
12 Stochastic Differential
Equations

Lab Objective: Stochastic di�erential equations are used to model stochastic processes. In this lab

we will explore Brownian motion and then derive the Euler-Maruyama numerical method for SDEs.

We will build an Euler-Maruyama numerical solver and use this solver to predict future stock prices.

Stochastic di�erential equations combine the concepts of Brownian motion and di�erential

equations in order to model stochastic processes. A stochastic process is a mathematical object

made from a family of random variables. These processes model events that occur with random

changes over time, such as bacterial population growth, movement of gas molecules, and �uctuating

stock prices. To understand stochastic processes, it is imperative to understand Brownian motion.

Brownian Motion
Brownian motion is random movement described by the Wiener process. The Wiener process is a

stochastic process W (t) ∼ N (0, t) which satis�es the following conditions:

1. W (0) = 0,

2. W (t− s) = W (t)−W (s),

3. W (t) is independent for all t.

For example, imagine a point at zero on a number line. The point can only move one number

away and must move left or right. The probability of moving left and right is equal and can be

modeled by a coin �ip. Let's say that landing on heads moves the point right and tails moves the

point left. On our �rst �ip, we get heads and the point moves from 0 to 1. Now we �ip the coin

again. This coin �ip does not depend on the previous coin �ip and determines whether the point

moves back to 0 or moves to 2. On the second �ip, we get tails and the point moves back to 0.

Continuing this process shows the random movement of the point on the number line.

As we �ip the coin t times, the distribution of the point's position is approximately normally

distributed with mean 0 and variance t. Note that dW ∼ N (0,∆t) is also approximately normally
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(d) Tails is �ipped and point moves left.

Figure 12.1: Example of Brownian motion. The blue dot travels left or right with equal probability.

It is modeled by a coin �ip. When heads, the dot moves right. When tails, the dot moves left.

distributed because W (t− s) = W (t)−W (s) and W (t− s) ∼ N (0, t− s). Using dW , we can show

the movement of a point with the di�erential equation

dSt
St

= g(t, St)dW. (12.1)

where g(t, St) is a scalar function and St is the position of the point at time t. We can manipulate

Equation 12.1 to model the position of the point numerically:

dSt ≈ g(t, St)StdW

St+1 − St ≈ g(t, St)StdW

St+1 ≈ St + g(t, St)StdW

where dW ∼ N (0, 1). This model is itself a stochastic di�erential equation that is based completely

on brownian motion.

Problem 1. Write a function brownian_motion() that accepts a scalar function g, initial

condition y0, and an array of time points t. The function should return an array of the

solution to Equation 12.1 evaluated at t.

Animate this function for g(t, St) = 1, y0 = (1, 1) and t ∈ [0, 100). The animation should

show a particle moving with a tail indicating it's previous position.

(Hint: Because y0 ∈ R2, dW ∈ R2×R2 so that each dimension of y0 moves independently.

Thus, dW =

(
dw1

0

0 dw2

)
where dwi ∼ N (0, 1)).
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Euler-Maruyama Method
A stochastic di�erential equation (SDE) is a di�erential equation that involves at least one stochastic

component. Equation 12.1 is an example of a SDE, as its only component is stochastic. However,

most SDEs are not made of just one stochastic component. A commonly used stochastic di�erential

equation which contains a non-stochastic component is

dSt
St

= f(t, St)dt+ g(t, St)dW (12.2)

where f(t, St) and g(t, St) are scalar functions and dW ∼ N (0,∆t). In this equation, the �rst term is

a standard di�erential equation while the second term represents brownian motion. The combination

allows for more accurate models of stochastic processes. To solve Equation 12.2, we apply the Euler-

Maruyama method. This method combines the Euler method for ODEs with an additional stochastic

component. Note that Problem 1 is the Euler-Maruyama method where f(t, St) = 0. We solve for

St+1 as follows:

dSt ≈ f(t, St)Stdt+ g(t, St)StdW

St+1 − St ≈ f(t, St)Stdt+ g(t, St)StdW

St+1 ≈ St + f(t, St)Stdt+ g(t, St)StdW.

Problem 2. Write a function euler_maruyama() which accepts a scalar function f, a scalar

function g, initial condition y0s, and an array of time points t. The function should return an

array of the solution to 12.2.

To test your function, set f(t, St) = 1− (St)
2, g(t, St) = 0.1, y0 = 1 and t ∈ [0, 10). Your

function should result in a plot which randomly oscillates with y generally in the interval [0, 2].

An example is shown in Figure 12.2.

Drift and Volatility
SDEs are often used in mathematical �nance models. Particularly, the Geometric Brownian Motion

(GBM) model is useful in predicting future stock prices. The GBM is de�ned as follows:

dSt = µStdt+ σStdW, (12.3)

where µ is the drift of the stock and σ is the volatility. The drift µ of a stock is the average change

in return of historic stock data. The volatility of a stock is the standard deviation of the change in

return of historic stock data. It is expected that µ and σ will remain the same for future stock data.

To �nd µ and σ, let θ = (µ, σ). We want to �nd θMAP (maximum a posteriori) which maximizes

the probability that µ and σ �t the historical data. We can calculate θMAP using Bayes Theorem:

θMAP

(
dS

S

)
= argmaxθP

(
θ|dS
S

)
= argmaxθ

P
(
dS
S |θ

)
P (θ)∫

Θ
P
(
dS
S |ϑ

)
P (ϑ)dϑ

= argmaxθP
(dS
S
|θ
)
P (θ),

(12.4)
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Figure 12.2: Possible solution for f(t, St) = 1− (St)
2, g(t, St) = 0.1, y0 = 1 and t ∈ [0, 10).

where Θ is the collection of all possible θ. Since no information is known about P (θ), we choose P (θ)

to be equal over all θ. This avoids giving bias to one value of θ over another. To ease calculations,

we choose our improper prior to be uniformly 1, P (θ) = 1. This implies θMAP = argmaxθP (dSS |θ) =

θMLE .

Now it is necessary to determine the probability distribution of P (dSS |θ). Plotting the change in
stock price results in the following histogram: The change in stock price is approximately normally

distributed and thus we consider P (dSS ) ∼ N (µ, σ2). Now we can calculate θMAP as follows:
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Figure 12.3: Distribution of change in stock price.

θMAP = argmaxθP (
dS

S
|θ)

= argmaxθ

N∏
i=1

1√
2πσ2

exp(−
((dSS )i − µ)2

2σ2
)

= argmaxθ log(

N∏
i=1

1√
2πσ2

exp(−
((dSS )i − µ)2

2σ2
))

= argmaxθ

N∑
i=1

log(
1√

2πσ2
exp(−

((dSS )i − µ)2

2σ2
))

= argmaxθ

N∑
i=1

log(
1√

2πσ2
)−

((dSS )i − µ)2

2σ2

= argmaxθN log(
1√

2πσ2
)−

N∑
i=1

((dSS )i − µ)2

2σ2

= argminθN log(
√

2πσ2) +

N∑
i=1

((dSS )i − µ)2

2σ2

= argminθN log(
√

2πσ2) +
1

2σ2

N∑
i=1

((
dS

S
)i − µ)2

(12.5)



6 Lab 12. Stochastic Differential Equations

0 100 200 300 400
Days

1000

1050

1100

1150

1200

1250

1300

Pr
ice

Average Price for Next 50 Days
Historical
Prediction

Figure 12.4: Possible plot of future Google stock prices.

The end result of Equation 12.5 gives an equation that can be optimized using scipy.optimize.

minimize to �nd θ.

Problem 3. Write a function theta() which takes in an array of historical data. Use scipy.

optimize.minimize and Equation 12.5 to calculate the optimal µ and σ. Return µ and σ. For

the closing stock prices of google_stock.csv, µ ≈ 1129.4321 and σ ≈ 1.8548.

(Hint: Use the sample mean and sample variance as an initial guess for scipy.optimize

.minimize. Also use method='Nelder-Mead'.)

Problem 4. Use euler_maruyama() to predict the future closing stock prices of Google stock

for t ∈ [377, 427). Plot the original data and the average predicted stock prices. Return an

array of the average future stock prices. Your plot should look similar to Figure 12.4.

(Hint: Let f(t, St) = µ and g(t, St) = σ. Each t represents one day, so there should be 50

predicted values.)
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Convergence of Euler-Maruyama
The Euler-Maruyama method has strong convergence as ∆t→∞. This can be seen heuristically by

looking at the expected value of the error of the numerical method. Note equation 12.3 can be solved

analytically to get the solution

S(t) = s0e

(
µ−σ2

2

)
t+σW (t) (12.6)

where s0 = S(0). Let A∆t(t) be the approximation of S(t) with step size ∆t. Because we are working

with SDEs, we take the expected value of the max error over all t and de�ne the error as

E(A∆t) = sup
t

E
(
|S(t)−A∆t(t)|

)
≈ C(∆t)γ . (12.7)

where γ is the order of convergence and C is some constant. Taking the log of both sides, we get

log(E(A∆t)) = log(C) + γ log(∆t). (12.8)

To �nd the order of convergence γ, we can plot ∆t×E(A∆t(t)) as ∆t→∞ with log axes. This

should result is a straight line with slope γ, giving us the convergence rate. For Euler-Maruyama,

γ = 1
2 .

Problem 5. Write a function convergence() that calculates the convergence of Euler-Maruyama.

Calculate the drift and volatility of the closing prices in google_stock.csv and use Euler-

Maruyama to predict stock values for t ∈ [0, 50). Calculate the di�erence between the analyti-

cal solution 12.6 and predicted data from Euler-Maruyama. Plot the di�erence for dt = 2i for

i ∈ [0, 1, 2, 3, 4, 5] on a log-log plot. Your plot should be a straight line with slope 1
2 .

(Hint: Try using np.arange).
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