
15 Inverse Problems

An important concept in mathematics is the idea of a well posed problem. The concept initially

came from Jacques Hadamard. A mathematical problem is well posed if

1. a solution exists,

2. that solution is unique, and

3. the solution is continuously dependent on the data in the problem.

A problem that is not well posed is ill posed. Notice that a problem may be well posed, and yet still

possess the property that small changes in the data result in larger changes in the solution; in this

case the problem is said to be ill conditioned, and has a large condition number.

Note that for a physical phenomena, a well posed mathematical model would seem to be a

necessary requirement! However, there are important examples of mathematical problems that are

ill posed. For example, consider the process of di�erentiation. Given a function u together with its

derivative u′, let ũ(t) = u(t) + ε sin(ε−2t) for some small ε > 0. Then note that

‖u− ũ‖∞ = ε,

while

‖u′ − ũ′‖∞ = ε−1.

Since a small change in the data leads to an arbitrarily large change in the output, di�erentiation is

an ill posed problem. And we haven't even mentioned numerically approximating a derivative!

For an example of an ill posed problem from PDEs, consider the backwards heat equation with

zero Dirichlet conditions:

ut = −uxx, (x, t) ∈ (0, L)× (0,∞),

u(0, t) = u(L, t) = 0, t ∈ (0,∞),

u(x, 0) = f(x), x ∈ (0, L).

(15.1)

For the initial data f(x) the unique1 solution is u(x, t) = 0. Given the initial data f(x) = 1
n sin(nπxL ),

one can check that there is a unique solution u(x, t) = 1
n sin(nπxL ) exp((nπL )2t). Thus, on a �nite

interval [0, T ], as n → ∞ we see that a small di�erence in the initial data results in an arbitrarily

large di�erence in the solution.

1See Partial Di�erential Equations by Lawrence C. Evans, chapter 2.3, for a proof of uniqueness.
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Figure 15.1: Cause and e�ect within a given physical system.

Inverse Problems
As implied by the name, inverse problems come in pairs. For example, di�erentiation and integration

are inverse problems. The easier problem (in this case integration) is often called the direct problem.

The direct problem is usually studied �rst historically.

Given a physical system, together with initial data (the �cause"), the direct problem will usually

predict the future state of the physical system (the �e�ect"); see Figure 15.1. Inverse problems often

turn this on its head - given the current state of a physical system at time T , what was the physical

state at time t = 0?

Alternatively, suppose we measure the current state of the system, and we then measure the

state at some future time. An important inverse problem is to determine an appropriate mathematical

model that can describe the evolution of the system.

Another look at heat flow through a rod
Consider the following ordinary di�erential equation, together with natural boundary conditions at

the ends of the interval2: {
−(au′)′ = f, x ∈ (0, 1),

a(0)u′(0) = c0, a(1)u′(1) = c1.
(15.2)

This BVP can, for example, be used to describe the �ow of heat through a rod. The boundary

conditions would correspond to specifying the heat �ux through the ends of the rod. The function

f(x) would then represent external heat sources along the rod, and a(x) the density of the rod at

each point.

Typically, the density a(x) would be speci�ed, along with any heat sources f(x), and the (direct)

problem is to solve for the steady-state heat distribution u(x). Here we shake things up a bit: suppose

2This example of an ill-posed problem is given in Inverse Problems in the Mathematical Sciences by Charles W

Groetsch.
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the heat sources f are given, and we can measure the heat distribution u(x). Can we �nd the density

of the rod? This is an example of a parameter estimation problem.

Let us consider a numerical method for solving (15.2) for the density a(x). Subdivide [0, 1] into

N equal subintervals, and let xj = jh, j = 0, . . . , N , where h = 1/N . Let φj(x) be the tent functions

(used earlier in the �nite element lab), given by

φj(x) =


(x− xj−1)/h x ∈ [xj−1, xj ],

(xj+1 − x)/h x ∈ [xj , xj+1],

0 otherwise.

We look for an approximation ah(x) of the form

ah =

N∑
j=0

αjφj , αj = a(xj). (15.3)

Integrating (15.2) from 0 to x, we obtain∫ x

0

−(au′)′ ds =
∫ x

0

f(s) ds,

− [a(x)u′(x)− c0] =
∫ x

0

f(s) ds,

u′(x) =
c0 −

∫ x
0
f(s) ds

a(x)
.

(15.4)

Thus for each xj

u′(xj) =
c0 −

∫ xj

0
f(s) ds

a(xj)
,

=
c0 −

∫ xj

0
f(s) ds

αj
.

The coe�cients αj in (15.3) can now be approximated by minimizing

N∑
j=0

(
c0 −

∫ xj

0
f(s) ds

αj
− u′(xj)

)2

.

Problem 1. Solve (15.2) for a(x) using the following conditions:

c0 = 3/8, c1 = 5/4, u(x) = x2 + x/2 + 5/16, xj = .1j for j = 0, 1, . . . , 10, and

f =

{
−6x2 + 3x− 1 x ≤ 1/2,

−1 1/2 < x ≤ 1,

Produce the plot shown in Figure 15.2.

Hint: use the minimize function in scipy.optimize and some initial guess to �nd the

aj .
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Figure 15.2: The solution a(x) to Problem 1

Problem 2. Find the density function a(x) satisfying{
−(au′)′ = −1, x ∈ (0, 1),

a(0)u′(0) = 1, a(1)u′(1) = 2.
(15.5)

where u(x) = x+1+ε sin(ε−2x). Using several values of ε > 0.66049142, plot the corresponding

density a(x) for x in np.linspace(0,1,11) to demonstrate that the problem is ill-posed.
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Figure 15.3: The density function a(x) satisfying (15.5) for ε = .8.
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