
13 Method of Mean
Weighted Residuals

Lab Objective: We introduce the method of mean weighted residuals (MWR) and use it to derive

a pseudospectral method. This method will then be used to solve several boundary value problems.

Consider a linear di�erential equation

Lu = f,

de�ned on the interval [−1, 1], together with associated boundary conditions. We will approximate

the solution u(x) by a linear combination of N + 1 basis functions φi, so that

u(x) ≈ uN (x) =

N∑
i=0

aiφi(x).

To determine appropriate constants ai, we then minimize the residual function

R(x, uN) = LuN − f.

Note that R(x, u) = Lu− f = 0 for the true solution u(x).

This general strategy is often called the method of mean weighted residuals (MWR method).

The MWR method is a general framework that describes many other, more speci�c methods. These

more speci�c methods come from di�ering approaches to minimizing the residual R(x, uN), and the

choice of basis functions φi.

The Pseudospectral Method
The pseudospectral or collocation method is obtained from the MWR method by forcing the residual

function R(x, uN) to equal zero at N + 1 points in [−1, 1], called collocation points. When done

correctly, the pseudospectral method gives high accuracy and converges rapidly.

We will let the basis functions φi be the Chebyshev polynomials,

T0(x) = 1

T1(x) = x

Tn+1(x) = 2xTn(x)− Tn−1(x)

1

2 Lab 13. Method of Mean Weighted Residuals

and the collocation points will be the Gauss-Lobatto points, xi = cos(πi/N), i = 0, . . . , N . The

appropriate solution uN may be represented with two equivalent forms. First, uN can be described

with the �rst N + 1 coe�cients {ai}Ni=0 of its expansion in the Chebyshev polynomials. Since uN is

a polynomial of order N , it may be uniquely described by its values at the collocation points, that

is, the unknown values {uN (xi)}Ni=0.

These equivalent forms satisfy

MA = F (13.1)

and

LU = F (13.2)

where

Ui = u(xi),

Ai = ai,

Fi = f(xi),

Lij = (LCj(x))|x=xi
,

Mij = (Lφj(x))|x=xi
.

The functions Cj above are the cardinal functions, de�ned to be the polynomials of least degree

satisfying

Cj(xi) =

{
1 i = j

0 i 6= j.

Thus, uN can also be expanded in the basis of the cardinal functions:

uN (x) =

N∑
j=0

uN (xj)Cj(x).

When L = d/dx, the matrix corresponding to equation (13.2) is given by

Lij =
dCj

dx
(xi) =


(1 + 2N2)/6 i = j = 0,

−(1 + 2N2)/6 i = j = N,

−xj/[2(1− x2j)] i = j, 0 < j < N,

(−1)i+jαi/[αj(xi − xj)] i 6= j.

where α0 = αN = 2, and αj = 1 otherwise.

This matrix is often called the di�erentiation matrix (D), and can be used to piece together

the matrix L for more complicated di�erential operators. A stable, vectorized function to build the

di�erentiation matrix is given below.

import numpy as np

def cheb(N):

x = np.cos((np.pi/N)*np.linspace(0,N,N+1))

x.shape = (N+1,1)

lin = np.linspace(0,N,N+1)

3

lin.shape = (N+1,1)

c = np.ones((N+1,1))

c[0], c[-1] = 2., 2.

c = c*(-1.)**lin

X = x*np.ones(N+1) # broadcast along 2nd dimension (columns)

dX = X - X.T

D = (c*(1./c).T)/(dX + np.eye(N+1))

D = D - np.diag(np.sum(D.T,axis=0))

x.shape = (N+1,)

Here we return the differentiation matrix and the Chebyshev points,

numbered from x_0 = 1 to x_N = -1

return D, x

Using the Differentiation Matrix

Problem 1. Use the di�erentiation matrix to numerically approximate the derivative of u(x) =

ex cos(6x) on a grid ofN Chebychev points whereN = 6, 8, and 10. (Use the linear systemDU ≈
U ′.) Then use barycentric interpolation (scipy.interpolate.barycentric_interpolate) to

approximate u′ on a grid of 100 evenly spaced points.

Graphically compare your approximation to the exact derivative. Note that this conver-

gence would not be occurring if the collocation points were equally spaced.

To approximate u′′(x) on the grid {xi}, we use

U ′′ ≈ D2U.

The BVP

u′′ = f(x), x ∈ [−1, 1],
u(−1) = 0, u(1) = 0,

can be discretized by the linear system

D2U = F, (13.3)

where F = [f(x0), . . . , f(xN)]T . Since we have Dirichlet boundary conditions of 0, we can satisfy

the boundary condition by forcing U [0] = U [N] = 0. This is done by replacing the �rst and last

equations in (13.3) by the boundary conditions.

#The following code will force U[0] = U[N] = 0

D, x = cheb(N) #for some N

D2 = np.dot(D, D)

D2[0,:], D2[-1,:] = 0, 0

D2[0,0], D2[-1,-1] = 1, 1

F[0], F[-1] = 0, 0

4 Lab 13. Method of Mean Weighted Residuals

Problem 2. Use the pseudospectral method to solve the boundary value problem

u′′ = e2x, x ∈ (−1, 1),
u(−1) = 0, u(1) = 0.

Use N = 8 in the cheb(N) method and use barycentric interpolation to approximate u on

100 evenly spaced points. Compare your numerical solution with the exact solution,

u(x) =
− cosh(2)− sinh(2)x+ e2x

4
.

Problem 3. Use the pseudospectral method to solve the boundary value problem

u′′ + u′ = e3x, x ∈ (−1, 1),
u(−1) = 2, u(1) = −1.

Use N = 8 in the cheb(N) method and use barycentric interpolation to approximate u on

100 evenly spaced points.

The previous exercise involved setting up and solving a linear system

AU = F,

where F is a vector whose entries are e3x evaluated at the collocation points xj , and U represents

the approximation to the solution u at those points. However, whenever the ODE is nonlinear, the

discretization becomes a nonlinear system of equations that must be solved using Newton's method.

The next exercise contains a BVP whose ODE is nonlinear, with the additional complexity that the

domain of the problem is not [−1, 1].

Problem 4. Use the pseudospectral method to solve the boundary value problem

u′′ = λ sinh(λu), x ∈ (0, 1),

u(0) = 0, u(1) = 1

for several values of λ: λ = 4, 8, 12. Begin by transforming this BVP onto the domain −1 <
x < 1. Use N = 20 in the cheb(N) method and use barycentric interpolation to approximate

u on 100 evenly spaced points.

Below is sample code for implementing Newton's Method

from scipy.optimize import root

N = 20

D, x = cheb(20)

def F(U):

out = None #Set up the equation you want the root of.

5

#Make sure to set the boundaries correctly

return out #Newtons Method will update U until the output is all 0's.

guess = None #Make your guess, same size as the cheb(N) output

solution = root(F, guess).x

Minimizing the Area of a Surface of Revolution
A surface of revolution that minimizes its area is an example of a larger class of surfaces called

minimal surfaces. A famous example of a minimal surface is a soap bubble. Soap bubbles minimize

their surface area while containing a �xed volume of air. This behavior extends to merged bubbles,

and a soap �lm whose boundary is a wire frame. Minimal surfaces have applications in molecular

engineering and material science, and general relativity, where they describe the apparent horizon of

a black hole.

Consider a function y(x) de�ned on [−1, 1] satisfying y(−1) = a, y(1) = b. The area of the

surface obtained by revolving the graph of y(x) about the x-axis is given by

T [y(x)] =

∫ 1

−1
2πy(x)

√
1 + (y′(x))2 dx.

To �nd the function y(x) whose surface of revolution minimizes surface area, we must minimize the

functional T [y]. This is a classical problem from a branch of mathematics called the calculus of

variations. Standard derivatives allow us to �nd the minimum values of functions de�ned on Rn,

and where they occur. The calculus of variations allows us to �nd the minimum values of functions

whose input are other functions.

From the calculus of variations we know that a necessary condition for y(x) to minimize T [y]

is that the Euler-Lagrange equation must be satis�ed:

Ly −
d

dx
Ly′ = 0,

where L(x, y, y′) = 2πy
√
1 + (y′)2. Simplifying the Euler-Lagrange equation for our problem results

in the ODE

yy′′ − (y′)2 − 1 = 0.

Discretizing this ODE using the pseudospectral method results in the (nonlinear) system of equations

Y · (D2Y)− (DY) · (DY) = I,

where I is a vector of ones.

Problem 5. Find the function y(x) that satis�es y(−1) = 1, y(1) = 7, and whose surface of

revolution (about the x-axis) minimizes surface area. Compute the surface area, and plot the

surface. Use N = 50 in the cheb(N) method and use barycentric interpolation to approximate

u on 100 evenly spaced points.

Below is sample code for creating the 3D wireframe �gure.

from mpl_toolkits.mplot3d import Axes3D

6 Lab 13. Method of Mean Weighted Residuals

Figure 13.1: The minimal surface corresponding to Problem 5.

barycentric = None #This is the output of barycentric_interpolate() on ←↩
100 points

lin = np.linspace(-1, 1, 100)

theta = np.linspace(0,2*np.pi,401)

X, T = np.meshgrid(lin, theta)

Y, Z = barycentric*np.cos(T), barycentric*np.sin(T)

fig = plt.figure()

ax = fig.gca(projection="3d")

ax.plot_wireframe(X, Y, Z, rstride=10, cstride=10)

plt.show()

	Method of Mean Weighted Residuals

