
12 Poisson’s equation

Suppose that we want to describe the distribution of heat throughout a region Ω. Let h(x) represent

the temperature on the boundary of Ω (∂Ω), and let g(x) represent the initial heat distribution at

time t = 0. If we let f(x, t) represent any heat sources/sinks in Ω, then the �ow of heat can be

described by the boundary value problem (BVP)

ut = 4u+ f(x, t), x ∈ Ω, t > 0,

u(x, t) = h(x), x ∈ ∂Ω,

u(x, 0) = g(x).

(12.1)

When the source term f does not depend on time, there is often a steady-state heat distribution u∞
that is approached as t→∞. This steady state u∞ is a solution of the BVP

4u+ f(x) = 0, x ∈ Ω,

u(x, t) = h(x), x ∈ ∂Ω.
(12.2)

This last partial di�erential equation, 4u = −f , is called Poisson's equation. This equation

is satis�ed by the steady-state solutions of many other evolutionary processes. Poisson's equation is

often used in electrostatics, image processing, surface reconstruction, computational �uid dynamics,

and other areas.

Poisson’s equation in two dimensions
Consider Poisson's equation together with Dirichlet boundary conditions on a rectangular domain

R = [a, b]× [c, d]:

uxx + uyy = f, x in R ⊂ R2,

u = g, x on ∂R.
(12.3)

Let a = x0, x1, . . . , xn = b and c = y0, y1, . . . , yn = d be evenly spaced grids. Furthermore, suppose

that b− a = d− c, so the rectangular domain is also square. Thus we have a single stepsize h, where

h = xi+1 − xi = yi+1 − yi
We look for an approximation Ui, j on the grid {(xi, yj)}ni,j=0.

1

2 Lab 12. Poisson’s equation

Recall that

4u = uxx(x, y) + uyy(x, y)

=
u(x+ h, y)− 2u(x, y) + u(x− h, y)

h2

+
u(x, y + h)− 2u(x, y) + u(x, y − h)

h2
+O(h2).

We replace 4 with the �nite di�erence operator 4h, de�ned by

4hUij =
Ui+1, j − 2Ui, j + Ui−1, j

h2
+
Ui, j+1 − 2Ui, j + Ui, j−1

h2
,

=
1

h2
(Ui−1, j + Ui+1, j + Ui, j−1 + Ui, j+1 − 4Ui, j).

These equations are linear, so we can expect to write them in matrix form. However, since

our unknown variables are doubly-indexed (for xi and yj), we �rst need to rewrite them as a 1-

dimensional array. We can do this by "stacking" the columns of the 2-dimensional array. Let the

vector of unknowns U be:

U =


U1

U2

Un−1

 where U j =


U1, j

U2, j

Un−1, j

 for each j, 1 ≤ j ≤ n− 1.

Then the set of equations

4hUij = fij , i, j = 1, . . . , n− 1,

can be written in matrix form as

AU + p+ q = f. (12.4)

A is a block tridiagonal matrix, given by

1

h2


T I

I T I
. . .

. . .
. . .

I T I

I T

 (12.5)

where I is the n− 1× n− 1 identity matrix, and T is the n− 1× n− 1 tridiagonal matrix
−4 1

1 −4 1
. . .

. . .
. . .

1 −4 1

1 −4

 .

The vectors p and q come from the boundary conditions of (12.3), and are given by

p =


p1

. . .

pn−1

 , q =


q1

. . .

qn−1

 ,

3

where

pj =
1

h2


g(x0, yj)

0
...

0

g(xn, yj)

 , 1 ≤ j ≤ n− 1,

and

q1 =
1

h2


g(x1, y0)

g(x2, y0)
...

g(xn−2, y0)

g(xn−1, y0)

 , qn−1 =
1

h2


g(x1, yn)

g(x2, yn)
...

g(xn−2, yn)

g(xn−1, yn)

 , qj =


0

0
...

0

0

 , 2 ≤ j ≤ n− 2.

The vector f comes from the source term of (12.3), and is given by

f =


f1

. . .

fn−1

 , where f j =


f(x1, yj)

f(x2, yj)

. . .

f(xn−1, yj)


Note that this linear system is very large (A has (n − 1)4 entries) and very sparse (most of

the entries in A are zero). Thus we will should make use of sparse matrix routines (such as those in

scipy.sparse and scipy.sparse.linalg) in order to reduce the time and memory used in setting

up and solving the linear system.

Problem 1. Complete the function poisson_square by implementing the �nite di�erence

method 12.4. Use scipy.sparse.linalg.spsolve to solve the linear system. Use your function

to solve the boundary value problem:

∆u = 0, x ∈ [0, 1]× [0, 1],

u(x, y) = x3, (x, y) ∈ ∂([0, 1]× [0, 1]).
(12.6)

Use n = 100 subintervals for both x and y. Plot the solution as a 3D surface.

Poisson’s equation and conservative forces
In physics Poisson's equation is used to describe the scalar potential of a conservative force. In

general

∆V = −f

where V is the scalar potential of the force, or the potential energy a particle would have at that

point, and f is a source term. Examples of conservative forces include Newton's Law of Gravity

(where matter become the source term) and Coulomb's Law, which gives the force between two

charge particles (where charge is the source term).

In electrostatics the electric potential is also known as the voltage, and is denoted by V. From

Maxwell's equations it can be shown that that the voltage obeys Poisson's equation with the electric

4 Lab 12. Poisson’s equation

Figure 12.1: The solution of (12.6).

charge density (like a continuous cloud of electrons) being the source term:

∆V = − ρ

ε0
,

where ρ is the charge density and ε0 is the permissivity of free space, which is a constant that we'll

leave as 1.

Usually a non zero V at a point will cause a charged particle to move to a lower potential,

changing ρ and the solution to V . However, in this analysis we'll assume that the charges are �xed

in place.

Suppose we have 3 nested pipes. The outer pipe is attached to "ground," which usually we

de�ne to be V = 0, and the inner two have opposite relative charges. Physically the two inner pipes

would function like a capacitor.

The following code will plot the charge distribution of this setup.

import matplotlib.colors as mcolors

def source(X,Y):

"""

Takes arbitrary arrays of coordinates X and Y and returns an array of the ←↩
same shape

5

representing the charge density of nested charged squares

"""

src = np.zeros(X.shape)

src[np.logical_or(

np.logical_and(np.logical_or(abs(X-1.5) < .1,abs(X+1.5) < .1) ,abs(Y) ←↩
< 1.6),

np.logical_and(np.logical_or(abs(Y-1.5) < .1,abs(Y+1.5) < .1) ,abs(X) ←↩
< 1.6))] = 1

src[np.logical_or(

np.logical_and(np.logical_or(abs(X-0.9) < .1,abs(X+0.9) < .1) ,abs(Y) ←↩
< 1.0),

np.logical_and(np.logical_or(abs(Y-0.9) < .1,abs(Y+0.9) < .1) ,abs(X) ←↩
< 1.0))] = -1

return src

#Generate a color dictionary for use with LinearSegmentedColormap

#that places red and blue at the min and max values of data

#and white when data is zero

def genDict(data):

zero = 1/(1 - np.max(data)/np.min(data))

cdict = {'red': [(0.0, 1.0, 1.0),

(zero, 1.0, 1.0),

(1.0, 0.0, 0.0)],

'green': [(0.0, 0.0, 0.0),

(zero, 1.0, 1.0),

(1.0, 0.0, 0.0)],

'blue': [(0.0, 0.0, 0.0),

(zero, 1.0, 1.0),

(1.0, 1.0, 1.0)]}

return cdict

a1 = -2.

b1 = 2.

c1 = -2.

d1 = 2.

n =100

X = np.linspace(a1,b1,n)

Y = np.linspace(c1,d1,n)

X,Y = np.meshgrid(X,Y)

plt.imshow(source(X,Y),cmap = mcolors.LinearSegmentedColormap('cmap', genDict(←↩
source(X,Y))))

plt.colorbar(label="Relative Charge")

plt.show()

The function genDict scales the color values to be white when the charge density is zero. This

is mostly to help visualize where there are neutrally charged zones by forcing them to be white. You

6 Lab 12. Poisson’s equation

0 20 40 60 80

0

20

40

60

80

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

R
e
la

ti
v
e
 C

h
a
rg

e

Figure 12.2: The charge density of the 3 nested pipes.

may �nd it useful to also apply it when you solve for the electric potential.

With this de�nition of the charge density, we can solve Poisson's equation for the potential

�eld.

Problem 2. Solve

∆V = −ρ(x, y), x ∈ [−2, 2]× [−2, 2],

u(x, y) = 0, (x, y) ∈ ∂([−2, 2]× [−2, 2]).
(12.7)

for the electric potential V.Use the source function de�ned above, such that ρ(x, y) = source(x, y).

Use n = 100 subintervals for x and y. Use the provided code to plot your solution.

7

Figure 12.3: The electric potential of the 3 nested pipes.

	Poisson's equation

