problem 2. Use the following code to run this routine.

>>> from scipy.optimize import fmin

>>> # assume p, q, and time_series are defined

>>> def f(x): # x contains the phis, thetas, mu, and std

>>> return -1*arma_likelihood(time_series, phis=x[:p], thetas=x[p:p+q], mu=←↩
x[-2],std=x[-1])

>>> # create initial point

>>> x0 = np.zeros(p+q+2)

>>> x0[-2] = time_series.mean()

>>> x0[-1] = time_series.std()

>>> sol = fmin(f,x0,maxiter=10000, maxfun=10000)

This routine will return a vector sol where the �rst p values are {φi}pi=1, the next q values

are {θi}qi=1, and the last two values are µ and σ, respectively. Note the wrapper f(x) returns the

negative log-likelihood. This is because scipy.optimize.fmin �nds the minimizer of f(x) and we

are solving for the maximum likelihood.

To minimize the AIC, we perform model identi�cation. This is choosing the order of our model,

p and q, from some admissible set. The order of the model which minimizes the AIC is then the

optimal model.

Problem 3. Write a function model_identification() that accepts a file containing the

time series data and two integers, i and j. Return each parameter in Θ that minimizes the AIC

of an ARMA(p, q) model, given that 1 ≤ p ≤ i and 1 ≤ q ≤ j.
Your code should produce the following output (it may take about two minutes to run):

>>> model_identification(filename='weather.npy',i=4,j=4)

(array([ 0.72135856]), array([-0.26246788]), 0.35980339870105321, ←↩
1.5568331253098422)

Forecasting with Kalman Filter
We now have identi�ed the optimal ARMA(p, q) model. We can use this model to predict future

states. The Kalman �lter provides a straightforward way to predict future states by giving the mean

and variance of the conditional distribution of future observations. Observations can be found as

follows

zt+k|z1, · · · , zt ∼ N(zt+k; Hx̂t+k|t + µ, HPt+k|tH
T ) (7.19)



7

To evolve the Kalman �lter, recall the predict and update rules of a Kalman �lter.

Predict x̂k|k−1 = F x̂k−1|k−1 + u

Pk|k−1 = FPk−1|k−1F
T +Q

Update ỹk = zk −Hx̂k|k−1

Sk = HPk|k−1H
T +R

Kk = Pk|k−1H
TS−1k

x̂k|k = x̂k|k−1 +Kkỹk

Pk|k = (I −KkH)Pk|k−1

Achtung!

Recall that the values returned by kalman() are conditional on the previous observation. To

compute the mean and variance of future observations, the values xn|n and Pn|n MUST be

computed using the update step. Once computed, only the predict step is needed to �nd the

future means and covariances.

Problem 4. Write a function arma_forecast() that accepts a file containing a time series,

the parameters for an ARMA model, and the number n of observations to forecast. Calculate

the mean and covariance of the future n observations using a Kalman �lter. Plot the original

observations as well as the mean for each future observation. Plot a 95% con�dence interval

(2 standard deviations away from the mean) around the means of future observations. Return

the means and covariances calculated.

(Hint: The standard deviation is the square root of the covariance calculated.)

The following code should create a plot similar to Figure 7.3.

>>> # Get optimal model

>>> phis, thetas, mu, std = model_identification(filename='weather.npy', i←↩
=4, j=4)

>>> # Forecast optimal mode

>>> arma_forecast(filename='weather.npy', phis=phis, thetas=thetas, mu=mu,←↩
std=std)

How does this plot compare to the naive ARMA model made in Problem 1?

Statsmodel ARMA
The module statsmodels contains a package that includes an ARMA model class. This class also

uses a Kalman Filter to calculate the MLE. When creating an ARMA object, initialize the variables

endog (the data) and order (the order of the model). The object can then be �tted based on the

MLE using a Kalman Filter.



8 Lab 7. ARMA Models

14 15 16 17 18
Day of the Month

4

2

0

2

4

Ch
an

ge
 in

 T
em

pe
ra

tu
re

 (C
) -

 
=

0
ARMA(1,1)

Old Data
forecast
95% Confidence Interval

Figure 7.3: ARMA(1,1) forecast on weather.npy

from statsmodels.tsa.arima_model import ARMA

# Intialize the object with weather data and order (1,1)

model = ARMA(data,order=(1,1))

# Fit model using MLE and allowing for a constant if needed

model.fit(method='mle', trend='c')

As in other problems, the data passed in should be the time series stationary. The AIC of an

ARMA model object is saved as the attribute aic. Since the AIC is much faster to compute using

statsmodels, model identi�cation is much faster. Once a model is chosen, the method predict will

forecast n observations, where n is the number of known observations. It will return the mean of

each future observation.

# Predict from the beginning of the model to 30 observations in the future

model.predict(start=0,end=len(data)+30)

Problem 5. Write a function sm_arma() that accepts a file containing a time series, maxi-

mum integer values for p and q, and the number n of values to predict. Use statsmodels to
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perform model identi�cation as in Problem 3, where the order of ARMA(i, j) satis�es 1 ≤ i ≤ p
and 1 ≤ j ≤ q. Ensure the model is �t using the MLE.

Use the optimal model to predict n future observations of the time series. Plot the original

observations along with the mean of each future observations given by statsmodels. Return

the AIC of the optimal model.

For p = 3, q = 3, and n = 30, your graph should look similar to Figure 7.4. How does this

graph compare to Problem 1? Problem 4?
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Figure 7.4: Statsmodel ARMA(3,1) forecast on weather.npy.

The ARMA class can also perform model identi�cation. The method arma_order_select_ic will

�nd the optimal order of the ARMA model based on certain criteria. The �rst parameter y is the

data. The data must be a NumPy array, not a Pandas DataFrame. The parameter ic de�nes the

criteria trying to be minimized. The method will return a dictionary, where the minimal order of

each criteria can be accessed.

>>> import statsmodel as sm

>>> from statsmodel.tsa.stattools import arma_order_select_ic as order_select

>>> import pandas as pd

>>> # Get sunspot data and give DateTimeIndex

>>> sunspot = sm.datasets.sunspots.load_pandas().data[['SUNACTIVITY']]
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>>> sunspot.index = pd.Index(sm.tsa.datetools.dates_from_range('1700', '2008'))

>>> # Find best order where p < 5 and q < 5

>>> # Use AICc as basis for minimization

>>> order = order_select(sunspot.values,max_ar=4,max_ma=4,ic=['aic','bic'],←↩
fit_kw={'method':'mle'})

>>> print(order['aic_min_order'])

(4,2)

>>> print(order['bic_min_order'])

(4,2)

The method plot_predict accepts a time series and plots the ARMA model alongside the

original data in a given range. The plot of the ARMA model is the mean calculated by ARMA at

each data point, both known and future. This method works by giving a range on which to plot the

ARMA model. This range can be given by indices (as in Problem 5) or by a DateTimeIndex.

>>> # Fit model

>>> model = ARMA(dta, (4, 2)).fit(method='mle')

>>> # Create plot

>>> fig, ax = plt.subplots(figsize=(13,7))

>>> # Plot from 1950 to 2012.

>>> fig = model.plot_predict(start='1950', end='2012', ax=ax)

>>> ax.set_title('Sunspot Dataset')

>>> ax.set_xlabel('Year')

>>> ax.set_ylabel('Number of Sunspots')

>>> plt.show()
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Figure 7.5: Sunspot activity data is forecasted four years in the future using statsmodels.

Problem 6. The dataset manaus contains data on the height of the Rio Negro from every

month between January 1903 and January 1993. Write a function manaus() that accepts the

forecasting range as strings start and end, the maximum parameter for the AR model p and

the maximum parameter of the MA model q. The parameters start and end should be strings

corresponding to a DateTimeIndex in the form Y%M%D, where D is the last day of the month.

The function should determine the optimal order for the ARMA model based on the

AIC and the BIC. Then forecast and plot on the range given for both models and compare.

Return the order of the AIC model and the order of the BIC model, respectively. For the range

'1983-01-31' to '1995-01-31', your plot should look like Figure 7.6.

(Hint: The data passed into arma_order_select_ic must be a NumPy array. Use the

attribute values of the Pandas DataFrame.)

To get the manaus dataset and set it with a DateTimeIndex, use the following code:

>>> # Get dataset

>>> raw = pydata('manaus')

>>> # Convert to DateTimeIndex

>>> manaus = pd.DataFrame(raw.values,index=pd.date_range('1903-01','←↩
1993-01',freq='M'))

>>> manaus = manaus.drop(0,axis=1)

>>> # Set new column title

>>> manaus.columns = ['Water Level']
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Figure 7.6: AIC and BIC based ARMA models of manaus dataset.



13

Additional Materials

Finding Error Correlation

To �nd the correlation of the current error with past error, the noise of the data needs to be isolated.

Each data point yt can be decomposed as

yt = Tt + St +Rt, (7.20)

where Tt is the overall trend of the data, St is a seasonal trend, and Rt is noise in the data.

The overall trend is what the data tends to do as a whole, while the seasonal trend is what the data

does repeatedly. For example, if looking at airfare prices over a decade, the overall trend of the data

might be increasing due to in�ation. However, we can break this data into individual years. We

call each year a season. The seasonal trend of the data might not be strictly increasing, but have

increases during busy seasons such as Christmas and summer vacations.

To �nd Tt, we use an M -fold method. In this case, M is the length of our season. We de�ne

the equation

Tt =
1

M

∑
−M/2<i<M/2

yi+t. (7.21)

This means for each t, we take the average of the season surrounding yt.

To �nd the seasonal trend, �rst subtract the overall trend from the time series. De�ne xt =

yt − Tt. The value of the seasonal trend can then be found by averaging each day of the season over

every season. For example, if the season was one year, we would �nd the average value on the �rst

day of the year over all seasons, then the second, and so on. Thus,

St =
1

K

∑
i≡t (mod M)

xi (7.22)

where K is the number of seasons.

With the overall and seasonal trend known, the noise of the data is simply Rt = yt − Tt − St.

To determine the strength of correlations with the current error and the past error, plot yt vs. Rt−i
as in Figure 7.1.
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Proof of Equation 7.14

p∑
i=1

φi(zt−i − µ) + at +

q∑
j=1

θjat−j =

p∑
i=1

φi(Hx̂t−i) + at +

q∑
j=1

θjat−j (7.23)

=

r∑
i=1

φi(xt−i +

r−1∑
k=1

θkxt−i−k) + at +

r−1∑
j=1

θjat−j (7.24)

= at +

r∑
i=1

φi(xt−i) +

r−1∑
j=1

θj

( r∑
i=1

φixt−j−i + at−j

)
(7.25)

= at +

r∑
i=1

φi(xt−i) +

r−1∑
j=1

θjxt−k (7.26)

= xt +

r−1∑
j=1

θjxt−kθkxt−k (7.27)

= zt. (7.28)
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