
1 Obstacle Avoidance

Lab Objective: Solve boundary value problems that arise when using Pontryagin's Maximum

principle.

General Boundary Value Problems
A boundary value problem is a di�erential equation with a set of constraints. It is similar to initial

value problems, which give only initial constraints. An initial value problem may look something like

this

y′′ + y′ + y = f(t)

y(a) = α

y′(a) = β

t ∈[a, b].

This problem gives a di�erential equation with initial conditions for y and y′. A boundary value

problem may look something like this

y′′ + y′ + y = f(t)

y(a) = α

y(b) = β

t ∈[a, b],

where we have both right and left hand boundary conditions on y.

Formulating and solving boundary value problems is an important tool when solving many

types of problems. This is especially true in the world of variational calculus and optimal control.

Many optimal control problems can be formulated as a boundary value problem by using Pontryagin's

Maximum Principle, which may greatly simplify the problem.

SciPy has great tools that help us solve boundary value problems. We will be using solve_bvp

from scipy.integrate. Consider the following example

y′′ + 9y = cos(t), y′(0) = 5, y (π) = −5

3
. (1.1)

1

2 Lab 1. Obstacle Avoidance

We begin by changing this second order ODE into a �rst order ODE system.

Let y1 = y and y2 = y′ so that,[
y1
y2

]′
=

[
y2

cos t− 9y1

]
.

This formulation allows us to use solve_bvp().

from scipy.integrate import solve_bvp

import numpy as np

def ode(t,y):

''' define the ode system '''

return np.array([y[1], np.cos(t) - 9*y[0]])

def bc(ya,yb):

''' define the boundary conditions '''

ya are the initial values

yb are the final values

each entry of the return array will be set to zero

return np.array([ya[1] - 5, yb[0] + 5/3])

give the time domain

t_steps = 100

t = np.linspace(0,np.pi,t_steps)

give an initial guess

y0 = np.ones((2,t_steps))

solve the system

sol = solve_bvp(ode, bc, t, y0)

Then we can plot the solution with the following code

import matplotlib.pyplot as plt

plt.plot(t, sol.y[0])

plt.xlabel('t')

plt.ylabel('y(t)')

plt.show()

3

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

2

1

0

1

2

y(
t)

Figure 1.1: The solution to 1.1

Problem 1. Solve the following boundary value problem:

y′′ + 3y = sin(t)

y(0) = 0, y(5π) =
π

2
.

Plot your solution.

4 Lab 1. Obstacle Avoidance

0 2 4 6 8 10 12 14 16
t

2

1

0

1

2

y(
t)

Figure 1.2: The solution to problem 1.

Pontryagin’s Maximum Principle
Now that we understand how to solve boundary value problems, we can apply this to solve optimal

control problems. Pontryagin's Maximum Principle is a very common way to formulate control

problems as BVPs.

Fixed Time, Fixed Endpoint

We will begin with the more simple �xed time horizon problems. Fixed time horizon problems

are commonly reformulated as boundary value problems, and we can apply what we have already

learned about solving BVPs to make these problems easier to solve. We introduce �xed time horizon

problems with a cost functional of the following form

J(u) =

∫ tf

t0

L(t, s(t), u(t))dt+K(tf , sf), (1.2)

where t0 and tf are �xed. In this functional, L(t, s(t), u(t)) represents the cost of a certain path

determined by the control u, and K(tf , sf) is the terminal cost. We also have that

ṡ = f(t, s, u), s0 = s(t0), sf = s(tf). (1.3)

In these equations t is time, s is the state variable, and u is the control variable. The maximum

principle also uses the Hamiltonian equation

H(t, s, u, p) = 〈p, f(t, s, u)〉 − L(t, s, u), (1.4)

5

where p is a newly introduced variable called the costate. This Hamiltonian is then used to de�ne

an ODE system. This �rst equation de�nes a costate ODE system

ṗ∗ = −Hs(t, s
∗, u∗, p∗), (1.5)

where a variable marked with an asterisk is the optimal choice of that variable, meaning that equation

1.5 is only true for the optimal state s∗, costate p∗, and control u∗ functions. This next equation will

allow us to solve for the control in terms of the state and costate

0 = Hu(t, s
∗, u∗, p∗), ∀t ∈ [t0, tf]. (1.6)

The combination of these equations will allow us to create a BVP that will solve for the optimal

control u∗ and the associated states s∗. Our ODE comes from 1.3, 1.5, and 1.6, and the boundary

values will come from our initial and �nal conditions on s.

Avoiding Collision

One area of application that relies heavily on optimal control is autonomous driving. A common

problem in autonomous driving is the avoidance of obstacles. In this section we will outline a naïve

solution to obstacle avoidance with a �xed time horizon.

First we can begin by de�ning our state variable s. We will want to understand the position

and velocity at a given time so we will de�ne the following state variable

s(t) =


x(t)

y(t)

ẋ(t)

ẏ(t)

 =


s1(t)

s2(t)

s3(t)

s4(t)

 , (1.7)

which allows us to track those states in R2.

We can then establish the ODE de�ned in equation 1.3 by examining ṡ(t)

ṡ(t) =


ṡ1(t)

ṡ2(t)

ṡ3(t)

ṡ4(t)

 =


ẋ(t)

ẏ(t)

ẍ(t)

ÿ(t)

 ,
and if we de�ne our control u1 and u2 to be acceleration in the x and y directions respectively, then

we have

ṡ(t) = f(t, s, u) =


s3(t)

s4(t)

u1(t)

u2(t)

 . (1.8)

Next we will de�ne an obstacle. Since we are using integration to de�ne cost, a reasonable way

to model an obstacle in this problem would be to use a function. It would be helpful if this function

is malleable, allowing us to reposition and resize it, based on the needs of the speci�c situation. This

function also needs to have a large, preferably positive, value in a concentrated location, and it needs

to vanish relatively quickly. A decent selection could be a function based on an ellipse, such as this

function

C(x, y) =
W1

((x− cx)2/rx + (y − cy)2/ry)λ + 1
. (1.9)

6 Lab 1. Obstacle Avoidance

With the function 1.9 we can manipulate the center by changing cx and cy, and we can control the

size by changing rx and ry. Changing the constant W1 allows us to change the relative penalty of

occupying the same location as the obstacle, and a reasonable value for λ will control the vanishing

rate. We will also include a term in the cost functional that weights against high acceleration. This

will allow us to model the real world more accurately, though the term we will be using is not a

perfect representation of real world acceleration limitations. Our cost functional is the following

J(u) =

∫ tf

t0

1 + C(x(t), y(t)) +W2 |u(t)|2 dt, (1.10)

where W2 > 0 de�nes the relative penalty of high acceleration. This functional will penalize passing

near the obstacle and high levels of acceleration.

With the cost functional de�ned, we can now create the Hamiltonian and the rest of our BVP.

We get the following Hamiltonian

H(t, p, s, u) = p1s3 + p2s4 + p3u1 + p4u2 −
(
1 + C(x, y) +W2 |u(t)|2

)
, (1.11)

which gives the following costate ODE by equation 1.5

ṗ =


ṗ1
ṗ2
ṗ3
ṗ4

 =


Cx(x, y)

Cy(x, y)

−p1
−p2

 . (1.12)

Since we're given Hu = 0 in equation 1.6, then we also have the following relations

u1(t) =
1

2W2
p3(t)

u2(t) =
1

2W2
p4(t).

(1.13)

Problem 2. Using the ODEs found in 1.8 and 1.12, the obstacle function 1.9, and the following

boundary conditions and parameters solve for and plot the optimal path.

t0 = 0, tf = 20

(cx, cy) = (4, 1)

(rx, ry) = (5, .5)

λ = 20

s0 =


6

1.5

0

0

, sf =


0

0

0

0


You will need to choose a W1 and W2 which allow the solver to �nd a valid path. If these

parameters are not chosen correctly, the solver may �nd a path which goes through the obstacle,

not around it. Plot the obstacle using plt.contour() to see be certain path doesn't pass

through the obstacle.

Hint: The default for a parameter of solve_bvp called max_nodes is not large enough.

7

Try at least max_nodes = 30000. You may also �nd it helpful to use the function partial

from the module functools to preset the parameters for the functions you will be using.

0 1 2 3 4 5 6 7
x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

y

optimal path

Figure 1.3: Solution to problem 2 for certain choice of parameters

Free Time Horizon Problems
In the previous sections and problems, we were working with BVPs that had a �xed start time t0,

and a �xed end time tf . However, we may also encounter systems that have a free end time. In order

to solve these problems we will need to make some alterations to the problem. First we will perform

a change of basis so that we can work with a �xed end time. Consider the following system

ẋ(t) = f(x(t), t) t ∈ [0, tf],

we can do the following change of basis for the time variable

t = tf t̂

=⇒ d

dt
=

d

dt̂

dt̂

dt

=⇒ d

dt
=

d

dt̂

1

tf
.

We can now de�ne z(t̂) := x(tf t̂) which gives us the following new system

ż
(
t̂
)
= tff

(
z
(
t̂
)
, t̂
)

t̂ ∈ [0, 1].

8 Lab 1. Obstacle Avoidance

This system can be solved in the same way we solve the �xed time horizon problems. But you may

notice that we now have an extra unknown parameter, the �nal time. Because of this, a free time

horizon problem will need one more boundary value to make the system solvable.

So lets examine the earlier example as a free time horizon problem. We start with the ODE

system we derived from the second order equation, replacing the �xed �nal time with a free �nal

time and including the needed third boundary condition

[
y1
y2

]′
=

[
y2

cos(t)− 9y1

]
, y1(0) = 5/3, y2(0) = 5, y1(tf) = −

5

3
.

Now we make the coordinate change giving the following system

[
z1
z2

]′
= tf

[
z2

cos(t̂)− 9z1

]
, z1(0) = 5/3, z2(0) = 5, z1(1) = −

5

3
. (1.14)

Now we can solve this system using solve_bvp in python. The new argument p that we have included

in ode() and bc() is an ndarray that contains our parameter tf .

def ode(t,y,p):

''' define the ode system '''

return p[0]*np.array([y[1], np.cos(t) - 9*y[0]])

def bc(ya,yb,p):

''' define the boundary conditions '''

return np.array([ya[0] - (5/3), ya[1] - 5, yb[0] + 5/3])

give the time domain

t_steps = 100

t = np.linspace(0,1,t_steps)

give an initial guess

y0 = np.ones((2,t_steps))

p0 = np.array([6])

solve the system

sol = solve_bvp(ode, bc, t, y0, p0)

The attribute sol.p[0] will give the �nal time the solver found.

When plotting we need to make sure that we remember that x(tf t̂) = z(t̂), so we plot in the

following way

plt.plot(sol.p[0]*t,sol.sol(t)[0])

plt.xlabel('t')

plt.ylabel('y(t)')

plt.show()

9

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

2

1

0

1

2

y(
t)

Figure 1.4: The solution to 1.14

Problem 3. Solve the following boundary value problem:

y′′ + 3y = sin(t)

y(0) = 0, y(tf) =
π

2
, y′(tf) =

1

2

(√
3π cot(π

√
75)− 1

)
.

Plot your solution. What tf did the solver �nd?

Free Time, Fixed Endpoint Control Problems
Now that we understand how to formulate free time horizon problems, we can modify our optimal

control BVP to become a free time horizon problem. This is actually the best way to formulate many

optimal control problems, as we usually don't know exactly how long it takes to traverse the optimal

path. The methodology is exactly the same as we used in the last problem, we only need to �nd the

extra boundary value which will allow us to make the end time a free variable.

To �nd this extra boundary value we will use the fact that the Hamiltonian is 0 for all t along

the optimal path. It is standard to use the �nal time as the representative so we will assert that

H(tf , p(tf), s(tf), u(tf)) = 0. (1.15)

You may notice that when you solve an optimal control problem as a free end time BVP, the

optimal path you get is di�erent than what you found when it was a �xed end time BVP. This is

10 Lab 1. Obstacle Avoidance

because the free end time solution actually arrives faster. The solution found in the �xed end time

formulation is the optimal path for a certain �xed end time, but it may not be the overall fastest

path that avoids the obstacle.

Problem 4. Refactor your code from problem 2 to create a free end time BVP and use a new

boundary value derived from 1.15. Plot the solution you found. What is the optimal time?

0 1 2 3 4 5 6 7
x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

y

Solution to the Free End Time BVP
optimal path

Figure 1.5: The solution to 4

	Obstacle Avoidance

