16
 Total Variation and Image Processing

Lab Objective: Minimizing an energy functional is equivalent to solving the resulting EulerLagrange equations. We introduce the method of steepest descent to solve these equations, and apply this technique to a denoising problem in image processing.

The Gradient Descent method

Consider an energy functional $J[u]$, defined over a collection of admissible functions $u: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, with the form

$$
J[u]=\int_{\Omega} L(x, u, \nabla u) d x
$$

where $L=L(x, u, \nabla u)$ is a function $\mathbb{R}^{n} \times \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$. A standard result from the calculus of variations states that a minimizing function u^{*} satisfies the Euler-Lagrange equation

$$
\begin{equation*}
L_{u}-\sum_{i=1}^{n} \frac{\partial L_{u_{x_{i}}}}{\partial x_{i}}=L_{u}-\nabla \cdot L_{\nabla u}=L_{u}-\operatorname{div}\left(L_{\nabla u}\right)=0 . \tag{16.1}
\end{equation*}
$$

where $L_{\nabla u}=\nabla^{\prime} L=\left[L_{x_{1}}, \ldots, L_{x_{n}}\right]^{\top}$.
This equation is typically an elliptic PDE, possessing boundary conditions associated with restrictions on the class of admissible functions u. To more easily compute (16.1), we consider a related parabolic PDE,

$$
\begin{align*}
& u_{t}=-\left(L_{y}-\operatorname{div} L_{\nabla u}\right), \quad t>0, \tag{16.2}\\
& u(x, 0)=u_{0}(x), \quad t=0 .
\end{align*}
$$

A steady state solution of (16.2) does not depend on time, and thus solves the Euler-Lagrange equation. It is often easier to evolve an initial guess using (16.2), and stop whenever its steady state is well-approximated, than to solve (16.1) directly.

Example 16.1. Consider the energy functional

$$
J[u]=\int_{\Omega}\|\nabla u\|^{2} d x
$$

The minimizing function u^{*} satisfies the Euler-Lagrange equation

$$
-\operatorname{div} \nabla u=-\triangle u=0
$$

The gradient descent flow is the well-known heat equation

$$
u_{t}=\triangle u .
$$

The Euler-Lagrange equation could equivalently be described as $\triangle u=0$, leading to the PDE $u_{t}=-\triangle u$. Since the backward heat equation is ill-posed, it would not be helpful in a search for the steady-state.

Let us take the time to make (16.2) more rigorous. We recall that

$$
\begin{aligned}
\delta J(u ; h) & =\left.\frac{d}{d t} J(u+\varepsilon h)\right|_{\varepsilon=0}, \\
& =\int_{\Omega}\left(L_{y}(u)-\operatorname{div} L_{\nabla u}(u)\right) h d x, \\
& =\left\langle L_{y}(u)-\operatorname{div} L_{\nabla u}(u), h\right\rangle_{L^{2}(\Omega)},
\end{aligned}
$$

for each u and each admissible perturbation h. Then using the Cauchy-Schwarz inequality,

$$
|\delta J(u ; h)| \leq\left\|L_{y}(u)-\operatorname{div} L_{\nabla u}(u)\right\| \cdot\|h\|
$$

with equality iff $h=\alpha\left(L_{y}(u)-\operatorname{div} L_{\nabla u}(u)\right)$ for some $\alpha \in \mathbb{R}$. This implies that the "direction" $h=L_{y}(u)-\operatorname{div} L_{\nabla u}(u)$ is the direction of steepest ascent and maximizes $\delta J(u ; h)$. Similarly,

$$
h=-\left(L_{y}(u)-\operatorname{div} L_{\nabla u}(u)\right)
$$

points in the direction of steepest descent, and the flow described by (16.2) tends to move toward a state of lesser energy.

Minimizing the area of a surface of revolution

The area of the surface obtained by revolving a curve $y(x)$ about the x-axis is

$$
A[y]=\int_{a}^{b} 2 \pi y \sqrt{1+\left(y^{\prime}\right)^{2}} d x
$$

To minimize the functional A over the collection of smooth curves with fixed end points $y(a)=y_{a}$, $y(b)=y_{b}$, we use the Euler-Lagrange equation

$$
\begin{align*}
0 & =1-y \frac{y^{\prime \prime}}{1+\left(y^{\prime}\right)^{2}} \tag{16.3}\\
& =1+\left(y^{\prime}\right)^{2}-y y^{\prime \prime}
\end{align*}
$$

with the gradient descent flow given by

$$
\begin{align*}
& u_{t}=-1-\left(y^{\prime}\right)^{2}+y y^{\prime \prime}, \quad t>0, x \in(a, b) \\
& u(x, 0)=g(x), \quad t=0 \tag{16.4}\\
& u(a, t)=y_{a}, \quad u(b, t)=y_{b}
\end{align*}
$$

Numerical Implementation

We will construct a numerical solution of (16.4) using the conditions $y(-1)=1, y(1)=7$. A simple solution can be found by using a second-order order discretization in space with a simple forward Euler step in time. We create the grid and set our end states below.

```
import numpy as np
a, b = -1, 1.
alpha, beta = 1., 7.
#### Define variables x_steps, final_T, time_steps ####
delta_t, delta_x = final_T/time_steps, (b-a)/x_steps
x0 = np.linspace(a,b,x_steps+1)
```

Most numerical schemes have a stability condition that must be satisfied. Our discretization requires that $\frac{\Delta t}{(\Delta x)^{2}} \leq \frac{1}{2}$. We continue by checking that this condition is satisfied, and use the straight line connecting the end points as initial data.

```
# Check a stability condition for this numerical method
if delta_t/delta_x**2. > .5:
    print "stability condition fails"
u = np.empty((2,x_steps+1))
u[0] = (beta - alpha)/(b-a)*(x0-a) + alpha
u[1] = (beta - alpha)/(b-a)*(x0-a) + alpha
```

Finally, we define the right hand side of our difference scheme, and time step until the scheme converges.

```
def rhs(y):
    # Approximate first and second derivatives to second order accuracy.
    yp = (np.roll(y,-1) - np.roll(y,1))/(2.*delta_x)
    ypp = (np.roll(y,-1) - 2.*y + np.roll(y,1))/delta_x**2.
    # Find approximation for the next time step, using a first order Euler step
    y[1:-1] -= delta_t*(1. + yp[1:-1]**2. - 1.*y[1:-1]*ypp[1:-1])
# Time step until successive iterations are close
iteration = 0
while iteration < time_steps:
    rhs(u[1])
    if norm(np.abs((u[0] - u[1]))) < 1e-5: break
    u[0] = u[1]
    iteration+=1
print "Difference in iterations is ", norm(np.abs((u[0] - u[1])))
print "Final time = ", iteration*delta_t
```


Figure 16.1: The solution of (16.3), found using the gradient descent flow (16.4).

Problem 1. Using $20 x$ steps, 250 time steps, and a final time of .2 , plot the solution that minimizes (16.4). It should match figure 16.1.

Image Processing: Denoising

A greyscale image can be represented by a scalar-valued function $u: \Omega \rightarrow \mathbb{R}, \Omega \subset \mathbb{R}^{2}$. The following code reads an image into an array of floating point numbers, adds some noise, and saves the noisy image.

```
from numpy.random import random_integers, uniform, randn
import matplotlib.pyplot as plt
from matplotlib import cm
from imageio import imread, imwrite
imagename = 'baloons_resized_bw.jpg'
changed_pixels=40000
# Read the image file imagename into an array of numbers, IM
# Multiply by 1. / 255 to change the values so that they are floating point
```

```
# numbers ranging from 0 to 1.
IM = imread(imagename, as_gray=True) * (1. / 255)
IM_x, IM_y = IM.shape
for lost in xrange(changed_pixels):
    x_, y_ = random_integers(1,IM_x-2), random_integers(1,IM_y-2)
    val = . 1*randn() + . 5
    IM[\mp@subsup{x}{-}{\prime},\mp@subsup{y}{-}{\prime}]=\operatorname{max}(\operatorname{min}(val,1.), 0.)
imwrite("noised_"+imagename, IM)
```

A color image can be represented by three functions u_{1}, u_{2}, and u_{3}. In this lab we will work with black and white images, but total variation techniques can easily be used on more general images.

A simple approach to image processing

Here is a first attempt at denoising: given a noisy image f, we look for a denoised image u minimizing the energy functional

$$
\begin{equation*}
J[u]=\int_{\Omega} L(x, u, \nabla u) d x \tag{16.5}
\end{equation*}
$$

where

$$
\begin{aligned}
L(x, u, \nabla u) & =\frac{1}{2}(u-f)^{2}+\frac{\lambda}{2}|\nabla u|^{2}, \\
& =\frac{1}{2}(u-f)^{2}+\frac{\lambda}{2}\left(u_{x}^{2}+u_{y}^{2}\right)^{2} .
\end{aligned}
$$

This energy functional penalizes 1) images that are too different from the original noisy image, and 2) images that have large derivatives. The minimizing denoised image u will balance these two different costs.

Solving for the original denoised image u is a difficult inverse problem-some information is irretrievably lost when noise is introduced. However, a priori information can be used to guess at the structure of the original image. For example, here λ represents our best guess on how much noise was added to the image, and is known as a regularization parameter in inverse problem theory.

The Euler-Lagrange equation corresponding to (16.5) is

$$
\begin{aligned}
L_{u}-\operatorname{div} L_{\nabla u} & =(u-f)-\lambda \triangle u \\
& =0
\end{aligned}
$$

and the gradient descent flow is

$$
\begin{align*}
u_{t} & =-(u-f-\lambda \triangle u) \tag{16.6}\\
u(x, 0) & =f(x)
\end{align*}
$$

Let $u_{i j}^{n}$ represent our approximation to $u\left(x_{i}, y_{j}\right)$ at time t_{n}. We will approximate u_{t} with a forward Euler difference, and $\triangle u$ with centered differences:

$$
\begin{aligned}
u_{t} & \approx \frac{u_{i j}^{n+1}-u_{i j}^{n}}{\triangle t} \\
u_{x x} & \approx \frac{u_{i+1, j}^{n}-2 u_{i j}^{n}+u_{i-1, j}^{n}}{\triangle x^{2}} \\
u_{y y} & \approx \frac{u_{i, j+1}^{n}-2 u_{i j}^{n}+u_{i, j-1}^{n}}{\triangle y^{2}}
\end{aligned}
$$

Original image

Image with white noise

Figure 16.2: Noise.

Problem 2. Using $\triangle t=1 e-3, \lambda=40, \Delta x=1$, and $\triangle y=1$, implement the numerical scheme mentioned above to obtain a solution u. (So $\Omega=\left[0, n_{x}\right] \times\left[0, n_{y}\right]$, where n_{x} and n_{y} represent the number of pixels in the x and y dimensions, respectively.) Take 250 steps in time. Compare your results with Figure 16.3.

Hint: Use the function np.roll to compute the spatial derivatives. For example, the second derivative can be approximated at interior grid points using

```
u_xx = np.roll(u,-1,axis=1) - 2*u + np.roll(u,1,axis=1)
```


Image Processing: Total Variation Method

We represent an image by a function $u:[0,1] \times[0,1] \rightarrow \mathbb{R}$. A C^{1} function $u: \Omega \rightarrow \mathbb{R}$ has bounded total variation on $\Omega(B V(\Omega))$ if $\int_{\Omega}|\nabla u|<\infty ; u$ is said to have total variation $\int_{\Omega}|\nabla u|$. Intuitively, the total variation of an image u increases when noise is added.

The total variation approach was originally introduced by Ruding, Osher, and Fatemi ${ }^{1}$. It was

[^0]

Initial diffusion-based approach

Total variation based approach

Figure 16.3: The solutions of (16.6) and (16.11), found using a first order Euler step in time and centered differences in space.
formulated as follows: given a noisy image f, we look to find a denoised image u minimizing

$$
\begin{equation*}
\int_{\Omega}|\nabla u(x)| d x \tag{16.7}
\end{equation*}
$$

subject to the constraints

$$
\begin{align*}
& \int_{\Omega} u(x) d x=\int_{\Omega} f(x) d x \tag{16.8}\\
& \int_{\Omega}|u(x)-f(x)|^{2} d x=\sigma|\Omega| \tag{16.9}
\end{align*}
$$

Intuitively, (16.7) penalizes fast variations in f - this functional together with the constraint (16.8) has a constant minimum of $u=\frac{1}{|\Omega|} \int_{\Omega} u(x) d x$. This is obviously not what we want, so we add a constraint (16.9) specifying how far $u(x)$ is required to differ from the noisy image f. More precisely, (16.8) specifies that the noise in the image has zero mean, and (16.9) requires that a variable σ be chosen a priori to represent the standard deviation of the noise.

Chambolle and Lions proved that the model introduced by Rudin, Osher, and Fatemi can be formulated equivalently as

$$
\begin{equation*}
F[u]=\min _{u \in B V(\Omega)} \int_{\Omega}|\nabla u|+\frac{\lambda}{2}(u-f)^{2} d x \tag{16.10}
\end{equation*}
$$

where $\lambda>0$ is a fixed regularization parameter ${ }^{2}$. Notice how this functional differs from (16.5): $\int_{\Omega}|\nabla u|$ instead of $\int_{\Omega}|\nabla u|^{2}$. This turns out to cause a huge difference in the result. Mathematically, there is a nice way to extend F and the class of functions with bounded total variation to functions that are discontinuous across hyperplanes. The term $\int|\nabla|$ tends to preserve edges/boundaries of objects in an image.

The gradient descent flow is given by

$$
\begin{align*}
u_{t} & =-\lambda(u-f)+\frac{u_{x x} u_{y}^{2}+u_{y y} u_{x}^{2}-2 u_{x} u_{y} u_{x y}}{\left(u_{x}^{2}+u_{y}^{2}\right)^{3 / 2}} \tag{16.11}\\
u(x, 0) & =f(x)
\end{align*}
$$

Notice the singularity that occurs in the flow when $|\nabla u|=0$. Numerically we will replace $|\nabla u|^{3}$ in the denominator with $\left(\varepsilon+|\nabla u|^{2}\right)^{3 / 2}$, to remove the singularity.

Problem 3. Using $\triangle t=1 e-3, \lambda=1, \triangle x=1$, and $\triangle y=1$, implement the numerical scheme mentioned above to obtain a solution u. Take 200 steps in time. Compare your results with Figure 16.3. How small should ε be?

Hint: To compute the spatial derivatives, consider the following:

```
u_x = (np.roll(u,-1,axis=1) - np.roll(u,1,axis=1))/2
u_xx = np.roll(u,-1,axis=1) - 2*u + np.roll(u,1,axis=1)
u_xy = (np.roll(u_x,-1,axis=0) - np.roll(u_x,1,axis=0))/2.
```

[^1]
[^0]: ${ }^{1}$ L. Rudin, S. Osher, and E. Fatemi, "Nonlinear total variation based noise removal algorithms", Physica D., 1992.

[^1]: ${ }^{2}$ A. Chambelle and P.-L. Lions, "Image recovery via total variation minimization and related problems", Numer. Math., 1997.

