
2 Web Crawling

Lab Objective: Gathering data from the internet often requires information from several web

pages. In this lab, we present two methods for crawling through multiple web pages without violating

copyright laws or straining the load on a server. We also demonstrate how to scrape data from

asynchronously loaded web pages and how to interact programmatically with web pages when needed.

Scraping Etiquette
There are two main ways that web scraping can be problematic for a website owner.

1. The scraper doesn't respect the website's terms and conditions or gathers private or proprietary

data.

2. The scraper imposes too much extra server load by making requests too often or in quick

succession.

These are extremely important considerations in any web scraping program. Scraping copyrighted

information without the consent of the copyright owner can have severe legal consequences. Many

websites, in their terms and conditions, prohibit scraping parts or all of the site. Websites that do

allow scraping usually have a �le called robots.txt (for example, www.google.com/robots.txt)

that speci�es which parts of the website are o�-limits, and how often requests can be made according

to the robots exclusion standard.1

Achtung!

Be careful and considerate when doing any sort of scraping, and take care when writing and

testing code to avoid unintended behavior. It is up to the programmer to create a scraper that

respects the rules found in the terms and conditions and in robots.txt. Make sure to scrape

websites legally.

Recall that consecutive requests without pauses can strain a website's server and provoke retal-

iation. Most servers are designed to identify such scrapers, block their access, and sometimes even

1See www.robotstxt.org/orig.html and en.wikipedia.org/wiki/Robots_exclusion_standard.

1

www.google.com/robots.txt
http://www.robotstxt.org/orig.html
https://en.wikipedia.org/wiki/Robots_exclusion_standard

2 Lab 2. Web Crawling

blacklist the user. This is especially common in smaller websites that aren't built to handle enormous

amounts of tra�c. To brie�y pause the program between requests, use time.sleep().

>>> import time

>>> time.sleep(3) # Pause execution for 3 seconds.

The amount of necessary wait time depends on the website. Sometimes, robots.txt contains

a Crawl-delay directive which gives a number of seconds to wait between successive requests. If

this doesn't exist, pausing for a half-second to a second between requests is typically su�cient. An

email to the site's webmaster is always the safest approach and may be necessary for large scraping

operations.

Python provides a parsing library called urllib.robotparser for reading robot.txt �les.

Below is an example of using this library to check where robots are allowed on arxiv.org. A website's

robots.txt �le will often include di�erent instructions for speci�c crawlers. These crawlers are

identi�ed by a User-agent string. For example, Google's webcrawler, User-agent Googlebot, may

be directed to index only the pages the website wants to have listed on a Google search. We will use

the default User-agent, "*".

>>> from urllib import robotparser

>>> rp = robotparser.RobotFileParser()

Set the URL for the robots.txt file. Note that the URL contains `robots.txt'

>>> rp.set_url("https://arxiv.org/robots.txt")

>>> rp.read()

Request the crawl-delay time for the default User-agent

>>> rp.crawl_delay("*")

15

Check if User-agent "*" can access the page

>>> rp.can_fetch("*", "https://arxiv.org/archive/math/")

True

>>> rp.can_fetch("*", "https://arxiv.org/IgnoreMe/")

False

Problem 1. Write a program that accepts a web address defaulting to the site http://

example.webscraping.com and a list of pages defaulting to ["/", "/trap", "/places/default

/search"]. For each page, check if the robots.txt �le permits access. Return a list of boolean

values corresponding to each page. Also return the crawl delay time.

Crawling Through Multiple Pages
While web scraping refers to the actual gathering of web-based data, web crawling refers to the

navigation of a program between webpages. Web crawling allows a program to gather related data

from multiple web pages and websites.

Consider books.toscrape.com, a site to practice web scraping that mimics a bookstore. The

page http://books.toscrape.com/catalogue/category/books/mystery_3/index.html lists mys-

tery books with overall ratings and review. More mystery books can be accessed by clicking on the

http://example.webscraping.com
http://example.webscraping.com
http://books.toscrape.com
http://books.toscrape.com/catalogue/category/books/mystery_3/index.html

3

next link. The following example demonstrates how to navigate between webpages to collect all of

the mystery book titles.

def scrape_books(start_page = "index.html"):

""" Crawl through http://books.toscrape.com and extract mystery titles"""

Initialize variables, including a regex for finding the 'next' link.

base_url="http://books.toscrape.com/catalogue/category/books/mystery_3/"

titles = []

page = base_url + start_page # Complete page URL.

next_page_finder = re.compile(r"next") # We need this button.

current = None

for _ in range(4):

while current == None: # Try downloading until it works.

Download the page source and PAUSE before continuing.

page_source = requests.get(page).text

time.sleep(1) # PAUSE before continuing.

soup = BeautifulSoup(page_source, "html.parser")

current = soup.find_all(class_="product_pod")

Navigate to the correct tag and extract title

for book in current:

titles.append(book.h3.a["title"])

Find the URL for the page with the next data.

if "page-4" not in page:

new_page = soup.find(string=next_page_finder).parent["href"]

page = base_url + new_page # New complete page URL.

current = None

return titles

In this example, the for loop cycles through the pages of books, and the while loop ensures

that each website page loads properly: if the downloaded page_source doesn't have a tag whose

class is product_pod, the request is sent again. After recording all of the titles, the function locates

the link to the next page. This link is stored in the HTML as a relative website path (page-2.html);

the complete URL to the next day's page is the concatenation of the base URL http://books.

toscrape.com/catalogue/category/books/mystery_3/ with this relative link.

Problem 2. Modify scrape_books() so that it gathers the price for each �ction book and

returns the mean price, in £, of a �ction book.

Asynchronously Loaded Content and User Interaction
Web crawling with the methods presented in the previous section fails under a few circumstances.

First, many webpages use JavaScript, the standard client-side scripting language for the web, to

http://books.toscrape.com/catalogue/category/books/mystery_3/
http://books.toscrape.com/catalogue/category/books/mystery_3/

4 Lab 2. Web Crawling

load portions of their content asynchronously. This means that at least some of the content isn't

initially accessible through the page's source code (for example, if you have to scroll down to load

more results). Second, some pages require user interaction, such as clicking buttons which aren't

links (<a> tags which contain a URL that can be loaded) or entering text into form �elds (like search

bars).

The Selenium framework provides a solution to both of these problems. Originally developed

for writing unit tests for web applications, Selenium allows a program to open a web browser and

interact with it in the same way that a human user would, including clicking and typing. It also has

BeautifulSoup-esque tools for searching the HTML source of the current page.

Note

Selenium requires an executable driver �le for each kind of browser. The following examples

use Google Chrome, but Selenium supports Firefox, Internet Explorer, Safari, Opera, and

PhantomJS (a special browser without a user interface). See https://seleniumhq.github.io/

selenium/docs/api/py or http://selenium-python.readthedocs.io/installation.html

for installation instructions and driver download instructions.

If your program still can't �nd the driver after you've downloaded it, add the argument

executable_path = "path/to/driver/file" when you call webdriver. If this doesn't work,

you may need to add the location to your system PATH. On a Mac, open the �le /etc/path and

add the new location. On Linux, add export PATH="path/to/driver/file:$PATH" to the �le

/.bashrc . For Windows, follow a tutorial such as this one: https://www.architectryan.

com/2018/03/17/add-to-the-path-on-windows-10/.

To use Selenium, start up a browser using one of the drivers in selenium.webdriver. The

browser has a get() method for going to di�erent web pages, a page_source attribute containing

the HTML source of the current page, and a close() method to exit the browser.

>>> from selenium import webdriver

Start up a browser and go to example.com.

>>> browser = webdriver.Chrome()

>>> browser.get("https://www.example.com")

Feed the HTML source code for the page into BeautifulSoup for processing.

>>> soup = BeautifulSoup(browser.page_source, "html.parser")

>>> print(soup.prettify())

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>

Example Domain

</title>

<meta charset="utf-8"/>

<meta content="text/html; charset=utf-8" http-equiv="Content-type"/>

...

>>> browser.close() # Close the browser.

https://seleniumhq.github.io/selenium/docs/api/py
https://seleniumhq.github.io/selenium/docs/api/py
http://selenium-python.readthedocs.io/installation.html
https://www.architectryan.com/2018/03/17/add-to-the-path-on-windows-10/
https://www.architectryan.com/2018/03/17/add-to-the-path-on-windows-10/

5

Selenium can deliver the HTML page source to BeautifulSoup, but it also has its own tools for

�nding tags in the HTML.

Method Returns

find_element_by_tag_name() The �rst tag with the given name

find_element_by_name() The �rst tag with the speci�ed name attribute

find_element_by_class_name() The �rst tag with the given class attribute

find_element_by_id() The �rst tag with the given id attribute

find_element_by_link_text() The �rst tag with a matching href attribute

find_element_by_partial_link_text() The �rst tag with a partially matching href attribute

Table 2.1: Methods of the selenium.webdriver.Chrome class.

Each of the find_element_by_*() methods returns a single object representing a web element

(of type selenium.webdriver.remote.webelement.WebElement), much like a BeautifulSoup tag (of

type bs4.element.Tag). If no such element can be found, a Selenium NoSuchElementException is

raised. If you want to �nd more than just the �rst matching object, each webdriver also has several

find_elements_by_*() methods (elements, plural) that return a list of all matching elements, or

an empty list if there are no matches.

Web element objects have methods that allow the program to interact with them: click()

sends a click, send_keys() enters in text, and clear() deletes existing text. This functionality

makes it possible for Selenium to interact with a website in the same way that a human would. For

example, the following code opens up https://www.google.com, types �Python Selenium Docs� into

the search bar, and hits enter.

>>> from selenium.webdriver.common.keys import Keys

>>> from selenium.common.exceptions import NoSuchElementException

>>> browser = webdriver.Chrome()

>>> try:

... browser.get("https://www.google.com")

... try:

... # Get the search bar, type in some text, and press Enter.

... search_bar = browser.find_element_by_name('q')

... search_bar.clear() # Clear any pre-set text.

... search_bar.send_keys("Python Selenium Docs")

... search_bar.send_keys(Keys.RETURN) # Press Enter.

... except NoSuchElementException:

... print("Could not find the search bar!")

... raise

... finally:

... browser.close()

...

6 Lab 2. Web Crawling

Problem 3. The website IMDB contains a variety of information on movies. Speci�cally,

information on the top 10 box o�ce movies of the week can be found at https://www.imdb.

com/chart/boxoffice. Using Beau�ulSoup, Selenium, or both, return a numbered list, with

each title on a new row, of the top 10 movies of the week and order the list according to the

total grossing of the movies, from most money to the least. Break ties using the weekend gross,

from most money to the least.

Using CSS Selectors
In addition to the methods listed in Table 2.1, you can also use CSS or XPath selectors to interact

more precisely with the page source. Refer to Table 3 from the WebScraping lab for a review of

CSS syntax. The following code searches Google for �Python Selenium Docs� and then clicks on the

second result.

#As before, go to Google and type in the search bar,

but this time we use CSS selectors

>>> from selenium.webdriver.common.keys import Keys

>>> from selenium.common.exceptions import NoSuchElementException

>>> browser = webdriver.Chrome()

>>> try:

... browser.get("https://google.com")

... try:

... search_bar = browser.find_element_by_css_selector(

"input[name='q']")

... search_bar.clear()

... search_bar.send_keys("Python Selenium Docs")

... search_bar.send_keys(Keys.RETURN)

... try:

... # Wait a second, then get the second search result

... time.sleep(1)

... # "+ div" returns the element's next sibling with a "div" tag

... second_result = browser.find_element_by_css_selector(

"div[class='g'] + div")

... try:

... # Get the link, which is a child of second_result

... link = second_result.find_element_by_css_selector(

"div[class='r']")

... link.click()

... time.sleep(1)

... #Remember to handle exceptions

... except NoSuchElementException:

... print("Could not find link")

... except NoSuchElementException:

... print("Could not find second result")

https://www.imdb.com/chart/boxoffice
https://www.imdb.com/chart/boxoffice

7

... except NoSuchElementException:

... print("Could not find the search bar")

... finally:

... browser.close()

In the above example, we could have used find_element_by_class_name(), but when you need

more precision than that, CSS selectors can be very useful. Remember that to view speci�c HTML

associated with an object in Chrome or Firefox, you can right click on the object and click �Inspect.�

For Safari, you need to �rst enable �Show Develop menu� in �Preferences� under �Advanced.� Keep

in mind that you can also search through the source code (ctrl+f or cmd+f) to make sure you're

using a unique identi�er.

Note

Using Selenium to access a page's source code is typically much safer, though slower, than

using requests.get(), since Selenium waits for each web page to load before proceeding. For

instance, some websites are somewhat defensive about scrapers, but Selenium can sometimes

make it possible to gather info without o�ending the administrators.

Problem 4. Project Euler (https://projecteuler.net) is a collection of mathematical com-

puting problems. Each problem is listed with an ID, a description/title, and the number of

users that have solved the problem.

Using Selenium, BeautifulSoup, or both, record the number of people who have solved

each of the 700+ problems in the archive at https://projecteuler.net/archives. Plot the number

of people who have solved each problem against the problem IDs, using a log scale for the

y-axis. Display the scatter plot, then state the IDs of which problems have been solved most

and least number of times.

Problem 5. The website http://example.webscraping.com contains a list of countries of the

world. Using Selenium, go to the search page, enter the letters "ca", and hit enter. Remember

to use the crawl delay time you found in Problem 1 so you don't send your requests too fast.

Gather the href links associated with the <a> tags of all 10 displayed results. Print each link

on a di�erent line.

https://projecteuler.net
http://example.webscraping.com

	Web Crawling

