
8 Anisotropic Diffusion

Lab Objective: Demonstrate the use of �nite di�erence schemes in image analysis.

A common task in image processing is to remove extra static from an image. This is most easily

done by simply blurring the image, which can be accomplished by treating the image as a rectangular

domain and applying the di�usion (heat) equation:

ut = c∆u

where c is some di�usion constant and ∆ is the Laplace operator. Unfortunately, this also blurs the

boundary lines between distinct elements of the image.

A more general form of the di�usion equation in two dimensions is:

ut = ∇ · (c(x, y, t)∇u)

where c is a function representing the di�usion coe�cient at each given point and time. In this case,

∇· is the divergence operator and ∇ is the gradient.

To blur a picture uniformly, choose c to be a constant function. Since c controls how much

di�usion is allowed at each point, it can be modi�ed so that di�usion is minimized across edges in

the image. In this way we attempt to limit di�usion near the boundaries between di�erent features

of the image, and allow smaller details of the image (such as static) to blur away. This method for

image denoising is especially useful for denoising low quality images, and was �rst introduced by

Pietro Perona and Jitendra Malik in 1987. It is known as Anisotropic Di�usion or Perona-Malik

Di�usion.

A Finite Difference Scheme
Suppose we have some estimate E of the rate of change at a given point in an image. E will be

largest at the boundaries in the image. We will then let c(x, y, t) = g(E(x, y, t)) where g is some

function such that g(0) = 1 and lim
x→∞

g(x) = 0. Thus c will be small where E is large, so that little

di�usion occurs near the boundaries of di�erent portions of the image.

We will model this system using a �nite di�erencing scheme with an array of values at a 2D

grid of points, and iterate through time. Let Un
l,m be the discretized approximation of the function

u, n be the index in time, l be the index along the x-axis, and m be the index along the y-axis.

1

2 Lab 8. Anisotropic Diffusion

The Laplace operator can be approximated with the �nite di�erence scheme

∆u = uxx + uyy ≈
Un
l−1,m − 2Un

l,m + Un
l+1,m

(∆x)2
+
Un
l,m−1 − 2Un

l,m + Un
l,m+1

(∆y)2
.

A good metric to use with images is to let the distance between each pixel be equal to one, so

∆x = ∆y = 1. Rearranging terms, we obtain

∆u ≈ (Un
l−1,m − Un

l,m) + (Un
l+1,m − Un

l,m) + (Un
l,m−1 − Un

l,m) + (Un
l,m+1 − Un

l,m).

Again, since we are working with images and not some time based problem, we can without loss of

generality let ∆t = 1, so we obtain the �nite di�erence scheme

Un+1
l,m = Un

l,m + (Un
l−1,m − Un

l,m) + (Un
l+1,m − Un

l,m) + (Un
l,m−1 − Un

l,m) + (Un
l,m+1 − Un

l,m).

We will now limit the di�usion near the edges of objects by making the modi�cation

Un+1
l,m = Un

l,m+λ
(
g(|Un

l−1,m − Un
l,m|)(Un

l−1,m − Un
l,m)

+ g(|Un
l+1,m − Un

l,m|)(Un
l+1,m − Un

l,m)

+ g(|Un
l,m−1 − Un

l,m|)(Un
l,m−1 − Un

l,m)

+ g(|Un
l,m+1 − Un

l,m|)(Un
l,m+1 − Un

l,m)
)
,

where λ ≤ 1
4 is the stability condition.

In this di�erence scheme, each term is a�ected most by nearby terms that are most similar to

it, so less di�usion will happen anywhere there is a sharp di�erence between pixels. This scheme

also has the useful property that it does not increase or decrease the total brightness of the image.

Intuitively, this is because the e�ect of each point on its neighbors is exactly the opposite e�ect its

neighbors have on it.

Two commonly used functions for g are g(x) = e−(xσ)
2

and g(x) = 1

1+(xσ)
2 . The parameter σ

allows us to control how much di�usion decreases across boundaries, with larger σ values allowing

more di�usion. Note that g(0) = 1 and lim
x→∞

g(x) = 0 for both functions. In this lab we use g(x) =

e−(xσ)
2

.

It is worth noting that this particular di�erence scheme is not an accurate �nite di�erence

scheme for the version of the di�usion equation we discussed before, but it does accomplish the same

thing in the same way. As it turns out, this particular scheme is the solution to a slightly di�erent

di�usion PDE, but can still be used the same way.

For this lab's examples we read in the image using the imageio.imread function, and normal-

ized it so that the colors are represented as �oating point values between 0 and 1. An image can

converted to black and white when it is read by including the argument as_gray=True.

from matplotlib import cm, pyplot as plt

from imageio import imread

To read in an image, convert it to grayscale, and rescale it.

picture = imread('balloon.png', as_gray=True) * 1./255

To display the picture as grayscale

plt.imshow(picture, cmap=cm.gray)

plt.show()

3

Problem 1. Complete the following fuction, implementing anisotropic di�usion for black and

white images using the following boundary conditions:

For the top edge let

Un+1
l,m = Un

l,m+λ(g(|Un
l−1,m − Un

l,m|)(Un
l−1,m − Un

l,m)

+ g(|Un
l+1,m − Un

l,m|)(Un
l+1,m − Un

l,m)

+ g(|Un
l,m+1 − Un

l,m|)(Un
l,m+1 − Un

l,m))

Do the other edges similarly.

For the top left corner let

Un+1
l,m = Un

l,m+λ(g(|Un
l+1,m − Un

l,m|)(Un
l+1,m − Un

l,m)

+ g(|Un
l,m+1 − Un

l,m|)(Un
l,m+1 − Un

l,m))

Do the other corners similarly.

Essentially we are just using the terms of the di�erence scheme that are actually de�ned.

In your function, use

g(x) = e−(xσ)
2

def anisdiff_bw(U, N, lambda_, g):

""" Run the Anisotropic Diffusion differencing scheme

on the array U of grayscale values for an image.

Perform N iterations, use the function g

to limit diffusion across boundaries in the image.

Operate on U inplace to optimize performance. """

pass

Run the function on balloon.jpg. Show the original image and the di�used image for σ = .1,

λ = .25, N = 5, 20, 100.

4 Lab 8. Anisotropic Diffusion

original image 5 iterations with σ = .1 and λ = .25

20 iterations 100 iterations

5

Color Schemes
Colored images can be processed in a similar manner. Instead of being represented as a two-

dimensional array, colored images are represented as three dimensional arrays. The third dimension

is used to store the intensities of each of the standard 3 colors. This di�usion process can be carried

out in the exact same way, on each of the arrays of intensities for each color, but instead of detecting

edges just in one color, we need to detect edges in any color, so instead of using something of the

form g(|Un
l+1,m −Un

l,m|) as before, we will now use something of the form g(||Un
l+1,m −Un

l,m||), where
Un
l+1,m and Un

l,m are vectors now instead of scalars. The di�erence scheme can be treated as an

equation on vectors in 3-space and now reads:

Un+1
l,m = Un

l,m+λ(g(||Un
l−1,m − Un

l,m||)(Un
l−1,m − Un

l,m)

+ g(||Un
l+1,m − Un

l,m||)(Un
l+1,m − Un

l,m)

+ g(||Un
l,m−1 − Un

l,m||)(Un
l,m−1 − Un

l,m)

+ g(||Un
l,m+1 − Un

l,m||)(Un
l,m+1 − Un

l,m))

When implementing this scheme for colored images, use the 2-norm on 3-space, i.e ||x|| =√
x21 + x22 + x23 where x1, x2, and x3 are the di�erent coordinates of x.

Problem 2. Complete the following function to process a colored image. You may modify

your colde from the previous problem. Measure the di�erence between pixels using the 2-norm.

Use the corresponding vector versions of the boundary conditions given in Problem 1.

def anisdiff_color(U, N, lambda_, sigma):

""" Run the Anisotropic Diffusion differencing scheme

on the array U of grayscale values for an image.

Perform N iterations, use the function g = e^{-x^2/sigma^2}

to limit diffusion across boundaries in the image.

Operate on U inplace to optimize performance. """

pass

Run the function on balloons_color.jpg. Show the original image and the di�used image for

σ = .1, λ = .25, N = 5, 20, 100.

Hint: If you have an m×n×3 matrix representing the RGB di�erences of each pixel, then

to �nd a matrix representing the norm of the di�erences, you can use the following code. This

code squares each value and sums along the last axis, and takes the square root. In order to

keep the dimension size of the matrix and aid in broadcasting, you must use keepdims=True.

x is mxnx3 matrix of pixel color values

norm = np.sqrt(np.sum(x**2, axis=2, keepdims=True))

6 Lab 8. Anisotropic Diffusion

original image after 50 iterations

Figure 8.1: Smearing of similar colors when using an anisotropic di�usion �lter.

Noisy Images

Problem 3. Use the following code to add noise to your grayscale image.

from numpy.random import randint

image = imread('balloon.jpg', as_gray=True)

x, y = image.shape

for i in xrange(x*y//100):

image[randint(x),randint(y)] = 127 + randint(127)

Run anisdiff_bw() on the noisy image with σ = .1, λ = .25, N = 20. Display the

original image and the noisy image. Explain why anisotropic di�usion does not smooth out the

noise.

Hint: Don't forget to rescale.

Minimum Bias (Optional)
This sort of anisotropic di�usion can be very e�ective, but, depending on the image, it may also

smear out edges that do not have large di�erences between them. An example of this limitation can

be seen in Figure 8.1

7

As we can see, after 100 iterations, some of the boundaries between similar shades of grey have

smeared unevenly. You may still have to look closely to see it. This can be counteracted somewhat

by further decreasing the σ value, but if we have random noise throughout the image, this will not

remove it. If we have random static in the image, we can remove this using a modi�ed version of the

�lter. Instead of measuring the rate of change in the picture in each direction, we change each point

according to whether or not any of its adjacent points have roughly the same value it has. This is

called a minimum-biased �lter. This sort of trick is especially good for removing isolated pixels that

are di�erent from those around them. A very simple way to do this is by taking the average of the

two smallest di�erences between each pixel and its eight neighbors and using that in place of g in the

di�erence scheme above. Along the boundaries, we do not have 8 neighbors for each pixel, but we

can get by by just using the pixels we have and eliminating the other terms in the di�erence scheme,

just as we did before. This will make it so that points that neighbor points of similar value will not

be changed, while points that do not match their surroundings will be faded to become more like the

points surrounding them. This does not have the same symmetrical di�usion as the other scheme,

i.e. if one pixel changes, it does not necessarily change its neighboring pixels by the same amount.

As long as you leave λ ≤ 1
4 and you have scaled the pixels to have �oating point values between 0

and 1, the scheme will still remain within its minimum and maximum bounds, since the tendency is

always to move points closer to the values of their neighbors. To demonstrate the action of such a

�lter, we make changes to random pixels in the color version of the same photo and use both �lters

to remove the noise we have added. Below, we include an example where we have added noise to the

color version of that same picture, then used a minimum-biased �lter to diminish the noise and the

original �lter to smooth what remains.

*Problem 4. (Optional)

Implement the minimum-biased �nite di�erence scheme described above. Add noise to

balloons_color.jpg using the provided code below, and clean it using your implementation.

Show the original image, the noised image, and the cleaned image.

image = imread('balloons_color.jpg')

x,y,z = image.shape

for dim in xrange(z):

for i in xrange(x*y//100):

Assign a random value to a random place

image[randint(x),randint(y),dim] = 127 + randint(127)

Hint: Don't forget to rescale.

8 Lab 8. Anisotropic Diffusion

original image randomly changed 100000 color values

300 iterations of a min-biased scheme

after 8 additional iterations of the �rst �lter

with λ = .25 and σ = .04.

	Anisotropic Diffusion

