
10 The Finite Element
method

Lab Objective: The �nite element method is commonly used for numerically solving partial

di�erential equations. We introduce the �nite element method via a simple BVP describing the

steady state distribution of heat in a pipe as �uid �ows through.

Advection-Diffusion of Heat in a Fluid
We begin with the heat equation

yt = εyxx + f(x)

where f(x) represents any heat sources in the system, and εyxx models the di�usion of heat. We

wish to study the distribution of heat in a �uid that is moving at some constant speed a. This can

be modelled by adding an advection or transport term to the heat equation, giving us

yt + ayx = εyxx + f(x).

We consider a �uid �owing through a pipe from x = 0 to x = 1 with speed a = 1, and as it travels it

is warmed at a constant rate f = 1. We will impose the condition that y = 2 at x = 0, so that the

�uid is already at a constant temperature as it enters the pipe.

These conditions yield

yt + yx = εyxx + 1, 0 < x < 1,

y(0) = 2

As time increases we expect the temperature of the �uid in the pipe to reach a steady state distri-

bution, with yt = 0. The heat distribution then satis�es

εy′′ − y′ = −1, 0 < x < 1,

y(0) = 2.

This problem is not fully de�ned, since it has only one boundary condition. Suppose a device is

installed on the end of the pipe that nearly instantaneously brings the heat of the water up to y = 4.

Physically we expect this extra heat that is introduced at x = 1 to di�use backward through the

water in the pipe. This leads to a well de�ned BVP,

εy′′ − y′ = −1, 0 < x < 1,

y(0) = 2, y(1) = 4.
(10.1)

1

2 Lab 10. The Finite Element method

0.0 0.2 0.4 0.6 0.8 1.0
2.0

2.5

3.0

3.5

4.0

Figure 10.1: The solution of (10.1) for ε = .1.

The Weak Formulation

Consider the equation

εy′′ − y′ = f, 0 < x < 1,

y(0) = α, y(1) = β.
(10.2)

To �nd the solution y using the �nite element method, we reframe the problem and look at what is

known as its weak formulation.

Let w be a smooth function on [0, 1] satisfying w(0) = w(1) = 0. Multiplying (10.2) by w and

integrating over [0, 1] yields

∫ 1

0

fw =

∫ 1

0

εy′′w − y′w,

=

∫ 1

0

−εy′w′ − y′w.

3

De�ne a bilinear function a and a linear function l by

a(y, w) =

∫ 1

0

−εy′w′ − y′w,

l(w) =

∫ 1

0

fw.

Rather than trying to solve (10.2), we instead consider the problem of �nding a function y such that

a(y, w) = l(w), ∀w ∈ V0, (10.3)

where V is some appropriate vector space that is expected to allow us to approximate the solution

y, and V0 = {w ∈ V |w(0) = w(1) = 0}. (For example, we could consider the space of functions that

are piecewise linear with vertices at a �xed set of points. This example is discussed further below.)

This equation is called the weak formulation of (10.2).

Let Pn be some partition of [0, 1], 0 = x0 < x1 < . . . < xn = 1, and let Vn be the �nite-

dimensional vector space of continuous functions v on [0, 1] where v is linear on each subinterval

[xj , xj+1]. These subintervals are the �nite elements for which this method is named. Vn has

dimension n + 1, since there are n + 1 degrees of freedom for continuous piecewise linear functions

in V . Let Vn0 be the subspace of Vn of dimension n− 1 whose elements are zero at the endpoints of

[0, 1], and let 4xn = max0≤j≤n−1 |xj+1 − xj |.
Let {Pn} be a sequence of partitions that are re�nements of each other, such that 4xn → 0 as

n → ∞. Then in particular V1 ⊂ V2 ⊂ . . . ⊂ Vn . . . ⊂ V . For each partition Pn we can look for an

approximation yn ∈ Vn for the true solution y; if this is done correctly then yn → y as n→∞.

The Numerical Method
Consider a partition P5 = {x0, x1, . . . , x5}. We will de�ne some basis functions φi, i = 0, . . . , 5 for

the corresponding vector space V5. Let the φi be the hat functions

φi(x) =


(x− xi−1)/hi if x ∈ [xi−1, xi]

(xi+1 − x)/hi+1 if x ∈ [xi, xi+1]

0 otherwise

where hi = xi − xi−1; see Figures 10.2 and 10.3.

We look for an approximation ŷ =
∑5

i=0 kiφi ∈ V5 of the true solution y; to do this we must

determine appropriate values for the constants ki. We impose the condition on ŷ that

a(ŷ, w) = l(w) ∀w ∈ V5.

Equivalently, we require that

a

(
5∑

i=0

kiφi, φj

)
= l(φj) for j = 1, 2, 3, 4,

since φ1, φ2, φ3, φ4 form a basis for V5.

Since a is bilinear, we obtain

5∑
i=0

kia(φi, φj) = l(φj) for j = 1, 2, 3, 4.

4 Lab 10. The Finite Element method

x2 x3 x4

0.0

0.2

0.4

0.6

0.8

1.0
φ3

Figure 10.2: The basis function φ3.

To satisfy the boundary conditions, we also require that k0 = α, k5 = β. These equations can be

written in matrix form as

AK = Φ, (10.4)

where

A =



1 0 0 0 0 0

a(φ0, φ1) a(φ1, φ1) a(φ2, φ1) 0 0 0

0 a(φ1, φ2) a(φ2, φ2) a(φ3, φ2) 0 0

0 0 a(φ2, φ3) a(φ3, φ3) a(φ4, φ3) 0

0 0 0 a(φ3, φ4) a(φ4, φ4) a(φ5, φ4)

0 0 0 0 0 1


and

K =



k0
k1
k2
k3
k4
k5

 , Φ =



α

l(φ1)

l(φ2)

l(φ3)

l(φ4)

β

 .

Note that a(φi, φj) = 0 for most values of i, j (that is, when the hat functions do not have

overlapping domains). Thus the �nite element method results in a sparse linear system. To compute

5

x0 x1 x2 x3 x4 x5

0.0

0.2

0.4

0.6

0.8

1.0
φ0 φ1 φ2 φ3 φ4 φ5

Figure 10.3: Basis functions for V5.

the coe�cients of (10.4) we begin by evaluating some integrals. Since

φ′i(x) =


1/hi for xi−1 < x < xi,

−1/hi+1 for xi < x < xi+1,

0 otherwise,

6 Lab 10. The Finite Element method

we obtain

∫ 1

0

φ′iφ
′
j =


−1/hi+1 if j = i+ 1,

1/hi + 1/hi+1 if j = i,

0 otherwise,

∫ 1

0

φ′iφj =


−1/2 if j = i+ 1,

1/2 if j = i− 1,

0 otherwise,

a(φi, φj) =


ε/hi+1 + 1/2 if j = i+ 1,

−ε/hi − ε/hi+1 if j = i,

ε/hi − 1/2 if j = i− 1,

0 otherwise,

l(φj) = −(1/2)(hj + hj+1).

Equation (10.4) may now be solved using any standard linear solver. To handle the large number of

elements required for Problem 3, you will want to use the tridiagonal algorithm provided in several

of the earlier labs or the banded matrix solver included in scipy.linalg.

Problem 1. Use the �nite element method to solve

εy′′ − y′ = −1,

y(0) = α, y(1) = β,
(10.5)

where α = 2, β = 4, and ε = 0.02. Use N = 100 �nite elements (101 grid points). Compare

your solution with the analytic solution

y(x) = α+ x+ (β − α− 1)
ex/ε − 1

e1/ε − 1
.

Problem 2. One of the strengths of the �nite element method is the ability to generate grids

that better suit the problem. The solution of (10.5) changes most rapidly near x = 1. Compare

the numerical solution when the grid points are unevenly spaced versus when the grid points

are clustered in the area of greatest change; see Figure 10.4. Speci�cally, use the grid points

de�ned by

even_grid = np.linspace(0,1,15)

clustered_grid = np.linspace(0,1,15)**(1./8)

Problem 3. Higher order methods promise faster convergence, but typically require more work

to code. So why do we use them when a low order method will converge just as well, albeit

with more grid points? The answer concerns the roundo� error associated with �oating point

7

0.0 0.2 0.4 0.6 0.8 1.0

2.0

2.5

3.0

3.5

4.0
Solution
Evenly spaced grid points
Clustered grid points

Figure 10.4: We plot two �nite element approximations using 15 grid points.

arithmetic. Low order methods generally require more �oating point operations, so roundo�

error has a much greater e�ect.

The �nite element method introduced here is a second order method, even though the

approximate solution is piecewise linear. (To see this, note that if the grid points are evenly

spaced, the matrix A in (10.4) is exactly the same as the matrix for the second order centered

�nite di�erence method.)

Solve (10.5) with the �nite element method using N = 2i �nite elements, i = 4, 5, . . . , 21.

Use a log-log plot to graph the error; see Figure 10.5.

8 Lab 10. The Finite Element method

100 101 102 103 104 105 106 107

n

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

E
(n

)

Figure 10.5: Error for the second order �nite element method, as the number of subintervals n grows.

Round-o� error eventually overwhelms the approximation.

	The Finite Element method

