
2 Modelling the spread
of an epidemic: SIR
models

Numerical Solvers
We often rely on numerical solvers to numerically integrate ordinary di�erential equations, ODEs.

Because of the complexity of many ODE systems, these numerical solvers allow us to solve complex

ODE systems that may not be solvable symbolically, or are high dimensional. In this lab we will be

using solve_ivp, which is a part of scipy.integrate, to solve ODE systems related to epidemic

models. You can read the documentation for solve_ivp at https://docs.scipy.org/doc/scipy/

reference/generated/scipy.integrate.solve_ivp.html.

solve_ivp takes the ODE as a function, a tuple containing the start and end time, and an

array with the initial conditions as arguments, and returns a bunch object containing the solution

and other information. We can solve the following ODE system with the following code.[
y1(t)

y2(t)

]′
=

[
y2(t)

sin(t)− 5y2(t)− y1(t)

]
y1(0) =0, y2(0) = 1, t ∈ [0, 3π]

(2.1)

import numpy as np

from scipy.integrate import solve_ivp

define the ode system as given in the problem

def ode(t,y):

return np.array([y[1], np.sin(t) - 5*y[1] - y[0]])

define the t0 and tf parameters

t0 = 0

tf = 3*np.pi

define the initial conditions

y0 = np.array([0,1])

solve the system

sol = solve_ivp(ode, (t0,tf), y0)

Plot the system

1

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html

2 Lab 2. Modelling the spread of an epidemic: SIR models

import matplotlib.pyplot as plt

plot y_1 against y_2

plt.plot(sol.y[0],sol.y[1])

plt.xlabel('y_1')

plt.ylabel('y_2')

plt.show()

0.1 0.0 0.1 0.2 0.3 0.4
y1

0.2

0.0

0.2

0.4

0.6

0.8

1.0

y 2

Figure 2.1: Solution to (2.1)

The SIR Model
The SIR model describes the spread of an epidemic through a large population. It does this by

describing the movement of the population through three phases of the disease: those individuals

who are susceptible, those who are infectious, and those who have been removed from the disease.

Those individuals in the removed class have either died, or have recovered from the disease and are

now immune to it. If the outbreak occurs over a short period of time, we may reasonably assume

that the total population is �xed, so that S′(t) + I ′(t) + R′(t) = 0. We may also assume that

S(t) + I(t) +R(t) = 1, so that S(t) represents the fraction of the population that is susceptible, etc.

Individuals may move from one class to another as described by the �ow

S → I → R.

3

Let us consider the transition rate between S and I. Let β represent the average number of contacts

made per unit time period (one day perhaps) that could spread the disease. The proportion of these

contacts that are with a susceptible individual is S(t). Thus, one infectious individual will on average

infect βS(t) others per day. Let N represent the total population size. Then we obtain the di�erential

equation

d

dt
(S(t)N) = −βS(t)(I(t)N)

Now consider the transition rate between I and R. We assume that there is a �xed proportion

γ of the infectious group who will recover on a given day, so that

d

dt
R(t) = γI(t).

Note that γ is the reciprocal of the average length of time spent in the infectious phase.

Since the derivatives sum to 0, we have I ′(t) = −S′(t)−R′(t), so the di�erential equations are
given by

dS

dt
= −βIS, (2.2)

dI

dt
= βIS − γI, (2.3)

dR

dt
= γI. (2.4)

Problem 1. Suppose that, in a city of approximately three million, �ve people who have just

become infectious have recently entered the city carrying a certain disease. Each of those

individuals has one contact each day that could spread the disease, and an average of three

days is spent in the infectious state. Find the solution of the corresponding SIR equations using

solve_ivp for �fty days, where each time period is half a day, and plot your results. Use the

percentages of each state, not the actual number of people in the state.

At the peak of the infection, how many in the city will still be able to work (assume for

simplicity that those who are in the infectious state either cannot go to work or are unproductive,

etc.)?

Hint: Use the t-values paramter in solve_ivp to pass in an array of t-values.

Compare your plot to Figure 1.

4 Lab 2. Modelling the spread of an epidemic: SIR models

0 10 20 30 40 50
T (days)

0.0

0.2

0.4

0.6

0.8

1.0
Pr

op
or

tio
n

of
 P

op
ul

at
io

n

Susceptible
Infected
Recovered

Figure 2.2: Solution to Problem (1)

SIR is an e�ective model for epidemic spread under certain assumptions. For example, we

assume that the network is what's called "fully mixed". This implies that no group of members of a

network are more likely to encounter each other than any other group. Because of this assumption,

we should not use SIR to model networks we know to be poorly mixed. In fact, we should be clear in

stating that almost no network is truly fully mixed; however this model is still e�ective for networks

that are reasonably well mixed. In the next problem we will be using SIR to model data from the

recent Covid-19 outbreak. To adhere to the "reasonably well mixed" criteria, we will be using only

data from one county at a time.

Problem 2. On March 11, 2020, New York City had 52 con�rmed cases of Covid-19. On that

day New York started its lock-down measures. Using the following information, model what

the spread of the virus could have been, using solve_ivp, if New York did not implement any

measures to curb the spread of the virus over the next 150 days:

there are approximately 8.399 million people in New York city,

the average case of Covid-19 lasts for 10 days,

and each infected person can spread the virus to 2.5 people.

Plot your results for each day and compare to Figure 2.

1) At the projected peak, how many concurrent active cases are there?

2) Assuming that about 5% of Covid-19 cases require hospitalization, and using the fact

that there are about 58,000 hospital beds in NYC, how many beds over capacity will the

5

hospitals in NYC be at the projected peak?

0 20 40 60 80 100 120 140
Days since Mar 11

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 P
op

ul
at

io
n

Modeling Covid-19 in NYC
Susceptible
Infected
Recovered

Figure 2.3: Solution to Problem (2).

Variations on the SIR Model

The SIS model is a common variation of the SIR model. SIS Models describe diseases where indi-

viduals who have recovered from the disease do not gain any lasting immunity. There are only two

compartments in this model: those who are susceptible, and those who are infectious. Here, f is the

rate of becoming susceptible again.

The basic equations are given by

dS

dt
= −βIS + fI,

dI

dt
= βIS − fI

Another alteration we can make to the SIR model is to add a birth and death rate. In the

equations below we are assuming that the natural death rate together with the death rate caused by

6 Lab 2. Modelling the spread of an epidemic: SIR models

the disease is equal to the birth rate. This model is given by

dS

dt
= µ(1− S)− βIS,

dI

dt
= βIS − (γ + µ)I,

dR

dt
= γI − µR

where µ represents the death rate and equal birth rate, noting that any new person born is born into

the susceptible population.

If we combine the last two variations we made on the SIR model we come to this formulation,

which is an SIRS model. This SIRS model allows the transfer of individuals from the recovered/re-

moved class to the susceptible class and includes modeling of the birth and death rates.

dS

dt
= fR+ µ(1− S)− βIS, (2.5)

dI

dt
= βIS − (γ + µ)I, (2.6)

dR

dt
= −fR+ γI − µR. (2.7)

Problem 3. There are 7 billion people in the world. In�uenza, or the �u, is one of those

viruses that everyone can be susceptible to, even after recovering. The �u virus is able to

change in order to evade our immune system, and we become susceptible once more, although

technically it is now a di�erent strain. Suppose the virus originates with 1000 people in Texas

after Hurricane Harvey �ooded Houston, and stagnant water allowed the virus to proliferate.

According to WebMD, once you get the virus, adults are contagious up to a week and kids up

to 2 weeks. For this lab, suppose you are contagious for 10 days before recovering. Also suppose

that on average someone makes one contact every two days that could spread the �u. Since we

can catch a new strain of the �u, suppose that a recovered individual becomes susceptible again

with probability f = 1/50. The �u is also known to be deadly, killing hundreds of thousands

every year on top of the normal death rate. To assure a steady population, let the birth rate

balance out the death rate, and in particular let µ = .0001.

Using the SIRS model above, plot the proportion of population that is Susceptible, In-

fected, and Recovered over a year span (365 days).

Compare your plot to Figure 2.4.

7

Figure 2.4: Solution to Problem (3).

Modeling Covid-19 with Social Distancing

Social distancing upsets the main assumption that is made when trying to model epidemic spread

using SIR models. During the periods of lockdown instituted by governments, the interaction net-

works between people in a city or county were disrupted to the point that standard SIR models were

no longer e�ective at modeling the spread of Covid-19. A paper released in May of 2020 presented

some alternative models for Covid-19 that have some success in modeling its spread during periods

of social distancing.

This model claims that the growth of I(t) is polynomial with exponential decay (PGED). So

we get the following form

I(t) ≈ Btαe−t/TG ,

which results in the following SIR type model

dS

dt
= −α

t
I, (2.8)

dI

dt
=

(
α

t
− 1

TG

)
I, (2.9)

dR

dt
=

1

TG
I, (2.10)

where α and TG are simply model parameters. In this model αTG can be interpreted as the time of

epidemic peak.

https://arxiv.org/pdf/2005.06933.pdf

8 Lab 2. Modelling the spread of an epidemic: SIR models

Fitting Models

Model �tting can be a frustrating task if we only use our intuition and guess and check. Thankfully,

SciPy's optimize library has tools we can use to make these problems a lot easier. Many of the

functions in this library are designed to take an arbitrary function and �nd whatever input makes

the output close to zero. Our job is to create a function that outputs zero at the right values.

Suppose we have some data that we believe to follow a cubic trend with the following model

αx3 + β(x2 + 2x) + δ.

In order to �t the data to this model we can use scipy.optimize.minimize and create a function

that will output zero when the correct parameters are input. scipy.optimize.minimize will then

return an OptimizeResult object, which contains the optimal paramters.

import the minimizer function

from scipy.optimize import minimize

load the data and get the x and y values

data = np.load('to_fit.npy')

xs = data[:,0]

ys = data[:,1]

define the function we want to minimize

def fun(params):

unpack the parameters

a,b,d = params

get the model output based on the parameters

out = a*xs**3 + b*(xs**2 + 2*xs) + d

find the difference between out and the data

diff = out - ys

must return a float

return np.linalg.norm(diff)

make a guess for the parameters

p0 = (1,1,1)

find the best parameters for this model

minimize(fun,p0)

Problem 4. Fit the PGED model to the Covid-19 data provided in new_york_cases.npy.

Plot your results against 1− S(t).
Hint: Set t0 = 1 as the PEGD model requires to divide by t, so we must have t 6= 0.

9

0 10 20 30 40 50 60 70
Days since Mar 11

0.000

0.005

0.010

0.015

0.020

0.025
Pr

op
or

tio
n

of
 P

op
ul

at
io

n
Modeling NYC covid cases with SIR

Data
1-S(t)

Figure 2.5: Solution to (4)

Boundary Value Problems
The next exercise uses a variation of the SIR model called an SEIR model to describe the spread

of measles1. This new model adds another compartment, called the exposed or latency phase. It

assumes that the rate at which measles is contracted depends on the season, i.e. the rate is periodic.

That allows us to formulate the yearly occurrence rate for measles as a boundary value problem. The

boundary value problem looks like

 S

E

I

′ =
 µ− β(t)SI
β(t)SI − E/λ
E/λ− I/η

 , (2.11)

S(0) = S(1),

E(0) = E(1),

I(0) = I(1)

(2.12)

Parameters µ and λ represent the birth rate of the population and the latency period of measles,

respectively. η represents the infectious period before an individual moves from the infectious class to

the recovered class. After recovery an individual remains immune, which is why R(t) is not included

in the system. The set up of this problem is not normal since we are excluding R(t), but it results

in a nice graph.

To solve this problem we will use a full-featured BVP solver that is available in SciPy. The

code below demonstrates how to use solve_bvp to solve the BVP

εy′′ + yy′ − y = 0, y(−1) = 1, y(1) = −1/3, ε = .1 (2.13)

Look at �gure 2.6 for the solution.

1Numerical Solution of Boundary Value Problems for Ordinary Di�erential Equations, by Aescher, Mattheij, and

Russell

10 Lab 2. Modelling the spread of an epidemic: SIR models

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
t

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

y

Figure 2.6: Solution to Equation (2.13)

The BVP solver expects you to pass it the boundary conditions as a callable function that com-

putes the di�erence between a guess at the boundary conditions and the desired boundary conditions.

When we use the BVP solver, we will tell it how many constraints there should be on each side of

the domain so it knows how many entries to expect. In this case, we have one boundary condition on

either side. These constraints are expected to evaluate to 0 when the boundary condition is satis�ed.

import numpy as np

from scipy.integrate import solve_bvp

import matplotlib.pyplot as plt

epsilon, lbc, rbc = .1, 1, - 1/3

The ode function takes the independent variable first

It has return shape (n,)

def ode(x , y):

return np.array([y[1] , (1/epsilon) * (y[0] - y[0] * y[1])])

The return shape of bcs() is (n,)

def bcs(ya, yb):

BCa = np.array([ya[0] - lbc]) # 1 Boundary condition on the left

BCb = np.array([yb[0] - rbc]) # 1 Boundary condition on the right

The return values will be 0s when the boundary conditions are met exactly

return np.hstack([BCa, BCb])

11

The independent variable has size (m,) and goes from a to b with some step ←↩
size

X = np.linspace(-1, 1, 200)

The y input must have shape (n,m) and includes our initial guess for the ←↩
boundaries

y = np.array([-1/3, -4/3]).reshape((-1,1))*np.ones((2, len(X)))

There are multiple returns from solve_bvp(). We are interested in the y ←↩
values which can be found in the sol field.

solution = solve_bvp(ode, bcs, X, y)

We are interested in only y, not y', which is found in the first row of sol.

y_plot = solution.sol(X)[0]

plt.plot(X, y_plot)

plt.xlabel('t')

plt.ylabel('y')

plt.show()

Problem 5. Consider equations (2.11) and (2.12). Let the periodic function for our measles

case be β(t) = β0(1 + β1 cos 2πt). Use parameters β1 = 1, β0 = 1575, η = 0.01, λ = .0279, and

µ = .02. Note: in this case, time is measured in years, so run the solution over the interval [0, 1]

to show a one-year cycle. The boundary conditions in (2.12) are just saying that the year will

begin and end in the same state.

One issue that we encounter with this problem is that we have 6 boundary conditions but

we only have 3 free variables. The 6 boundary counditions are the initial and �nal conditions

of S, E, and I. solve_bvp only allows as many boundary conditions as there are free variables,

so what we can do is include "dummy" variables in the ODE. This allows more boundary

conditions in the BVP solver, while not changing the ODE system that we are solving. To deal

with this, let C(t) = [C1(t), C2(t), C3(t)], and add the equation

C ′(t) = 0

to the system of ODEs given above (for a total of 6 equations) resulting in this �nal 6 variable

system 

S(t)

E(t)

I(t)

C1

C2

C3



′

=



µ− β(t)SI
β(t)SI − E/λ
E/λ− I/η

0

0

0


We can then apply all 6 of the boundary conditions that we need. The boundary conditions

12 Lab 2. Modelling the spread of an epidemic: SIR models

can be separated using the following trick:C1(0)

C2(0)

C3(0)

 =

S(0)E(0)

I(0)

 ,

C1(1)

C2(1)

C3(1)

 =

S(1)E(1)

I(1)

 .

Now C1, C2, C3 become the 4th, 5th, and 6th rows of your solution matrix, so the 3 boundary

conditions for the left are obtained by subtracting the last three entries of y(0) from the �rst

three entries, giving you ya[0 : 3]− ya[3 :]. Similarly, your right boundary conditions will look

like yb[0 : 3]− yb[3 :].

When you code your boundary conditions, note that solve_bvp changes the initial condi-

tions to force all the entries in the return of bcs() to be zero. You can use the initial conditions

from Fig. 2.7 as your initial guess (which will be an array of 6 elements). Remember that the

initial infected proportion is small, not 0.

0.0 0.2 0.4 0.6 0.8 1.0
T (years)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Pr
op

or
tio

n
of

 P
op

ul
at

io
n

Susceptible
Exposed
Infectious

Figure 2.7: Solution to Problem (5)

	Modelling the spread of an epidemic: SIR models

