
20The Inverted
Pendulum

Lab Objective: We will set up the LQR optimal control problem for the inverted pendulum and

compute the solution numerically.

Think back to your childhood days when, for entertainment purposes, you'd balance objects:

a book on your head, a spoon on your nose, or even a broom on your hand. Learning how to walk

was likely your initial introduction to the inverted pendulum problem.

A pendulum has two rest points: a stable rest point directly underneath the pivot point of the

pendulum, and an unstable rest point directly above. The generic pendulum problem is to simply

describe the dynamics of the object on the pendulum (called the `bob'). The inverted pendulum

problem seeks to guide the bob toward the unstable �xed point at the top of the pendulum. Since

the �xed point is unstable, the bob must be balanced relentlessly to keep it upright.

The inverted pendulum is an important classical problem in dynamics and control theory, and

is often used to test di�erent control strategies. One application of the inverted pendulum is the

guidance of rockets and missiles. Aerodynamic instability occurs because the center of mass of the

rocket is not the same as the center of drag. Small gusts of wind or variations in thrust require

constant attention to the orientation of the rocket.

The Simple Pendulum
We begin by studying the simple pendulum setting. Suppose we have a pendulum consisting of a

bob with mass m rotating about a pivot point at the end of a (massless) rod of length l. Let θ(t)

represent the angular displacement of the bob from its stable equilibrium. By Hamilton's Principle,

the path θ that is taken by the bob minimizes the functional

J [θ] =

∫ t1

t0

L, (20.1)

where the Lagrangian L = T − U is the di�erence between the kinetic and potential energies of the

bob.

The kinetic energy of the bob is given by mv2/2, where v is the velocity of the bob. In terms
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Figure 20.1: The frame of reference for the simple pendulum problem.

of θ, the kinetic energy becomes

T =
m

2
v2 =

m

2
(ẋ2 + ẏ2),

=
m

2
((l cos(θ)θ̇)2 + (l sin(θ)θ̇)2),

=
ml2θ̇2

2
.

(20.2)

The potential energy of the bob is U = mg(l − l cos θ). From these expressions we can form the

Euler-Lagrange equation, which determines the path of the bob:

0 = Lθ −
d

dx
Lθ̇,

= −mgl sin θ −ml2θ̈,

= θ̈ +
g

l
sin θ.

(20.3)

Since in this setting the energy of the pendulum is conserved, the equilibrium position θ = 0 is

only Lyapunov stable. When forces such as friction and air drag are considered θ = 0 becomes an

asymptotically stable equilibrium.

The Inverted Pendulum
The Control System
We consider a gift suspended above a rickshaw by a (massless) rod of length l. The rickshaw and its

suspended gift will have massesM andm respectively,M > m. Let θ represent the angle between the

gift and its unstable equilibrium, with clockwise orientation. Let v1 and v2 represent the velocities of

the rickshaw and the gift, and F the force exerted on the rickshaw. The rickshaw will be restricted

to traveling along a straight line (the x-axis).
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Figure 20.2: The inverted pendulum problem on a mobile rickshaw with a present suspended above.

By Hamilton's Principle, the path (x, θ) of the rickshaw and the present minimizes the functional

J [x, θ] =

∫ t1

t0

L, (20.4)

where the Lagrangian L = T − U is the di�erence between the kinetic energy of the present on the

pendulum, and its potential energy.

Since the position of the rickshaw and the present are (x(t), 0) and (x − l sin θ, l cos θ) respec-
tively, the total kinetic energy is

T =
1

2
Mv21 +

1

2
mv22 ,

=
1

2
Mẋ2 +

1

2
m((ẋ− lθ̇ cos θ)2 + (−lθ̇ sin θ)2),

=
1

2
(M +m)ẋ2 +

1

2
ml2θ̇2 −mlẋθ̇ cos θ.

(20.5)

The total potential energy is

U = mgl cos θ.

The path (x, θ) of the rickshaw and the present satisfy the Euler-Lagrange di�erential equations,

but the problem involves a nonconservative force F acting in the x direction. By way of D'Alambert's

Principle, our normal Euler-Lagrange equations now include the nonconservative force F on the right

side of the equation:

∂L

∂x
− d

dt

∂L

∂ẋ
= F,

∂L

∂θ
− d

dt

∂L

∂θ̇
= 0.

(20.6)
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After expanding (20.6) we see that x(t) and θ(t) satisfy

F = (M +m)ẍ−mlθ̈ cos θ +mlθ̇2 sin θ,

lθ̈ = g sin θ + ẍ cos θ.
(20.7)

At this point we make a further simplifying assumption. If θ starts close to 0, we may assume

that the corresponding force F will keep θ small. In this case, we linearize (20.7) about (θ, θ̇) = (0, 0),

obtaining the equations

F = (M +m)ẍ−mlθ̈,

lθ̈ = gθ + ẍ.

These equations can be further manipulated to obtain

ẍ =
1

M
F − m

M
gθ,

θ̈ =
1

Ml
F +

g

Ml
(M +m)θ.

(20.8)

We will now write (20.8) as a �rst order system. Making the assignments x1 = x, x2 = x′1,

θ1 = θ, θ2 = θ′1, letting u = F represent the control variable, we obtain
x1
x2
θ1
θ2


′

=


0 1 0 0

0 0 mg
M 0

0 0 0 1

0 0 g
Ml (M +m) 0



x1
x2
θ1
θ2

+ u


0
1
M

0
1
Ml

 ,
which can be written more concisely as

z′ = Az +Bu.

The infinite time horizon LQR problem
We consider the cost function

J [z] =

∫ ∞
0

(q1x
2
1 + q2x

2
2 + q3θ

2
1 + q4θ

2
2 + ru2) dt

=

∫ ∞
0

zTQz + uTRudt

(20.9)

where q1, q2, q3, q4, and r are nonnegative weights, and

Q =


q1 0 0 0

0 q2 0 0

0 0 q3 0

0 0 0 q4

 , R =
[
r
]
.

Problem 1. Write a function that returns the matrices A,B,Q, and R given above. Let

g = 9.8 m/s2.

def linearized_init(M, m, l, q1, q2, q3, q4, r):

'''

Parameters:



5

----------

M, m: floats

masses of the rickshaw and the present

l : float

length of the rod

q1, q2, q3, q4, r : floats

relative weights of the position and velocity of the rickshaw, ←↩
the

angular displacement theta and the change in theta, and the ←↩
control

Return

-------

A : ndarray of shape (4,4)

B : ndarray of shape (4,1)

Q : ndarray of shape (4,4)

R : ndarray of shape (1,1)

'''

pass

The optimal control problem (20.9) is an example of a Linear Quadratic Regulator (LQR), and

is known to have an optimal control ũ described by a linear state feedback law:

ũ = −R−1BTP z̃.

Here P is a matrix function that satis�es the Riccati di�erential equation (RDE)

Ṗ (t) = PA+ATP +Q− PBR−1BTP.

Since this problem has an in�nite time horizon, we have Ṗ = 0. Thus P is a constant matrix, and

can be found by solving the algebraic Riccati equation (ARE)

PA+ATP +Q− PBR−1BTP = 0. (20.10)

The evolution of the optimal state vector z̃ can then be described by 1

˙̃z = (A−BR−1BTP )z̃. (20.11)

Problem 2. Write the following function to �nd the matrix P . Use scipy.optimize.root.

Since root takes in a vector and not a matrix, you will have to reshape the matrix P before

passing it in and after getting your result, using np.reshape(16) and np.reshape((4,4)).

def find_P(A, B, Q, R):

'''

Parameters:

----------

A, Q : ndarrays of shape (4,4)

1See Calculus of Variations and Optimal Control Theory, Daniel Liberzon, Ch.6
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B : ndarray of shape (4,1)

R : ndarray of shape (1,1)

Returns

-------

P : the matrix solution of the Riccati equation

'''

pass

Using the values

M, m = 23., 5.

l = 4.

q1, q2, q3, q4 = 1., 1., 1., 1.

r = 10.

compute the eigenvalues of A − BR−1BTP . Are any of the eigenvalues positive? Consider

di�erential equation (20.11) governing the optimal state z̃. Using this value of P , will we

necessarily have z̃ → 0?

Notice that we have no information on how many solutions (20.10) possesses. In general there

may be many solutions. We hope to �nd a unique solution P that is stabilizing : the eigenvalues of

A − BR−1BTP have negative real part. To �nd this P , use the function solve_continuous_are

from scipy.linalg. This function is designed to solve the continuous algebraic Riccati equation.

Problem 3. Write the following function that implements the LQR solution described earlier.

For the IVP solver, you can use your own or you may use the function odeint from scipy.

integrate.

def rickshaw(tv, X0, A, B, Q, R, P):

'''

Parameters:

----------

tv : ndarray of time values, with shape (n+1,)

X0 : Initial conditions on state variables

A, Q: ndarrays of shape (4,4)

B : ndarray of shape (4,1)

R : ndarray of shape (1,1)

P : ndarray of shape (4,4)

Returns

-------

Z : ndarray of shape (n+1,4), the state vector at each time

U : ndarray of shape (n+1,), the control values

'''

pass
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ẋ

θ

θ̇

u

P is found using scipy.optimize.root.

0 10 20 30 40 50 60
6

4

2

0

2

4

6

x

ẋ
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Figure 20.3: The solutions of Problem 4.

Problem 4. Test the function made in Problem (3) with the following inputs:

M, m = 23., 5.

l = 4.

q1, q2, q3, q4 = 1., 1., 1., 1.

r = 10.

tf = None

X0 = np.array([-1, -1, .1, -.2])

Find the matrix P using the scipy.optimize.rootmethod with tf=6 as well as the solve_continuous_are

method with tf=60. Plot the solutions z̃ and ũ. Compare your results as shown in Figure

20.3.
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