
5 The Finite Difference
Method

A �nite di�erence for a function f(x) is an expression of the form f(x + s) − f(x + t). Finite

di�erences can give a good approximation of derivatives.

Suppose we have a function u(x), de�ned on an interval [a, b]. Let a = x0, x1, . . . xn−1, xn = b

be a grid of n+ 1 evenly spaced points, with xi+1 − xi = h, where h = (b− a)/n.
You are used to seeing the derivative u′(x), which can written in centered-di�erence form as:

u′(x) = lim
h→∞

u(x+ h)− u(x− h)
2h

.

Suppose we are interested in knowing the value of the derivative at the points {xi}. Even if we don't

have a formula for u′(x), we can approximate it using �nite di�erences. We �rst write the Taylor

polynomial expansion of u(x+ h) and u(x− h) centered at x. This gives

u(x+ h) = u(x) + u′(x)h+
1

2
u′′(x)h2 +

1

6
u′′′(x)h3 +O(h4) (5.1)

u(x− h) = u(x)− u′(x)h+
1

2
u′′(x)h2 − 1

6
u′′′(x)h3 +O(h4) (5.2)

Subtracting (5.2) from (5.1) and rearranging gives

u′(x) =
u(x+ h)− u(x− h)

2h
+O(h2).

In terms of our grid points {xi}, we have:

u′(xi) ≈
u(xi + h)− u(xi − h)

2h
=
u(xi+1)− u(xi−1)

2h
.

We won't worry about the derivative at the endpoints, u′(x0) and u
′(xn). This allows us to approx-

imate the values {u′(xi)} as the solution to a system of equations:

1

2h

−1 0 1

−1 0 1
. . .

. . .
. . .

−1 0 1

−1 0 1

(n−1)×(n+1)

·

u(x0)

u(x1)
...

u(xn−1)

u(xn)

(n+1)×1

≈

u′(x1)

u′(x2)
...

u′(xn−2)

u′(xn−1)

(n−1)×1

. (5.3)

1

2 Lab 5. The Finite Difference Method

This can be rewritten with a (n− 1)× (n− 1) tridiagonal matrix instead:

1

2h

0 1

−1 0 1
. . .

. . .
. . .

−1 0 1

−1 0

(n−1)×(n−1)

·

u(x1)

u(x2)
...

u(xn−2)

u(xn−1)

(n−1)×1

+

−u(x0)/(2h)

0
...

0

u(xn)/(2h)

(n−1)×1

≈

u′(x1)

u′(x2)
...

u′(xn−2)

u′(xn−1)

(n−1)×1

. (5.4)

Next, we will consider the approximation for u′′(x). If we let

u′(x) ≈
u(x+ h

2)− u(x−
h
2)

h

then

u′′(x) ≈
u′(x+ h

2)− u
′(x− h

2)

h
≈

u((x+h
2)+

h
2)−u((x+

h
2)−

h
2)

h − u((x−h
2)+

h
2)−u((x−

h
2)−

h
2)

h

h

=
u(x+ h)− 2u(x) + u(x− h)

h2

You can achieve the same result by again consider the Taylor polynomial expansion and adding (5.1)

and (5.2) and rearranging. Thus

u′′(xi) ≈
u(xi + h)− 2u(xi) + u(xi − h)

h2
=
u(xi+1)− 2u(xi) + u(xi−1)

h2

Again ignoring the second derivative at the endpoints, this can be written in matrix form as

1

h2

1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1

1 −2 1

(n−1)×(n+1)

·

u(x0)

u(x1)
...

u(xn−1)

u(xn)

(n+1)×1

≈

u′′(x1)

u′′(x2)
...

u′′(xn−2)

u′′(xn−1)

(n−1)×1

. (5.5)

This can also be written with a (n− 1)× (n− 1) tridiagonal matrix:

1

h2

−2 1

1 −2 1
. . .

. . .
. . .

1 −2 1

1 −2

(n−1)×(n−1)

·

u(x1)

u(x2)
...

u(xn−2)

u(xn−1)

(n−1)×1

+

u(x0)/h

2

0
...

0

u(xn)/h
2

(n−1)×1

=

u′′(x1)

u′′(x2)
...

u′′(xn−2)

u′′(xn−1)

(n−1)×1

(5.6)

Problem 1. Let u(x) = sin((x + π)2 − 1). Use (5.3) - (5.6) to approximate 1
2u
′′ − u′ at the

grid points where a = 0, b = 1, and n = 10. Graph the result.

The previous equations are not only useful for approximating derivatives, but they can be also

used to solve di�erential equations. Suppose that instead of knowing the function u(x), we know

that 1
2u
′′ − u′ = f , where the function f(x) is given. How do we solve for u(x)?

3

Finite Difference Methods
Numerical methods for di�erential equations seek to approximate the exact solution u(x) at some

�nite collection of points in the domain of the problem. Instead of analytically solving the original

di�erential equation, de�ned over an in�nite-dimensional function space, they use a well-chosen �nite

system of algebraic equations to approximate the original problem.

Consider the following di�erential equation:

εu′′(x)− u(x)′ = f(x), x ∈ (0, 1),

u(0) = α, u(1) = β.
(5.7)

Equation (5.7) can be written Du = f, where D = ε d2

dx2 − d
dx is a di�erential operator de�ned on the

in�nite-dimensional space of functions that are twice continuously di�erentiable on [0, 1] and satisfy

u(0) = α, u(1) = β.

We look for an approximate solution {Ui}, where

Ui ≈ u(xi)

on an evenly spaced grid of points, a = x0, x1, . . . , xn = b,. Our �nite di�erence method will replace

the di�erential operator D = ε d2

dx2 − d
dx , (which is de�ned on an in�nite-dimensional space), with

�nite di�erence operators (de�ned on a �nite dimensional space). To do this, we replace derivative

terms in the di�erential equation with appropriate di�erence expressions.

Recalling that

d2

dx2
u(xi) =

u(xi+1)− 2u(xi) + u(xi−1)

h2
+O(h2),

d

dx
u(xi) =

u(xi+1)− u(xi−1)
2h

+O(h2).

we de�ne the �nite di�erence operator Dh by

DhUi = ε
1

h2
(Ui+1 − 2Ui + Ui−1)−

1

2h
(Ui+1 − Ui−1) . (5.8)

Thus we discretize equation (5.7) using the equations

ε

h2
(Ui+1 − 2Ui + Ui−1)−

1

2h
(Ui+1 − Ui−1) = f(xi), i = 1, . . . , n− 1,

along with boundary conditions U0 = α, Un = β.

This gives n+ 1 equations and n+ 1 unknowns, and can be written in matrix form as

1

h2

h2 0 0 . . . 0

(ε+ h/2) −2ε (ε− h/2) . . . 0
...

. . .
...

0 . . . (ε+ h/2) −2ε (ε− h/2)
0 . . . 0 h2

(n+1)×(n+1)

·

U0

U1

...

Un−1
Un

(n+1)×1

=

α

f(x1)
...

f(xn−1)

β

(n+1)×1

.

As before, we can remove two equations to modify the system to obtain an (n−1)×(n−1) tridiagonal

4 Lab 5. The Finite Difference Method

system:

1

h2

−2ε (ε− h/2) 0 . . . 0

(ε+ h/2) −2ε (ε− h/2) . . . 0
...

. . .
...

0 . . . (ε+ h/2) −2ε (ε− h/2)
0 . . . (ε+ h/2) −2ε

(n−1)×(n−1)

·

U1

U2

...

Un−2
Un−1

(n−1)×1

=

f(x1)− α(ε+ h/2)/h2

f(x2)
...

f(xn−2)

f(xn−1)− β(ε− h/2)/h2

(n−1)×1

.

(5.9)

Problem 2. Use equation (5.9) to solve the singularly perturbed BVP (5.7) with ε = 1/10,

f(x) = −1, α = 1, and β = 3 on a grid with n = 30 subintervals. Graph the solution. This BVP

is called singularly perturbed because of the location of the parameter ε. For ε = 0 the ODE

has a drastically di�erent character - it then becomes �rst order, and can no longer support

two boundary conditions.

0.0 0.2 0.4 0.6 0.8 1.0

x

1.0

1.5

2.0

2.5

3.0

y

Figure 5.1: The solution to Problem 2. The solution gets steeper near x = 1 as ε gets small.

A heuristic test for convergence
The �nite di�erences used above are second order approximations of the �rst and second derivatives

of a function. It seems reasonable to expect that the numerical solution would converge at a rate of

5

10-4 10-3 10-2 10-1 100

h

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

E(h)

h 2

Figure 5.2: Demonstration of second order convergence for the �nite di�erence approximation (5.8)

of the BVP given in (5.7) with ε = .5.

about O(h2). How can we check that a numerical approximation is reasonable?

Suppose a �nite di�erence method is O(hp) accurate. This means that the error E(h) ≈ Chp

for some constant C as h→ 0 (in other words, for h > 0 small enough).

So compute the approximation yk for each stepsize hk, h1 > h2 > . . . > hm. ym should be

the most accurate approximation, and will be thought of as the true solution. Then the error of the

approximation for stepsize hk, k < m, is

E(hk) = max(|yk − ym|) ≈ Chpk,
log(E(hk)) = log(C) + p log(hk).

Thus on a log-log plot of E(h) vs. h, these values should be on a straight line with slope p when

h is small enough to start getting convergence. We should note that demonstrating second-order

convergence does NOT imply that the numerical approximation is converging to the correct solution.

Problem 3. Visualize the O(h2) convergence of this �nite di�erence method by producing a

loglog plot similar to Figure 5.2, except in the case ε = .1. Implement a function singular_bvp

to compute the �nite di�erence solution to 5.7. Using n = 5×20, 5×21, . . . , 5×29 subintervals,

compute 10 approximate solutions.

To produce the plot, treat the approximation with n = 5 × 29 subintervals as the "true

solution", and measure the error for the other approximations against it. Note that, since the

number of subintervals for each approximation is a multiple of 2, we can compute the L∞ error

for the n = 5× 2j approximation by using the step argument in the array slicing syntax:

6 Lab 5. The Finite Difference Method

best approximation

sol_best = singular_bvp(eps,alpha,beta,f,5*(2**9))

approximation with 5*(2^j) intervals

sol_approx = singular_bvp(eps,alpha,beta,f,5*(2**j))

approximation error

error = np.max(np.abs(sol_approx - sol_best[::2**(9-j)]))

Problem 4. Extend your �nite di�erence code to the case of a general second order linear

BVP with boundary conditions:

a1(x)y
′′ + a2(x)y

′ + a3(x)y = f(x), x ∈ (a, b),

y(a) = α, y(b) = β.

Use your code to solve the boundary value problem

εy′′ − 4(π − x2)y = cosx,

y(0) = 0, y(π/2) = 1,

for ε = 0.1 on a grid with n = 30 subintervals. Be sure to modify the �nite di�erence operator

Dh in (5.8) correctly.

0.0 0.5 1.0 1.5

x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

y

Figure 5.3: The solution to Problem 4.

The next few problems will help you test your �nite di�erence code.

7

Problem 5. Numerically solve the boundary value problem

εy′′ + xy′ = −επ2 cos(πx)− πx sin(πx),
y(−1) = −2, y(1) = 0,

for ε = 0.1, 0.01, and 0.001. Use a grid with n = 150 subintervals.

Problem 6. Numerically solve the boundary value problem

(ε+ x2)y′′ + 4xy′ + 2y = 0,

y(−1) = 1/(1 + ε), y(1) = 1/(1 + ε),

for ε = 0.05, 0.02. Use a grid with n = 150 subintervals.

1.0 0.5 0.0 0.5 1.0

x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y

Figure 5.4: The solution to Problem 5.

8 Lab 5. The Finite Difference Method

1.0 0.5 0.0 0.5 1.0

x

0

10

20

30

40

50

60

y

Figure 5.5: The solution to Problem 6.

	The Finite Difference Method

