
9 Finite Volume
Methods

When solving a PDE numerically, how do we deal with discontinuous initial data? The Finite Volume

method has particular strength in this area. It is commonly used for hyperbolic PDEs whose solutions

can spontaneously develop discontinuities as they evolve in time. These solutions are often called

shock waves.

Conservation Laws
Consider the conservation law

ut + f(u)x = 0, (9.1)

where u is a (spatially) one-dimensional conserved quantity, and f(u) is the �ux of u. The continuous

integral formulation of (9.1) states that

d

dt

∫ b

a

u(x, t)dx +

∫ b

a

f(u)x dx = 0.

d
dt

∫ b

a
u(x, t)dx may be thought of as the time evolution of the total `mass' of u across the domain

[a, b], and is dependent only on the �ux through the boundaries, since

d

dt

∫ b

a

u(x, t)dx = f(u(a))− f(u(b)).

This fact is an important idea utilized by �nite volume methods, which generally consider the evo-

lution of u not at a given point, but instead in volume-averaged regions. For example, let {xi} be a
grid of equally spaced points with spacing ∆x, and let Ci be the i-th `volume' (subinterval) de�ned

by (xi−1/2, xi+1/2). We are interested in the evolution of the volume average of u over this interval,

Un
i =

1

∆x

∫
Ci

u(x, tn)dx,

where {tn} is the time discretization.

The evolution of these volume-averaged quantities will depend only on the �ux through the cell

edges, so that

d

dt

∫
Ci

u(x, t)dx = f(u(xi−1/2, t))− f(u(xi+1/2, t)). (9.2)

1

2 Lab 9. Finite Volume Methods

t n

t n+1

U i
n U i+1

nU i−1
n

U i
n+1

F i−1 /2
n F i+1 /2

n

Figure 9.1: A schematic of the �uxes for the �nite volume method as indicated by (9.3).

We can then construct a time-stepping method where
∑

i U
n
i ∆x (the total `mass' of the system) is

conserved from one time step n to the next.

Let Fn
i−1/2 = 1

4t

∫ tn+1

tn
f(u(xi−1/2, t)) dt. Then∫ tn+1

tn

[
d

dt

∫
Ci

u(x, t) dx

]
=

∫
Ci

u(x, tn+1)− u(x, tn) dx,

= 4t
(
Fn
i−1/2 − Fn

i+1/2

)
.

Thus, by integrating (9.2) in time, we may approximate the evolution of the cell (`volume')

averages with the method

Un+1
i = Un

i −
∆t

∆x

(
Fn
i+1/2 − Fn

i−1/2

)
. (9.3)

where Un
i = 1

4x

∫
Ci

u(x, tn) dt. This formulation guarantees the conservation properties that are so

desirable for conservation laws, if the time-averaged �uxes Fn
i−1/2 can be discretized in a natural way.

The key contribution of �nite volume methods is the computation of Fn
i−1/2. For a truly

nonlinear f(u) this can be rather complicated and messy, and typically will involve solving what is

usually referred to as the Riemann problem for the conservation law. The interested student can

look at [?] for a very thorough introduction and discussion on the subject. We will consider the

linear problem in one dimension. The analog to higher dimensions is obtained by considering the

eigenvector decomposition of any linear system. Nonlinear equations complicate things further.

The linear advection equation and upwinding
The simplest conservation law describes the advection or transport of a quantity. The PDE is given

by

ut + aux = 0, (9.4)

and describes the motion of a concentration of some constituent u by a constant velocity one-

dimensional `wind' a > 0. In higher dimensions this is an important problem in many �elds, for

example the transport of chemicals in the atmosphere and oceans, proper mixing of various proper-

ties in metallurgy, and the passing of information along a network.

3

Note that whenever u(x, t) is a solution of the advection equation, then u(x − at, t0) (for any

�xed t0) is also a solution. Thus, if u(x, 0) = u0(x) then the solution for all time can be represented

by u(x, t) = u0(x − at). This is an important property of (9.4), and gives a new meaning to the

term advection: this equation merely takes the initial conditions and passively transports them with

velocity a.

For this equation the computation of the �ux appears straightforward: Fn
i−1/2 = aU

n

i−1/2 where

the U
n

i−1/2 refers to the time average of Ui−1/2 over the interval tn to tn+1. Let us determine how

to approximate this time average. Note from Figure 9.2 that when a > 0 the �ux that determines

Un+1
i will be dependent on the value of Un

i−1. Thus, one possibility is to approximate the �ux by

Fn
i−1/2 = aUn

i−1. Using this approximation of the �ux together with the �ux di�erencing formula

(9.3) yields the �rst order upwind method, given by

Un+1
i = Un

i −
a∆t

∆x

(
Un
i − Un

i−1
)
.

Another way to derive the upwind method is to instead suppose that what we want to do is reconstruct

u(x) at each time step n inside each cell (xi−1/2, xi+1/2)from the mean values in that cell and its

surrounding neighbors. This reconstructed ũ(x)n is then de�ned piecewise for each cell i. The

solution at the next time step can be found as ũn+1(x) = ũn(x− a4t) which allows us to determine

the �uxes Fn
i−1/2 once we have settled on a method for determining ũn(x) in each cell. The simplest

approach is

ũn(x) = Un
i for x ∈ (xi−1/2, xi+1/2)

This leads to �uxes given by

Fn
i−1/2 =

a

4t

∫ tn+1−tn

0

ũn(xi−1/2, t) dt, (9.5)

=
a

4t

∫ 4t

0

ũn(xi−1/2 − at) dt, (9.6)

= aUn
i−1.

The following code solves the problem

ut + aux = 0, 0 < x < 1,

u(x, t) = f(x),

u(0, t) = u(1, t),

(9.7)

where f represents a signal with two parts: one is smooth and the other is discontinuous. Notice

that this PDE has periodic boundary conditions. Essentially we are evolving the signal around the

unit circle. This allows us to evolve the signal much further to test our numerical methods, since we

only have to discretize the interval [0, 1] instead of a much larger domain. To see how to implement

the boundary conditions, consider a grid 0 = x0 < x1 < . . . < xN−1 < xN = 1 of evenly spaced

points. Since u(x) is periodic then u(xN) = u(x0), so it is su�cient to track x0, . . . , xN−1.

import numpy as np

from matplotlib import pyplot as plt

from math import floor

def upwind(u0, a, xmin, xmax, t_final, nt):

""" Solve the advection equation with periodic

boundary conditions on the interval [xmin, xmax]

4 Lab 9. Finite Volume Methods

U
i−1

U
i

U
i+1

U
i+2

U
i−2

Figure 9.2: The piecewise linear reconstruction for the upwind and Lax-Wendro� methods. The solid

lines represent the simplest reconstruction of the cell averages leading to the upwind method, and

the dashed lines are those whose slope is obtained via the Lax-Wendro� method. Note that the LW

method introduces a spurious maximum at i + 3/2 (the cell edge between Ui+1 and Ui+2) and the

minimum at i− 3/2 will be unphysical exaggerated. The upwind method avoids this di�culties, but

clearly loses a signi�cant amount of the available information. This provides the motivation for the

slope limiters.

using the upwind finite volume scheme.

Use u0 as the initial conditions.

a is the constant from the PDE.

Use the size of u0 as the number of nodes in

the spatial dimension.

Let nt be the number of spaces in the time dimension

(this is the same as the number of steps if you do

not include the initial state).

Plot and show the computed solution along

with the exact solution. """

5

dt = float(t_final) / nt

Since we are doing periodic boundary conditions,

we need to divide by u0.size instead of (u0.size - 1).

dx = float(xmax - xmin) / u0.size

lambda_ = a * dt / dx

u = u0.copy()

for j in xrange(nt):

The Upwind method. The np.roll function helps us

account for the periodic boundary conditions.

u -= lambda_ * (u - np.roll(u, 1))

Get the x values for the plots.

x = np.linspace(xmin, xmax, u0.size+1)[:-1]

Plot the computed solution.

plt.plot(x, u, label='Upwind Method')

Find the exact solution and plot it.

distance = a * t_final

roll = int((distance - floor(distance)) * u0.size)

plt.plot(x, np.roll(u0, roll), label='Exact solution')

Show the plot with the legend.

plt.legend(loc='best')

plt.show()

Define the initial conditions.

Leave off the last point since we're using periodic

boundary conditions.

nx = 30

nt = nx * 3 // 2

x = np.linspace(0., 1., nx+1)[:-1]

u0 = np.exp(-(x - .3)**2 / .005)

arr = (.6 < x) & (x < .7)

u0[arr] += 1.

Run the simulation.

upwind(u0, 1.2, 0, 1, 1.2, nt)

Try running the previous code block with nx set to 30, 60, 120, and 240. You will notice that

the numerical solution di�uses with time. It di�uses especially fast at the points of discontinuity.

Piecewise linear reconstruction and slope limiters
The upwind method is formally only �rst order, and actually does relatively poorly in terms of

actually transporting the initial data with velocity a. You can notice from the example code that

the upwind method has errors that are `di�usive' meaning that the initial data is di�used as time

evolves, losing the peaks and �ne details. This is because the error for the upwind method is on

the order of the second derivative of u which is of a di�usive nature. To get an improved method,

consider a better reconstruction inside each cell, i.e.

ũn(x) = Un
i + mn

i (x− xi) for x ∈ (xi−1/2, xi+1/2) (9.8)

6 Lab 9. Finite Volume Methods

where the slope of this linear reconstruction mn
i is determined as a function of the neighboring cell

averages at time n and Un
i itself. Then the �ux is given by

Fn
i−1/2 =

a

4t

∫ tn+1−tn

0

ũn(xi−1/2 − at) dt,

=
a

4t

∫ 4t

0

Un
i−1 + mn

i (xi−1/2 − at− xi),

= a

(
Un
i−1 +

mn
i−1
2

(4x− a4t)

)
.

(9.9)

One of the most natural approaches is to just estimate the slope depending on the cell i and a

neighboring cell i+ 1 or i−1. This leads to two popular methods, the Lax-Wendro� method and the

Beam-Warming method (that really is the name). The Lax-Wendro� method has a slope chosen as

mn
i =

Un
i+1 − Un

i

∆x
. (9.10)

which it turns out is formally second-order accurate. It turns out though that the errors for this

method are dispersive, meaning that near very steep gradients, the method will generate very rapid

oscillations (due to the third derivative of u not being approximated accurately). Another way to

consider how these errors arise is to notice from Figure 9.2 that if the piecewise linear reconstruction

is advocated by some positive wind a then there will be places where the discontinuous nature of

the reconstruction will introduce spurious maxima or minima into the solution. These become the

spurious waves seen in simulations using the Lax-Wendro� method.

A solution to this dilemma between balancing the di�usive and dispersive errors comes from

constructing slopes mn
i that ensure no such non-monotonic transport takes place. The basic idea

is to constrain the slope so that the reconstructed piecewise linear function ũn(x) will not generate

unphysical extremal values when it is advocated by some �nite wind a. The Minmod limiter chooses

the slope as

mn
i = minmod

(
Un
i − Un

i−1
∆x

,
Un
i+1 − Un

i

∆x

)
(9.11)

where

minmod(a, b) =


a if |a| < |b| and ab > 0

b if |b| < |a| and ab > 0

0 if ab < 0.

(9.12)

Problem 1. Implement the LaxWendro� method and use it to solve (9.7). ForN = 30, 60, 120, 240,

plot the analytic solution, the upwind solution, and the Lax-Wendro� solution. (You should

have 4 separate plots, each with 3 graphs.) You should be able to tell that the Lax Wendro�

method approximates the smooth portion of the signal much better, as it does not struggle with

di�usion. Unfortunately, it has some di�culty with the discontinuous portion, where unphys-

ical oscillations are seen. Recall that we saw something similar in the waves lab when there

were discontinuous initial conditions.

Hint: Use equations 9.9 and 9.3.

7

0.0 0.2 0.4 0.6 0.8 1.0
0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Analytic solution
Upwind
Lax Wendroff
Min mod

Figure 9.3: Solutions of (9.7) at time t = 1.2 using various methods. Here the advection coe�cient

is a = 1.2, and there are N = 100 subintervals in space, 150 subintervals in time.

Problem 2. Implement the Minmod method and use it to solve (9.7). For N = 30, 60, 120, 240,

plot the anaytic solution, the upwind solution, the Lax-Wendro� solution, and the Minmod

solution. (You should have 4 separate plots, each with 4 graphs.) Be sure to vectorize the

minmod operation.

Hint: Use equations 9.9 and 9.3.

Beyond piecewise linear reconstructions
As you can imagine, using a linear approximation is not the only option. There are a host of high

order �nite volume methods that consider polynomial reconstructions of ũn inside each cell. The key

is then to use some nonlinear limiting technique that will ensure that when ũn(x) is advocated that

no new extrema are introduced. Choosing the correct limiter for the given application then becomes

an art unto itself.

	Finite Volume Methods

