
9 Wave Phenomena

Advection Equation
The advection equation (or transport equation) is given by ut + sux = 0, where s is a nonzero

constant. Consider the Cauchy problem

ut + sux = 0, −∞ < x <∞,
u(x, 0) = f(x).

The function f(x) may be thought of as an initial wave or signal. The general solution of this initial

boundary value problem is u(x, t) = f(x− st) (check this!). The solution u(x, t) is a travelling wave

that takes the signal f(x) and moves it along at a constant speed s - to the right if s > 0, and to the

left if s < 0.

Wave Equation
Many di�erent wave phenomena can be described using a hyperbolic PDE called the wave equation.

These wave phenomena occur in �elds such as electromagnetics, �uid dynamics, and acoustics. This

equation is given by

utt = s24u. (9.1)

The 1D equation can be derived in the context of many physical models; a common derivation

describes the motion of a string vibrating in a plane. Another nice derivation uses Hooke's law from

the theory of elasticity.

After making the change of variables (ξ, η) = (x− st, x+ st) and using the chain rule, we �nd

that the 1D wave equation utt = s2uxx is equivalent to uξη = 0. The general solution of this last

equation is

u(ξ, η) = F (ξ) +G(η)

for some scalar functions F and G. In (x, t) coordinates the solution is

u(x, t) = F (x− st) +G(x+ st)

Thus the general solution of the wave equation is the sum of two parts: one is a signal travelling to

the right with constant speed |s|, and the other is a signal travelling to the left with speed |s|.
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The wave equation is usually seen in the context of an initial boundary value problem. This

takes the form

utt = s2uxx, 0 < x < l, t > 0,

u(0, t) = u(l, t) = 0,

u(x, 0) = f(x),

ut(x, 0) = g(x).

Numerical solution of the wave equation

We look to approximate u(x, t) on a grid of points (xj , tm)J,Mj=0,m=0. Denote the approximation to

u(xj , tm) by Umj . Recall that the centered approximations in space and time are

DttU
m
j =

Um+1
j − 2Umj + Um−1

j

(4t)2
,

DxxU
m
j =

Umj+1 − 2Umj + Umj−1

(4x)2
.

The resulting method is given by

Um+1
j − 2Umj + Um−1

j

(4t)2
= s2

Umj+1 − 2Umj + Umj−1

(4x)2
,

Um+1
j = −Um−1

j + 2(1− λ2)Umj + λ2(Umj+1 + Umj−1),

where λ = s(4t)/(4x). This method may be written in matrix form as

Um+1 = AUm − Um−1

where

A =


2(1− λ2) λ2

λ2 2(1− λ2) λ2

. . .
. . .

. . .

λ2 2(1− λ2) λ2

λ2 2(1− λ2)


and

Um =


Um1
Um2
...

UmJ−1


In the matrix equation above, we have already used the boundary conditions to determine that

Um0 = UmJ = 0 at each time tm. Note that, to obtain the approximation Um+1
j of u(xj , tm+1), the

method uses the value of the approximation at the previous two time steps. We can �nd the solution

for the �rst two time steps by using the initial conditions. Using the initial conditions directly gives

an approximation at t = t0 = 0 :

U0
j = f(xj), 1 ≤ j ≤ J − 1
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To obtain an approximation at the second time step, we consider the Taylor expansion

u(xj , t1) = u(xj , 0) + ut(xj , 0)4t+ utt(xj , 0)
4t2

2
+ uttt(xj , t

∗
1)
4t3

6
.

Recalling that the solution u(x, t) satis�es the wave equation, we substitute in expressions from our

initial conditions:

u(xj , t1) = u(xj , 0) + g(xj)4t+ s2f ′′(xj)
4t2

2
+ uttt(xj , t

∗
1)
4t3

6
.

Ignoring the third order term, we obtain a second order approximation for the second time step:

U1
j = U0

j + g(xj)4t+ s2f ′′(xj)
4t2

2
, 1 ≤ j ≤ J − 1

or if f is not readily di�erentiable,

U1
j = U0

j + g(xj)4t+
λ2

2
(U0

j−1 − 2U0
j + U0

j+1)

This method is conditionally stable; the CFL condition is that λ ≤ 1.

Problem 1. Consider the initial boundary value problem

utt = uxx,

u(0, t) = u(1, t) = 0,

u(x, 0) = sin(2πx),

ut(x, 0) = 0.

Numerically approximate the solution u(x, t) for t ∈ [0, .5]. Use J = 50 subintervals in the x

dimension and M = 50 subintervals in the t dimension. Animate the results. Compare your

results with the analytic solution u(x, t) = sin (2πx) cos (2πt). This function is known as a

standing wave. See Figure 9.1.
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Figure 9.1: u(x, t = 0).

Problem 2. Consider the initial boundary value problem

utt = uxx,

u(0, t) = u(1, t) = 0,

u(x, 0) = .2e−m
2(x−1/2)2

ut(x, 0) = .4m2(x− 1/2)e−m
2(x−1/2)2 .

The solution of this problem is a Gaussian pulse. It travels to the right at a constant speed.

This solution models, for example, a wave pulse in a stretched string. Note that the �xed

boundary conditions re�ect the pulse back when it meets the boundary.

Numerically approximate the solution u(x, t) for t ∈ [0, 1]. Set m = 20. Use 200 subin-

tervals in space and 220 in time, and animate your results. Then use 200 subintervals in space

and 180 in time, and animate your results. Note that the stability condition is not satis�ed for

the second mesh. See 9.2.
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Figure 9.2: u(x, t = 0).

Problem 3. Consider the initial boundary value problem

utt = uxx,

u(0, t) = u(1, t) = 0,

u(x, 0) = .2e−m
2(x−1/2)2

ut(x, 0) = 0.

The initial condition separates into two smaller, slower-moving pulses, one travelling to the

right and the other to the left. This solution models, for example, a plucked guitar string

Numerically approximate the solution u(x, t) for t ∈ [0, 2]. Set m = 20. Use 200 subin-

tervals in space and 440 in time, and animate your results. It is rather easy to see that the

solution to this problem is the sum of two travelling waves, one travelling to the left and the

other to the right, as described earlier.



6 Lab 9. Wave Phenomena

Problem 4. Consider the initial boundary value problem

utt = uxx,

u(0, t) = u(1, t) = 0,

u(x, 0) =

{
1/3 if 5/11 < x < 6/11,

0 otherwise

ut(x, 0) = 0.

Numerically approximate the solution u(x, t) for t ∈ [0, 2]. Use 200 subintervals in space

and 440 in time, and animate your results. Even though the method is second order and stable

for this discretization, since the initial condition is discontinuous there are large dispersive

errors. See Figure 9.3.
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(a) u(x, t = 0).
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(b) u(x, t = .1).

Figure 9.3: The graphs for Problem 4 at various times t.

Travelling Wave Solutions of an Evolution Equation

Recall that the advection (transport) equation with initial conditions, given by

ut + sux = 0, −∞ < x <∞,
u(x, 0) = f(x),

has as its general solution u(x, t) = f(x− st). Consider a general evolutionary PDE of the form

ut = G(u, ux, uxx, . . .) (9.2)

An interesting question to ask is whether (9.2) has travelling wave solutions: is there a signal or wave

pro�le f(x), so that u(x, t) = f(x − st) is a solution of (9.2) that carries the signal at a constant

speed s? These travelling waves are often signi�cant physically. For example, in a PDE modeling

insect population dynamics a travelling wave could represent a swarm of locusts; in a PDE describing

a combustion process a travelling wave could represent an explosion or detonation.
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Burgers’ equation

We will examine the process of studying travelling wave solutions using Burgers' equation, a nonlinear

PDE from gas dynamics. It is given by

ut +

(
u2

2

)
x

= νuxx, (9.3)

where u and ν represent the velocity and viscosity of the gas, respectively. It models both the process

of transport with the nonlinear advection term (u2/2)x = uux, as well as di�usion due to the viscosity

of the gas (νuxx).

Let us look for a travelling wave solution u(x, t) = û(x−st) for Burgers equation. We transform

(9.3) into the moving frame (x, t)→ (x̄, t̄) = (x− st, t). In this frame (9.3) becomes

ut̄ − sux̄ +

(
u2

2

)
x̄

= νux̄x̄ (9.4)

This new frame of reference corresponds to an observer moving along with the wave, so that the

wave appears stationary as the observer studies it. Thus, ût̄ = 0, so that the wave pro�le û satis�es

the ordinary di�erential equation

−sux̄ +

(
u2

2

)
x̄

= νux̄x̄. (9.5)

From here on we will drop the bar notation for simplicity. We seek a travelling wave solution

with asymptotically constant boundary conditions; that is, limx→±∞ û(x) = u±

both exist, and limx→±∞ û′(x) = 0. We will suppose that u− > u+ > 0.

Note that to this point we still don't know the speed of the travelling wave. Integrating both

sides of this di�erential equation, and then taking the limit as x→ +∞, we obtain

−s
∫ x

−∞
u′ +

∫ x

−∞

(
u2

2

)′
= ν

∫ x

−∞
u′′,

−s(u(x)− u−) +
u2(x)

2
−
u2
−
2

= ν(u′(x)− u′(−∞)),

−s(u+ − u−) +
u2

+

2
−
u2
−
2

= 0.

Thus given boundary conditions u± at ±∞, the speed of the travelling wave must be s = u−+u+

2 .

Usually at this point, the travelling wave must be numerically solved using the pro�le ODE

((9.5) for Burgers equation). However, the pro�le ODE for Burgers is simple enough that it is possible

to obtain an analytic solution. The travelling wave is given by

û(x) = s− a tanh
(ax

2ν
+ δ
)

where a = (u− − u+)/2 and δ is �xed real number. We get a family of solutions because any

translation of a travelling wave solution is also a travelling wave solution.

Stability of travelling waves

Suppose that an evolutionary PDE

ut = G(u, ux, uxx, . . .). (9.6)
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has a travelling wave solution u(x, t) = û(x− st). An interesting question to consider is whether the

mathematical solution, û, has a physical analogue. In other words, does the travelling wave show up

in real life? This question is the start of the mathematical study of stability of travelling waves.

We begin by translating (9.6) into the moving frame (x, t)→ (x̄, t̄) = (x− st, t). In this frame

the PDE becomes

ut − sux = G(u, ux, uxx, . . .).

In these coordinates the travelling wave is stationary. Thus, the solution of

ut − sux = G(u, ux, uxx, . . .),

u(x, t = 0) = û(x),

is given by u(x, t) = û(x). We say that the travelling wave û is asymptotically orbitally stable if

whenever v(x) is a small perturbation of û(x), the general solution of

ut − sux = G(u, ux, uxx, . . .),

u(x, t = 0) = v(x),

converges to some translation of û as t → ∞. Using this de�nition to prove stability of a travelling

wave is a nontrivial task.

Visualizing stability of the travelling wave solution of Burgers’ equation

The travelling wave solution of Burgers' equation is a stable wave. To view this numerically, we

discretize the PDE

ut − sux + uux = uxx

using the second order centered approximations

DtU
n+1/2
j =

Un+1
j − Unj
4t

, DxxU
n+1/2
j =

1

2

(
Un+1
j+1 − U

n+1
j−1

24x
+
Unj+1 − Unj−1

24x

)
,

DxxU
n+1/2
j =

1

2

(
Un+1
j+1 − U

n+1
j + Un+1

j−1

(4x)2
+
Unj+1 − Unj + Unj−1

(4x)2

)

Substituting these expressions into the PDE we obtain a second-order, implicit Crank-Nicolson

method

Un+1
j − Unj = K1

[
(s− Un+1

j )(Un+1
j+1 − U

n+1
j−1 ) + (s− Unj )(Unj+1 − Unj−1)

]
+K2

[
(Un+1

j+1 − 2Un+1
j + Un+1

j−1 ) + (Unj+1 − 2Unj + Unj−1)
]
,

where K1 = 4t
44x and K2 = 4t

2(4x)2 .

Problem 5. Numerically solve the initial value problem

ut − sux + uux = uxx, x ∈ (−∞,∞),

u(x, 0) = v(x),
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for t ∈ [0, 1]. Let the perturbation v(x) be given by

v(x) = 3.5(sin (3x) + 1)
1√
2π

exp (−x2/2)

And let the initial condition be u(x, 0) = û(x) + v(x) Approximate the x domain,(−∞,∞),

numerically by the �nite interval [−20, 20], and �x u(−20) = u−, u(20) = u+. Let u− = 5,

u+ = 1. Use 150 intervals in space and 350 steps in time. Animate your results. You should

see the solution converge to a translate of the travelling wave û. See Figure 9.4.

Hint: This di�erence scheme is no longer a linear equation. We have a nonlinear equation

in Un+1. We can still solve this function using Newton's method or some other similar solver.

In this case, use scipy.optimize.fsolve.
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Figure 9.4: The graphs for Problem 5
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