
5 Lorenz Equations

Lab Objective: Investigate the behavior of a system that exhibits chaotic behavior. Demonstrate

methods for visualizing the evolution of a system.

Chaos is everywhere. It can crop up in unexpected places and in remarkably simple systems,

and a great deal of work has been done to describe the behavior of chaotic systems. One primary

characteristic of chaos is that small changes in initial conditions result in large changes over time in

the solution curves.

The Lorenz System
One of the earlier examples of chaotic behavior was discovered by Edward Lorenz. In 1963, while

working to study atmospheric dynamics, he derived the simple system of equations

∂x

∂t
= σ (y − x)

∂y

∂t
= ρx− y − xz

∂z

∂t
= xy − βz

where σ, ρ, and β are all constants. After deriving these equations, he plotted the solutions and

observed some unexpected behavior. For appropriately chosen values of σ, ρ, and β, the solutions

did not tend toward any steady �xed points, nor did the system permit any stable cycles. The

solutions did not tend o� toward in�nity either. With further work, he began the study of what was

called a strange attractor. This system, though relatively simple, exhibits chaotic behavior.

Problem 1. Write a function that implements the Lorenz equations. Let σ = 10, ρ = 28,

β = 8
3 . Make a 3D plot of a solution to the Lorenz equations, where the initial conditions

x0, y0, z0 are each drawn randomly from a uniform distribution on [−15, 15]. As usual, use

scipy.integrate.odeint to compute an approximate solution. Compare your results with

Figure 5.1.
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Figure 5.1: Approximate solution to the Lorenz equation with random initial conditions

Basin of Attraction
Notice in the �rst problem that the solution tended to a 'nice' region. This region is a basin of

attraction, and the set of numerical values towards which a system will converge to is an attractor.

Consider what happens when we change up the initial conditions.

Problem 2. To better visualize the Lorenz attractor, produce a single 3D plot displaying three

solutions to the Lorenz equations, each with random initial conditions (as before). Compare

your results with Figure 5.2.

Chaos
Chaotic systems exhibit high sensitivity to initial conditions. This means that a small di�erence in

initial conditions may result in solutions that diverge signi�cantly from each other. However, chaotic

systems are not random. According to Lorenz, chaos is "when the present determines the future, but

the approximate present does not approximately determine the future."
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Figure 5.2: Multiple solutions to the Lorenz equation with random initial conditions

Problem 3. Use matplotlib.animation.FuncAnimation to produce a 3D animation of two

solutions to the Lorenz equations with nearly identical initial conditions. To make the initial

conditions, draw x0, y0, z0 as before, and then make a second initial condition by adding a small

perturbation to the �rst (Hint: try using np.random.randn(3)*(1e-10) for the perturbation).

Note that it may take several seconds before the separation between the two solutions will be

noticeable.

The animation should display a point marker as well as the past trajectory curve for each

solution. Save your animation as lorenz_animation.mp4.

In a chaotic system, round-o� error implicit in a numerical method can also cause divergent

solutions. For example, using a Runge-Kutta method with two di�erent values for the stepsize h on

identical initial conditions will still result in approximations that di�er in a chaotic fashion.

Problem 4. The odeint function allows user to specify error tolerances (similar to setting a

value of h in a Runge-Kutta method). Using a single initial condition, produce two approxima-

tions by using the odeint arguments (atol=1e-15, rtol=1e-13) for the �rst approximation
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and (atol=1e-12, rtol=1e-10) for the second.

As in the previous problem, use FuncAnimation to animation both solutions. Save the

animation as lorenz_animation2.mp4.

Lyapunov Exponents
The Lyapunov exponent of a dynamical system is one measure of how chaotic a system is. While

there are more conditions for a system to be considered chaotic, one of the primary indicators of

a chaotic system is extreme sensitivity to initial conditions. Strictly speaking, this is saying that

a chaotic system is poorly conditioned. In a chaotic system, the sensitivity to changes in initial

conditions depends expoentially on the time the system is allowed to evolve. If δ(t) represents the

di�erence between two solution curves, when δ(t) is small, the following approximation holds.

‖δ(t)‖ ∼ ‖δ(0)‖eλt

where λ is a constant called the Lyapunov exponent. In other words, log(‖δ(t)‖) is approximately

linear as a function of time, with slope λ. For the Lorenz system (and for the parameter values

speci�ed in this lab), experimentally it can be veri�ed that λ ≈ .9.

Problem 5. Estimate the Lyapunov exponent of the Lorenz equations by doing the following:

� Produce an initial condition that already lies in the attractor. This can be done by using

a random "dummy" initial condition, approximating the resulting solution to the Lorenz

system for a short time, and then using the endpoint of that solution (which is now in

the attractor) as the desired initial condition.

� Produce a second initial condition by adding a small perturbation to the �rst (as before).

� For both initial conditions, use odeint to produce approximate solutions for 0 ≤ t ≤ 10

� Compute ‖δ(t)‖ by taking the norm of the vector di�erence between the two solutions for

each value of t.

� Use scipy.stats.linregress to calculate a best-�t line for log(‖δ(t)‖) against t.

� The slope of the best-�t line is an approximation for the Lyapunov exponent λ

Produce a plot similar to Figure 5.3 by using plt.semilogy.

Hint: Remember that the best-�t line you calculated corresponds to a best-�t exponential

for ‖δ(t)‖. If a and b are the slope and intercept of the best-�t line, the best-�t exponential

can be plotted using plt.semilogy(t,np.exp(a*t+b).
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Figure 5.3: A semilog plot of the separation between two solutions to the Lorenz equations together

with a �tted line that gives a rough estimate of the Lyapunov exponent of the system.
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