
8 Conservation laws and
heat flow

A conservation law is a balance law, and corresponds to an equation that describes how a quantity is

balanced in some system throughout a given process. (Consider how this is related to conservation

laws in physics.) For example, suppose we are keeping track of some measurable quantity in a physical

system (e.g. heat, water, etc). The fundamental conservation law then states that the rate of change

of the total quantity in the system is equal to the rate of the quantity �owing into the system plus

the rate at which the quantity is produced by sources inside the system.

Derivation of the Conservation equation in multiple dimensions
Suppose Ω is a region in Rn, and V ⊂ Ω is bounded with a reasonably well-behaved boundary ∂V .

Let u(~x, t) represent the density (concentration) of some quantity throughout Ω. Let ~n(x) represent

the normal direction to V at x ∈ ∂V , and let ~J(~x, t) be the �ux vector for the quantity, so that
~J(~x, t) · ~n(x) dA represents the rate at which the quantity leaves V by crossing a boundary element

with area dA. Note that the total amount of the quantity in V is∫
V

u(~x, t) dt,

and the rate at which the quantity enters V is

−
∫
∂V

~J(~x, t) · ~n(x) dA.

We let the source term be given by g(~x, t, u); we may interpret this to mean that the rate at

which the quantity is produced in V is ∫
V

g(~x, t, u) dt.

Then the integral form of the conservation law for u is expressed as

d

dt

∫
V

u(~x, t) d~x = −
∫
∂V

~J · ~n dA+

∫
V

g(~x, t, u) d~x.

If u and J are su�ciently smooth functions, then we have

d

dt

∫
V

u d~x =

∫
V

ut d~x,

1

2 Lab 8. Heat Flow

and ∫
∂V

~J · ~n dA =

∫
V

∇ · ~J d~x.

Since this holds for all nice subsets V ⊂ Ω with V arbitrarily small, we obtain the di�erential form

of the conservation law for u:

ut +∇ · ~J = g(~x, t, u),

where ∇ is the gradient function and ∇ · ~J = ∂J1

∂x1
+ · · ·+ ∂Jn

∂xn

Constitutive Relations
Currently our conservation law appears in the form

ut +∇ · ~J = g(~x, t, u).

Thus the conservation law consists of one equation and 2 unknowns (u and J). To this equation we

add other equations, called constitutive relations, which are used to fully determine the system.

For example, suppose we wish to describe the �ow of heat. Since heat �ows from warmer regions

to colder regions, and the rate of heat �ow depends on the di�erence in temperature between regions,

we usually assume that the �ux vector ~J is given by

~J(x, t) = −ν∇u(x, t),

where ν is a di�usion constant and ∇u(x, t) = [∂x1u . . . ∂xnu]
T
. This constitutive relation is called

Fick's law, and is the basic model for any di�usive process. Substituting into the conservation law

we obtain

ut − ν∆u(x, t) = g(~x, t, u)

where ∆ is the Laplacian operator, and ∆u(x, t) = ∂2u
∂x2

1
+ · · ·+ ∂2u

∂x2
n
. The function g represents heat

sources/sinks within the region.

Numerically modeling heat flow
Consider the heat �ow equation in one dimension together with appropriate initial conditions and

homogeneous Dirichlet boundary conditions:

ut = νuxx, x ∈ [a, b], t ∈ [0, T],

u(a, t) = 0, u(b, t) = 0,

u(x, 0) = f(x).

We will look for an approximation U j
i to u(xi, tj) on the grid xi = a + hi, tj = kj, where h and

k are small changes in x and t respectively and i and j are indices. Note that the index i ranges

over di�erent spacial grid points and the index j ranges over di�erent time steps. We will denote the

approximate value of u at the i'th grid point and the j'th time step as U j
i .

A common method for modeling ordinary and partial di�erential equations is the �nite di�erence

method, so-named because equations containing derivatives are replaced with equations containing

di�erence schemes. These di�erence schemes can often be found using Taylor's theorem. For example,

the equation

u(x, tj + k) = u(x, tj) + ut(x, tj)k +O(k2)

3

0.0 0.2 0.4 0.6 0.8 1.0
0.1

0.0

0.1

0.2

0.3

0.4

0.5

Figure 8.1: The graph of U0, the approximation to the solution u(x, t = 0) for Problem 1.

yields a �rst-order forward di�erence approximation to ut(x, tj), namely,

ut(x, tj) =
u(x, tj + k)− u(x, tj)

k
+O(k).

Similarly, by adding the equations

u(xi + h, t) = u(xi, t) + ux(xi, t)h+ uxx(xi, t)
h2

2
+ uxxx(xi, t)h

3 +O(h4),

u(xi − h, t) = u(xi, t) + ux(xi, t)(−h) + uxx(xi, t)
(−h)2

2
+ uxxx(xi, t)(−h)3 +O(h4),

we obtain a second-order centered di�erence approximation to uxx(xi, t):

uxx(xi, tj) =
u(xi + h, tj)− 2u(xi, tj)− u(xi − h, tj)

h2
+O(h2).

These di�erence approximations give us the O(h2 + k) explicit method

U j+1
i − U j

i

k
= ν

U j
i+1 − 2U j

i + U j
i−1

h2
,

U j+1
i = U j

i +
νk

h2
(U j

i+1 − 2U j
i + U j

i−1).

(8.1)

4 Lab 8. Heat Flow

0.0 0.2 0.4 0.6 0.8 1.0
0.1

0.0

0.1

0.2

0.3

0.4

0.5

Figure 8.2: The graph of U4, the approximation to the solution u(x, t = .4) for Problem 1.

This method can be written in matrix form as

U j+1 = AU j ,

where A is the tridiagonal matrix given by

A =

1 0

λ 1− 2λ λ
. . .

. . .
. . .

λ 1− 2λ λ

0 1

 ,

λ = νk/h2, and U j represents the approximation at time tj . We can get this method started by

using the initial condition given in our problem, so that U0
i = f(xi).

Note

Finite di�erence schemes, though they can be represented using matrix multiplication, should

not be implemented using raw matrix multiplication. Using NumPy, it is best to vectorize the

5

di�erence scheme so that you do not have to loop over the spatial indices. If you are using

a language with faster loops (like C, C++, Fortran, or Cython), it could work well to loop

directly through the indices in both time and space.

To account for boundary conditions using this di�erencing scheme, simply set the boundary

points to the appropriate values in the initial conditions, then avoid modifying them as you update

for each time step. This would be the equivalent of replacing the �rst and last rows of the matrix

representation of the di�erencing scheme with the �rst and last rows of the identity matrix.

Problem 1. Consider the initial/boundary value problem

ut = .05uxx, x ∈ [0, 1], t ∈ [0, 1]

u(0, t) = 0, u(1, t) = 0,

u(x, 0) = 2 max{.2− |x− .5|, 0}.
(8.2)

Approximate the solution u(x, t) at time t = .4 by taking 6 subintervals in the x dimension and

10 subintervals in time. The graphs for U0 and U4 are given in Figures 8.1 and 8.2.

Problem 2. Solve the initial/boundary value problem

ut = uxx, x ∈ [−12, 12], t ∈ [0, 1],

u(−12, t) = 0, u(12, t) = 0,

u(x, 0) = max{1− x2, 0}
(8.3)

using the �rst order explicit method 8.1. Use 140 subintervals in the x dimension and 70

subintervals in time. The initial and �nal states are shown in Figure 8.3. Animate your results.

Explicit methods usually have a stability condition, called a CFL condition (for Courant-

Friedrichs-Lewy). For method 8.1 the CFL condition that must be satis�ed is that

λ ≤ 1

2
.

Repeat your computations using 140 subintervals in the x dimension and 66 subintervals in

time. Animate the results. For these values the CFL condition is broken; you should easily see

the result of this instability in the approximation U66.

Implicit methods often have better stability properties than explicit methods. The Crank-

Nicolson method, for example, is unconditionally stable and has order O(h2 + k2). To derive the

Crank-Nicolson method, we use the following approximations:

ut(xi, tj+1/2) =
u(xi, tj+1)− u(xi, tj)

k
+O(k2),

uxx(xi, tj+1/2) =
uxx(xi, tj+1) + uxx(xi, tj)

2
+O(k2).

The �rst equation is a Finite Di�erence approximation, and the second is a midpoint approximation.

6 Lab 8. Heat Flow

10 5 0 5 10

x

0.0

0.2

0.4

0.6

0.8

1.0
Initial State
State at time t=1.

Figure 8.3: The initial and �nal states for equation Problem 2.

These approximations give the method

U j+1
i − U j

i

k
=

1

2

(
U j
i+1 − 2U j

i + U j
i−1

h2
+
U j+1
i+1 − 2U j+1

i + U j+1
i−1

h2

)
,

U j+1
i = U j

i +
k

2h2

(
U j
i+1 − 2U j

i + U j
i−1 + U j+1

i+1 − 2U j+1
i + U j+1

i−1

)
.

(8.4)

This method can be written in matrix form as

BU j+1 = AU j ,

7

where A and B are tridiagonal matrices given by

B =

1 0

−λ 1 + 2λ −λ
. . .

. . .
. . .

−λ 1 + 2λ −λ
0 1

 ,

A =

1 0

λ 1− 2λ λ
. . .

. . .
. . .

λ 1− 2λ λ

0 1

 ,

where λ = νk/(2h2), and U j represents the approximation at time tj . Note that here we have de�ned

λ di�erently than we did before!

How do we know if a numerical approximation is reasonable? One way to determine this is to

compute solutions for various step sizes h and see if the solutions are converging to something. To

be more speci�c, suppose our �nite di�erence method is O(hp) accurate. This means that the error

E(h) ≈ Chp for some constant C as h→ 0 (i.e., for h > 0 small enough).

So compute the approximation yk for each stepsize hk, h1 > h2 > . . . > hm. We will think of

ym as the true solution. Then the error of the approximation for stepsize hk, k < m, is

E(hk) = max(|yk − ym|) ≈ Chpk,
log(E(hk)) = log(C) + p log(hk).

Thus on a log-log plot of E(h) vs. h, these values should be on a straight line with slope p when h

is small enough to start getting convergence.

Problem 3. Using the Crank Nicolson method, numerically approximate the solution u(x, t)

of the problem

ut = uxx, x ∈ [−12, 12], t ∈ [0, 1],

u(−12, t) = 0, u(12, t) = 0,

u(x, 0) = max{1− x2, 0}.
(8.5)

Demonstrate that the numerical approximation at t = 1 converges to u(x, t = 1). Do this by

computing U at t = 1 using 20, 40, 80, 160, 320, and 640 steps. Use the same number of steps

in both time and space. Reproduce the loglog plot shown in Figure 8.4. The slope of the line

there shows the proper rate of convergence.

To measure the error, use the solution with the smallest h (largest number of intervals) as

if it were the exact solution, then sample each solution only at the x-values that are represented

in the solution with the largest h (smallest number of intervals). Use the∞-norm on the arrays

of values at those points to measure the error.

Notice that, since the Crank-Nicolson method is unconditionally stable, there is no CFL

condition and we can use the same number of intervals in time and space.

8 Lab 8. Heat Flow

10-2 10-1 100 101

h

10-4

10-3

10-2

10-1

100

101

Error E(h)

h2

Figure 8.4: E(h) represents the (approximate) maximum error in the numerical solution U to Problem

3 at time t = 1, using a stepsize of h.

	Heat Flow

