
16 Total Variation and
Image Processing

Lab Objective: Minimizing an energy functional is equivalent to solving the resulting Euler-

Lagrange equations. We introduce the method of steepest descent to solve these equations, and apply

this technique to a denoising problem in image processing.

The Gradient Descent method
Consider an energy functional J [u], de�ned over a collection of admissible functions u : Ω ⊂ Rn → R,
with the form

J [u] =

∫
Ω

L(x, u,∇u) dx

where L = L(x, u,∇u) is a function Rn × R × Rn → R. A standard result from the calculus of

variations states that a minimizing function u∗ satis�es the Euler-Lagrange equation

Lu −
n∑

i=1

∂Luxi

∂xi
= Lu −∇ · L∇u = Lu − div (L∇u) = 0. (16.1)

where L∇u = ∇′L = [Lx1 , . . . , Lxn]ᵀ.

This equation is typically an elliptic PDE, possessing boundary conditions associated with

restrictions on the class of admissible functions u. To more easily compute (16.1), we consider a

related parabolic PDE,

ut = −(Ly − divL∇u), t > 0,

u(x, 0) = u0(x), t = 0.
(16.2)

A steady state solution of (16.2) does not depend on time, and thus solves the Euler-Lagrange

equation. It is often easier to evolve an initial guess using (16.2), and stop whenever its steady state

is well-approximated, than to solve (16.1) directly.

Example 16.1. Consider the energy functional

J [u] =

∫
Ω

‖∇u‖2 dx.

The minimizing function u∗ satis�es the Euler-Lagrange equation

−div∇u = −4u = 0.

1

2 Lab 16. Total Variation and Image Processing

The gradient descent �ow is the well-known heat equation

ut = 4u.

The Euler-Lagrange equation could equivalently be described as 4u = 0, leading to the PDE

ut = −4u. Since the backward heat equation is ill-posed, it would not be helpful in a search for the

steady-state.

Let us take the time to make (16.2) more rigorous. We recall that

δJ(u;h) =
d

dt
J(u+ εh)

∣∣∣∣
ε=0

,

=

∫
Ω

(Ly(u)− divL∇u(u))h dx,

= 〈Ly(u)− divL∇u(u), h〉L2(Ω),

for each u and each admissible perturbation h. Then using the Cauchy-Schwarz inequality,

|δJ(u;h)| ≤ ‖Ly(u)− divL∇u(u)‖ · ‖h‖

with equality i� h = α(Ly(u) − divL∇u(u)) for some α ∈ R. This implies that the �direction�

h = Ly(u)− divL∇u(u) is the direction of steepest ascent and maximizes δJ(u;h). Similarly,

h = −(Ly(u)− divL∇u(u))

points in the direction of steepest descent, and the �ow described by (16.2) tends to move toward a

state of lesser energy.

Minimizing the area of a surface of revolution

The area of the surface obtained by revolving a curve y(x) about the x-axis is

A[y] =

∫ b

a

2πy
√

1 + (y′)2 dx.

To minimize the functional A over the collection of smooth curves with �xed end points y(a) = ya,

y(b) = yb, we use the Euler-Lagrange equation

0 = 1− y y′′

1 + (y′)2
,

= 1 + (y′)2 − yy′′,
(16.3)

with the gradient descent �ow given by

ut = −1− (y′)2 + yy′′, t > 0, x ∈ (a, b),

u(x, 0) = g(x), t = 0,

u(a, t) = ya, u(b, t) = yb.

(16.4)

3

Numerical Implementation

We will construct a numerical solution of (16.4) using the conditions y(−1) = 1, y(1) = 7. A simple

solution can be found by using a second-order order discretization in space with a simple forward

Euler step in time. We create the grid and set our end states below.

import numpy as np

a, b = -1, 1.

alpha, beta = 1., 7.

Define variables x_steps, final_T, time_steps

delta_t, delta_x = final_T/time_steps, (b-a)/x_steps

x0 = np.linspace(a,b,x_steps+1)

Most numerical schemes have a stability condition that must be satis�ed. Our discretization

requires that 4t
(4x)2 ≤

1
2 . We continue by checking that this condition is satis�ed, and use the straight

line connecting the end points as initial data.

Check a stability condition for this numerical method

if delta_t/delta_x**2. > .5:

print "stability condition fails"

u = np.empty((2,x_steps+1))

u[0] = (beta - alpha)/(b-a)*(x0-a) + alpha

u[1] = (beta - alpha)/(b-a)*(x0-a) + alpha

Finally, we de�ne the right hand side of our di�erence scheme, and time step until the scheme

converges.

def rhs(y):

Approximate first and second derivatives to second order accuracy.

yp = (np.roll(y,-1) - np.roll(y,1))/(2.*delta_x)

ypp = (np.roll(y,-1) - 2.*y + np.roll(y,1))/delta_x**2.

Find approximation for the next time step, using a first order Euler step

y[1:-1] -= delta_t*(1. + yp[1:-1]**2. - 1.*y[1:-1]*ypp[1:-1])

Time step until successive iterations are close

iteration = 0

while iteration < time_steps:

rhs(u[1])

if norm(np.abs((u[0] - u[1]))) < 1e-5: break

u[0] = u[1]

iteration+=1

print "Difference in iterations is ", norm(np.abs((u[0] - u[1])))

print "Final time = ", iteration*delta_t

4 Lab 16. Total Variation and Image Processing

1.0 0.5 0.0 0.5 1.0

x

0

1

2

3

4

5

6

7

8
y

Initial guess
Minimizing curve

Figure 16.1: The solution of (16.3), found using the gradient descent �ow (16.4).

Problem 1. Using 20 x steps, 250 time steps, and a �nal time of .2, plot the solution that

minimizes (16.4). It should match �gure 16.1.

Image Processing: Denoising
A greyscale image can be represented by a scalar-valued function u : Ω→ R, Ω ⊂ R2. The following

code reads an image into an array of �oating point numbers, adds some noise, and saves the noisy

image.

from numpy.random import random_integers, uniform, randn

import matplotlib.pyplot as plt

from matplotlib import cm

from imageio import imread, imwrite

imagename = 'baloons_resized_bw.jpg'

changed_pixels=40000

Read the image file imagename into an array of numbers, IM

Multiply by 1. / 255 to change the values so that they are floating point

5

numbers ranging from 0 to 1.

IM = imread(imagename, as_gray=True) * (1. / 255)

IM_x, IM_y = IM.shape

for lost in xrange(changed_pixels):

x_,y_ = random_integers(1,IM_x-2), random_integers(1,IM_y-2)

val = .1*randn() + .5

IM[x_,y_] = max(min(val,1.), 0.)

imwrite("noised_"+imagename, IM)

A color image can be represented by three functions u1, u2, and u3. In this lab we will work with

black and white images, but total variation techniques can easily be used on more general images.

A simple approach to image processing

Here is a �rst attempt at denoising: given a noisy image f , we look for a denoised image u minimizing

the energy functional

J [u] =

∫
Ω

L(x, u,∇u) dx, (16.5)

where

L(x, u,∇u) =
1

2
(u− f)2 +

λ

2
|∇u|2,

=
1

2
(u− f)2 +

λ

2
(u2

x + u2
y)2.

This energy functional penalizes 1) images that are too di�erent from the original noisy image, and 2)

images that have large derivatives. The minimizing denoised image u will balance these two di�erent

costs.

Solving for the original denoised image u is a di�cult inverse problem-some information is

irretrievably lost when noise is introduced. However, a priori information can be used to guess at the

structure of the original image. For example, here λ represents our best guess on how much noise

was added to the image, and is known as a regularization parameter in inverse problem theory.

The Euler-Lagrange equation corresponding to (16.5) is

Lu − div L∇u = (u− f)− λ4u,
= 0.

and the gradient descent �ow is

ut = −(u− f − λ4u),

u(x, 0) = f(x).
(16.6)

Let unij represent our approximation to u(xi, yj) at time tn. We will approximate ut with a

forward Euler di�erence, and 4u with centered di�erences:

ut ≈
un+1
ij − unij
4t

,

uxx ≈
uni+1,j − 2unij + uni−1,j

4x2
,

uyy ≈
uni,j+1 − 2unij + uni,j−1

4y2
.

6 Lab 16. Total Variation and Image Processing

Original image Image with white noise

Figure 16.2: Noise.

Problem 2. Using4t = 1e−3, λ = 40,4x = 1, and4y = 1, implement the numerical scheme

mentioned above to obtain a solution u. (So Ω = [0, nx] × [0, ny], where nx and ny represent

the number of pixels in the x and y dimensions, respectively.) Take 250 steps in time. Compare

your results with Figure 16.3.

Hint: Use the function np.roll to compute the spatial derivatives. For example, the

second derivative can be approximated at interior grid points using

u_xx = np.roll(u,-1,axis=1) - 2*u + np.roll(u,1,axis=1)

Image Processing: Total Variation Method
We represent an image by a function u : [0, 1] × [0, 1] → R. A C1 function u : Ω → R has bounded

total variation on Ω (BV (Ω)) if
∫

Ω
|∇u| < ∞; u is said to have total variation

∫
Ω
|∇u|. Intuitively,

the total variation of an image u increases when noise is added.

The total variation approach was originally introduced by Ruding, Osher, and Fatemi1. It was

1L. Rudin, S. Osher, and E. Fatemi, �Nonlinear total variation based noise removal algorithms�, Physica D., 1992.

7

Initial di�usion-based approach Total variation based approach

Figure 16.3: The solutions of (16.6) and (16.11), found using a �rst order Euler step in time and

centered di�erences in space.

formulated as follows: given a noisy image f , we look to �nd a denoised image u minimizing∫
Ω

|∇u(x)| dx (16.7)

subject to the constraints ∫
Ω

u(x) dx =

∫
Ω

f(x) dx, (16.8)∫
Ω

|u(x)− f(x)|2 dx = σ|Ω|. (16.9)

Intuitively, (16.7) penalizes fast variations in f - this functional together with the constraint (16.8)

has a constant minimum of u = 1
|Ω|
∫

Ω
u(x) dx. This is obviously not what we want, so we add a

constraint (16.9) specifying how far u(x) is required to di�er from the noisy image f . More precisely,

(16.8) speci�es that the noise in the image has zero mean, and (16.9) requires that a variable σ be

chosen a priori to represent the standard deviation of the noise.

Chambolle and Lions proved that the model introduced by Rudin, Osher, and Fatemi can be

formulated equivalently as

F [u] = min
u∈BV (Ω)

∫
Ω

|∇u|+ λ

2
(u− f)2 dx, (16.10)

8 Lab 16. Total Variation and Image Processing

where λ > 0 is a �xed regularization parameter2. Notice how this functional di�ers from (16.5):∫
Ω
|∇u| instead of

∫
Ω
|∇u|2. This turns out to cause a huge di�erence in the result. Mathematically,

there is a nice way to extend F and the class of functions with bounded total variation to functions

that are discontinuous across hyperplanes. The term
∫
|∇| tends to preserve edges/boundaries of

objects in an image.

The gradient descent �ow is given by

ut = −λ(u− f) +
uxxu

2
y + uyyu

2
x − 2uxuyuxy

(u2
x + u2

y)3/2
,

u(x, 0) = f(x).

(16.11)

Notice the singularity that occurs in the �ow when |∇u| = 0. Numerically we will replace |∇u|3 in

the denominator with (ε+ |∇u|2)3/2, to remove the singularity.

Problem 3. Using 4t = 1e− 3, λ = 1,4x = 1, and 4y = 1, implement the numerical scheme

mentioned above to obtain a solution u. Take 200 steps in time. Compare your results with

Figure 16.3. How small should ε be?

Hint: To compute the spatial derivatives, consider the following:

u_x = (np.roll(u,-1,axis=1) - np.roll(u,1,axis=1))/2

u_xx = np.roll(u,-1,axis=1) - 2*u + np.roll(u,1,axis=1)

u_xy = (np.roll(u_x,-1,axis=0) - np.roll(u_x,1,axis=0))/2.

2A. Chambelle and P.-L. Lions, �Image recovery via total variation minimization and related problems", Numer.

Math., 1997.

	Total Variation and Image Processing

