
4 Pandas 2: Plotting

Lab Objective: Clear, insightful visualizations are a crucial part of data analysis. To facilitate

quick data visualization, pandas includes several tools that wrap around matplotlib. These tools make

it easy to compare di�erent parts of a data set, explore the data as a whole, and spot patterns and

correlations the data.

Overview of Plotting Tools
The main tool for visualization in pandas is the plot() method for Series and DataFrames. The

method has a keyword argument kind that speci�es the type of plot to draw. The valid options for

kind are detailed below.

Plot Type plot() ID Uses and Advantages

Line plot "line" Show trends ordered in data; easy to compare multiple data sets

Scatter plot "scatter" Compare exactly two data sets, independent of ordering

Bar plot "bar", "barh" Compare categorical or sequential data

Histogram "hist" Show frequencies of one set of values, independent of ordering

Box plot "box" Display min, median, max, and quartiles; compare data distributions

Hexbin plot "hexbin" 2D histogram; reveal density of cluttered scatter plots

Table 4.1: Types of plots in pandas. The plot ID is the value of the keyword argument kind. That

is, df.plot(kind="scatter") creates a scatter plot. The default kind is "line".

The plot() method calls plt.plot(), plt.hist(), plt.scatter(), and other matplotlib

plotting functions, but it also assigns axis labels, tick marks, legends, and a few other things based

on the index and the data. Most calls to plot() specify the kind of plot and which Series to use

as the x and y axes. By default, the index of the Series or DataFrame is used for the x axis.

>>> import pandas as pd

>>> from matplotlib import pyplot as plt

>>> budget = pd.read_csv("budget.csv", index_col="Date")

>>> budget.plot(y="Rent") # Plot rent against the index (date).

1

2 Lab 4. Pandas 2: Plotting

In this case, the call to the plot() method is essentially equivalent to the following code.

>>> plt.plot(budget.index, budget['Rent'], label='Rent')

>>> plt.xlabel(budget.index.name)

>>> plt.xlim(min(budget.index), max(budget.index))

>>> plt.legend(loc='best')

The plot() method also takes in many keyword arguments for matplotlib plotting and an-

notation functions. For example, setting legend=False disables the legend, providing a value for

title sets the �gure title, grid=True turns a grid on, and so on. For more customizations, see

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.plot.html.

Visualizing an Entire Data Set

A good way to start analyzing an unfamiliar data set is to visualize as much of the data as possible

to determine which parts are most important or interesting. For example, since the columns in a

DataFrame share the same index, the columns can all be graphed together using the index as the

x-axis. By default, the plot() method attempts to plot every Series (column) in a DataFrame.

This is especially useful with sequential data, like the budget data set.

Plot all columns together against the index.

>>> budget.plot(title="All Budgets",linewidth=1)

>>> budget.drop(["Rent"], axis=1).plot(linewidth=1,title="All Budgets Except ←↩
Rent")

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.plot.html

3

(a) All columns of the budget data set on the same

�gure, using the index as the x-axis.

(b) All columns of the budget data set except

"Living Expenses" and "Rent".

Figure 4.1

While plotting every Series at once can give an overview of all the data, the resulting plot is

often di�cult for the reader to understand. For example, the budget data set has 9 columns, so the

resulting �gure, Figure 4.1a, is fairly cluttered.

One way to declutter a visualization is to examine less data. Notice that 'Living Expenses'

has values much bigger than the other columns. Dropping this column, as well as 'Rent', gives a

better overview of the data, shown in Figure 4.1b.

Achtung!

Often plotting all data at once is unwise because columns have di�erent units of measure.

Be careful not to plot parts of a data set together if those parts do not have the same units or

are otherwise incomparable.

Another way to declutter a plot is to use subplots. To quickly plot several columns in sepa-

rate subplots, use subplots=True and specify a shape tuple as the layout for the plots. Subplots

automatically share the same x-axis. Set sharey=True to force them to share the same y-axis as

well.

>>> budget.plot(y=['Dining Out','Gas','Out With Friends', 'Netflix'],

... subplots=True, layout=(2,2), sharey=True,

... style=['-','--','-.',':'],title="Plots of Dollars Spent for Different ←↩
Budgets")

4 Lab 4. Pandas 2: Plotting

As mentioned previously, the plot() method can be used to plot di�erent kinds of plots. One

possible kind of plot is a histogram. Since plots made by the plot() method share an x-axis by

default, histograms turn out poorly whenever there are columns with very di�erent data ranges or

when more than one column is plotted at once.

Plot three histograms together.

>>> budget.plot(kind='hist',y=['Gas','Dining Out','Out With Friends'],

... alpha=.7,bins=10,title="Frequency of Amount (in dollars) Spent")

Plot three histograms, stacking one on top of the other.

>>> budget.plot(kind='hist',y=['Gas','Dining Out','Out With Friends'],

... bins=10,stacked=True,title="Frequency of Amount (in dollars) Spent")

Figure 4.2: Two examples of histograms that are di�cult to understand because multiple columns

are plotted.

5

Thus, histograms are good for examining the distribution of a single column in a data set. For

histograms, use the hist() method of the DataFrame instead of the plot() method. Specify the

number of bins with the bins parameter. Choose a number of bins that accurately represents the

data; the wrong number of bins can create a misleading or uninformative visualization.

>>> budget[["Dining Out","Gas"]].hist(grid=False,bins=10)

Figure 4.3: Histograms of "Dining Out" and "Gas".

Problem 1. Create 3 visualizations for the data in crime_data.csv. Make one of the visual-

izations a histogram. The visualizations should be well labeled and easy to understand. Include

a short description of your plots as a caption.

Patterns and Correlations
After visualizing the entire data set initially, a good next step is to closely compare related parts of

the data. This can be done with di�erent types of visualizations. For example, Figure 4.1b suggests

that the "Dining Out" and "Out With Friends" columns are roughly on the same scale. Since

this data is sequential (indexed by time), start by plotting these two columns against the index.

Next, create a scatter plot of one of the columns versus the other to investigate correlations that are

independent of the index. Unlike other types of plots, using kind="scatter" requires both x and y

columns as arguments.

Plot 'Dining Out' and 'Out With Friends' as lines against the index.

>>> budget.plot(y=["Dining Out", "Out With Friends"],title="Amount Spent on ←↩
Dining Out and Out with Friends per Day")

6 Lab 4. Pandas 2: Plotting

Make a scatter plot of 'Dining Out' against 'Out With Friends'

>>> budget.plot(kind="scatter", x="Dining Out", y="Out With Friends",

... alpha=.8,xlim=(0,max(budget['Dining Out'])+1),

... ylim=(0,max(budget['Out With Friends'])+1))

Figure 4.4: Correlations between "Dining Out" and "Out With Friends".

The �rst plot shows us that more money is spent on dining out than being out with friends

overall. However, both categories stay in the same range for most of the data. This is con�rmed in

the scatter plot by the block in the upper right corner, indicating the common range spent on dining

out and being out with friends.

Achtung!

When analyzing data, especially while searching for patterns and correlations, always ask

yourself if the data makes sense and is trustworthy. What lurking variables could have in�uenced

the data measurements as they were being gathered?

The crime data set from Problem 1 is somewhat suspect in this regard. The murder rate is

likely accurate, since murder is conspicuous and highly reported, but what about the rape rate?

Are the number of rapes increasing, or is the percentage of rapes being reported increasing?

It's probably both! Be careful about drawing conclusions for sensitive or questionable data.

Another useful visualization used to understand correlations in a data set is a scatter matrix.

The function pd.plotting.scatter_matrix() produces a table of plots where each column is plotted

against each other column in separate scatter plots. The plots on the diagonal, instead of plotting

a column against itself, displays a histogram of that column. This provides a very quick method for

an initial analysis of the correlation between di�erent columns.

>>> pd.plotting.scatter_matrix(budget[['Living Expenses','Other']])

7

950

1000

1050

Liv
in

g
Ex

pe
ns

es

95
0

10
00

10
50

Living Expenses

30

40

50

60

70

Ot
he

r

30 40 50 60 70

Other

Figure 4.5: Scatter matrix comparing "Living Expenses" and "Other".

Bar Graphs

Di�erent types of graphs help to identify di�erent patterns. Note that the data set budget gives

monthly expenses. It may be bene�cial to look at one speci�c month. Bar graphs are a good way to

compare small portions of the data set.

As a general rule, horizontal bar charts (kind="barh") are better than the default vertical bar

charts (kind="bar") because most humans can detect horizontal di�erences more easily than vertical

di�erences. If the labels are too long to �t on a normal �gure, use plt.tight_layout() to adjust

the plot boundaries to �t the labels in.

Plot all data for the last month in the budget

>>> budget.iloc[-1,:].plot(kind='barh')

>>> plt.tight_layout()

Plot all data for the last month without 'Rent' and 'Living Expenses'

>>> budget.drop(['Rent','Living Expenses'],axis=1).iloc[-1,:].plot(kind='barh')

>>> plt.tight_layout()

8 Lab 4. Pandas 2: Plotting

0 200 400 600 800 1000

Rent

Utilities

Groceries

Dining Out

Gas

Out With Friends

Netflix

Living Expenses

Other

0 20 40 60 80 100 120 140

Utilities

Groceries

Dining Out

Gas

Out With Friends

Netflix

Other

Figure 4.6: Bar graphs showing expenses paid in the last month of budget.

Problem 2. Using the crime data from the previous problem, identify if a trend exists between

Forcible Rape and the following variables:

1. Violent

2. Burglary

3. Aggravated Assault

Make sure each graph is clearly labelled and readable. Include a caption explaining

whether there is a visual trend between the variables.

Distributional Visualizations

While histograms are good at displaying the distributions for one column, a di�erent visualization is

needed to show the distribution of an entire set. A box plot, sometimes called a �cat-and-whisker� plot,

shows the �ve number summary: the minimum, �rst quartile, median, third quartile, and maximum

of the data. Box plots are useful for comparing the distributions of relatable data. However, box

plots are a basic summary, meaning that they are susceptible to miss important information such as

how many points were in each distribution.

Compare the distributions of four columns.

>>> budget.plot(kind="box", y=["Gas","Dining Out","Out With Friends","Other"])

Compare the distributions of all columns but 'Rent' and 'Living Expenses'.

>>> budget.drop(["Rent", "Living Expenses"], axis=1).plot(kind="box",

... vert=False)

9

Gas Dining Out Out With Friends Other
0

10

20

30

40

50

60

70

0 25 50 75 100 125 150 175

Utilities

Groceries

Dining Out

Gas

Out With Friends

Netflix

Other

Figure 4.7: Vertical and horizontal box plots of budget dataset.

Hexbin Plots

A scatter plot is essentially a plot of samples from the joint distribution of two columns. However,

scatter plots can be uninformative for large data sets when the points in a scatter plot are closely

clustered. Hexbin plots solve this problem by plotting point density in hexagonal bins�essentially

creating a 2-dimensional histogram.

The �le sat_act.csv contains 700 self reported scores on the SAT Verbal, SAT Quantitative

and ACT, collected as part of the Synthetic Aperture Personality Assessment (SAPA) web based

personality assessment project. The obvious question with this data set is �how correlated are ACT

and SAT scores?� The scatter plot of ACT scores versus SAT Quantitative scores, Figure 4.8a, is

highly cluttered, even though the points have some transparency. A hexbin plot of the same data,

Figure 4.8b, reveals the frequency of points in binned regions.

10 Lab 4. Pandas 2: Plotting

>>> satact = pd.read_csv("sat_act.csv", index_col="ID")

>>> list(satact.columns)

['gender', 'education', 'age', 'ACT', 'SATV', 'SATQ']

Plot the ACT scores against the SAT Quant scores in a regular scatter plot.

>>> satact.plot(kind="scatter", x="ACT", y="SATQ", alpha=.8)

Plot the densities of the ACT vs. SATQ scores with a hexbin plot.

>>> satact.plot(kind="hexbin", x="ACT", y="SATQ", gridsize=20)

5 10 15 20 25 30 35
ACT

200

300

400

500

600

700

800

SA
TQ

(a) ACT vs. SAT Quant scores.

10 20 30
ACT

200

300

400

500

600

700

800

SA
TQ

0

5

10

15

20

25

30

(b) Frequency of ACT vs. SAT Quant scores.

Figure 4.8: Scatter plots and hexbin plot of SAT and ACT scores.

Just as choosing a good number of bins is important for a good histogram, choosing a good

gridsize is crucial for an informative hexbin plot. A large gridsize creates many small bins and a

small gridsize creates fewer, larger bins.

Note

Since hexbins are based on frequencies, they are prone to being misleading if the dataset is not

understood well. For example, when plotting information that deals with geographic position,

increases in frequency may be results in higher populations rather than the actual information

being plotted.

See http://pandas.pydata.org/pandas-docs/stable/visualization.html for more types

of plots available in Pandas and further examples.

Problem 3. Use crime_data.csv to display the following distributions.

1. The distributions of Burglary, Violent, and Vehicle Theft,

2. The distributions of Vehicle Thefts against the values of Robbery.

http://pandas.pydata.org/pandas-docs/stable/visualization.html

11

As usual, all plots should be labeled and easy to read.

Hint: To get the x-axis label to display, you might need to set the sharex parameter of

plot() to False.

Principles of Good Data Visualization
Data visualization is a powerful tool for analysis and communication. When writing a paper or

report, the author must make many decisions about how to use graphics e�ectively to convey useful

information to the reader. Here we will go over a simple process for making deliberate, e�ective, and

e�cient design decisions.

Attention to Detail

Consider the plot in Figure 4.9. It is a scatter plot of positively correlated data of some kind, with

temp�likely temperature�on the x axis and cons on the y axis. However, the picture is not really

communicating anything about the dataset. It has not speci�ed the units for the x or the y axis, nor

does it tell what cons is. There is no title, and the source of the data is unknown.

30 40 50 60 70
temp

0.25

0.30

0.35

0.40

0.45

0.50

0.55

co
ns

Figure 4.9: Non-speci�c data.

Labels and Citations

In a homework or lab setting, we sometimes (mistakenly) think that it is acceptable to leave o�

appropriate labels, legends, titles, and sourcing. In a published report or presentation, this kind of

carelessness is confusing at best and, when the source is not included, even plagiaristic. Data needs

to be explained in a useful manner that includes all of the vital information.

Consider again Figure 4.9. This �gure comes from the Icecream dataset within the pydataset

package, which we store here in a dataframe and then plot:

>>> from pydataset import data

>>> icecream = data("Icecream")

12 Lab 4. Pandas 2: Plotting

>>> icecream.plot(kind="scatter", x="temp", y="cons")

This code produces the rather substandard plot in Figure 4.9. Examining the source of the

dataset can give important details to create better plots. When plotting data, make sure to under-

stand what the variable names represent and where the data was taken from. Use this information

to create a more e�ective plot.

The ice cream data used in Figure 4.9 is better understood with the following information:

1. The dataset details ice cream consumption via 30 four-week periods from March 1951 to July

1953 in the United States.

2. cons corresponds to �consumption of ice cream per capita� and is measured in pints.

3. income is the family's weekly income in dollars.

4. price is the price of a pint of ice cream.

5. temp corresponds to temperature, degrees Fahrenheit.

6. The listed source is: �Hildreth, C. and J. Lu (1960) Demand relations with autocorrelated

disturbances, Technical Bulletin No 2765, Michigan State University.�

This information gives important details that can be used in the following code. As seen in

previous examples, pandas automatically generates legends when appropriate. Pandas also automat-

ically labels the x and y axes, however our data frame column titles may be insu�cient. Appropriate

titles for the x and y axes must also list appropriate units. For example, the y axis should specify

that the consumption is in units of pints per head, in place of the ambiguous label cons.

>>> icecream = data("Icecream")

Set title via the title keyword argument

>>> icecream.plot(kind="scatter", x="temp", y="cons",

... title="Ice Cream Consumption in the U.S., 1951-1953")

Override pandas automatic labelling using xlabel and ylabel

>>> plt.xlabel("Temp (Fahrenheit)")

>>> plt.ylabel("Consumption per head (pints)")

To add the necessary text to the �gure, use either plt.annotate() or plt.text(). Alter-

natively, add text immediately below wherever the �gure is displayed. The �rst two parameters of

plt.text are the x and y coordinates to place the text. The third parameter is the text to write.

For instance, using plt.text(0.5, 0.5, "Hello World") will center the Hello World string in the

axes.

>>> plt.text(20, .1, r"Source: Hildreth, C. and J. Lu (1960) \emph{Demand"

... "relations with autocorrelated disturbances}\nTechnical Bulletin No"

... "2765, Michigan State University.", fontsize=7)

Both of these methods are imperfect but can normally be easily replaced by a caption attached

to the �gure. Again, we reiterate how important it is that you source any data you use; failing to do

so is plagiarism.

Finally, we have a clear and demonstrative graphic in Figure 4.10.

13

30 40 50 60 70
Temp (Fahrenheit)

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Co
ns

um
pt

io
n

pe
r h

ea
d

(p
in

ts
)

Ice Cream Consumption in the U.S., 1951--1953

Figure 4.10: Source: Hildreth, C. and J. Lu (1960) Demand relations with autocorrelated disturbances,

Technical Bulletin No 2765, Michigan State University.

Achtung!

Visualizing data can inherit many biases of the visualizer and as a result can be intentionally

misleading. Examples of this include, but are not limited to, visualizing subsets of data that

do not represent the whole of the data and having purposely misconstrued axes. Every data

visualizer has the responsibility to avoid including biases in their visualizations to ensure data

is being represented informatively and accurately.

Problem 4. The dataset college.csv contains information from 1995 on universities in the

United States. To access information on variable names, go to https://cran.r-project.org/

web/packages/ISLR/ISLR.pdf. Create 3 plots that compare variables or universities. These

plots should answer questions about the data, e.g. what is the distribution of graduation rates

or do schools with lower student to faculty ratios have higher tuition costs. These three plots

should be easy to understand and have clear variable names and citations.

https://cran.r-project.org/web/packages/ISLR/ISLR.pdf
https://cran.r-project.org/web/packages/ISLR/ISLR.pdf

14 Lab 4. Pandas 2: Plotting

5 Numerical Methods
for Initial Value
Problems; Harmonic
Oscillators

Lab Objective: Implement several basic numerical methods for initial value problems (IVPs) and

use them to study harmonic oscillators.

Methods for Initial Value Problems
Consider the initial value problem (IVP)

x′(t) = f(x(t), t), t0 ≤ t ≤ tf
x(t0) = x0,

(5.1)

where f is a suitably continuous function. A solution of (5.1) is a continuously di�erentiable, and

possibly vector-valued, function x(t) = [x1(t), . . . , xm(t)]
T
, whose derivative x′(t) equals f(x(t), t)

for all t ∈ [t0, tf], and for which the initial value x(t0) equals x0.

Under the right conditions, namely that f is uniformly Lipschitz continuous in x(t) near x0

and continuous in t near t0, (5.1) is well-known to have a unique solution. However, for many IVPs,

it is di�cult, if not impossible, to �nd a closed-form, analytic expression for x(t). In these cases,

numerical methods can be used to instead approximate x(t).

As an example, consider the initial value problem

x′(t) = sin(x(t)),

x(0) = x0.
(5.2)

The solution x(t) is de�ned implicitly by

t = ln

∣∣∣∣ cos(x0) + cot(x0)

csc(x(t)) + cot(x(t))

∣∣∣∣ .
This equation cannot be solved for x(t), so it is di�cult to understand what solutions to (5.2) look

like. Since sin(nπ) = 0, there are constant solutions xn(t) = nπ, n ∈ Z. Using a numerical IVP

solver, solutions for di�erent values of x0 can be approximated. Figure 5.1 shows several of these

approximate solutions, along with some of the constant, or equilibrium, solutions.

15

16 Lab 5. Numerical Methods for Initial Value Problems; Harmonic Oscillators

0 1 2 3 4 5
t

2

0

2

4

6

Equilibrium Solutions

Figure 5.1: Several solutions of (5.2), using scipy.integrate.odeint.

Numerical Methods
For the numerical methods that follow, the key idea is to seek an approximation for the values of

x(t) only on a �nite set of values t0 < t1 < . . . < tn−1 < tn (= tf). In other words, these methods

try to solve for x1,x2, . . . ,xn such that xi ≈ x(ti).

Euler’s Method

For simplicity, assume that each of the n subintervals [ti−1, ti] has equal length h = (tf − t0)/n. h is

called the step size. Assuming x(t) is twice-di�erentiable, for each component function xj(t) of x(t)

and for each i, Taylor's Theorem says that

xj(ti+1) = xj(ti) + hx′j(ti) +
h2

2
x′′j (c) for some c ∈ [ti, ti+1].

The quantity h2

2 x
′′
j (c) is negligible when h is su�ciently small, and thus xj(ti+1) ≈ xj(ti) + hx′j(ti).

Therefore, bringing the component functions of x(t) back together gives

x(ti+1) ≈ x(ti) + hx′(ti),

≈ x(ti) + hf(x(ti), ti).

This approximation leads to the Euler method : Starting with x0 = x(t0), xi+1 = xi + hf(xi, ti)

for i = 0, 1, . . . , n − 1. Euler's method can be understood as starting with the point at x0, then

17

calculating the derivative of x(t) at t0 using f(x0, t0), followed by taking a step in the direction of

the derivative scaled by h. Set that new point as x1 and continue.

It is important to consider how the choice of step size h a�ects the accuracy of the approxima-

tion. Note that at each step of the algorithm, the local truncation error, which comes from neglecting

the x′′j (c) term in the Taylor expansion, is proportional to h2. The error ||x(ti)− xi|| at the ith step

comes from i = ti−t0
h steps, which is proportional to h−1, each contributing h2 error. Thus the global

truncation error is proportional to h. Therefore, the Euler method is called a �rst-order method, or

a O(h) method. This means that as h gets small, the approximation of x(t) improves in two ways.

First, x(t) is approximated at more values of t (more information about the solution), and second,

the accuracy of the approximation at any ti is improved proportional to h (better information about

the solution).

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
t

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

x

h = 0.2
h = 0.1
h = 0.05
Analytic Solution

Figure 5.2: The solution of (5.3), alongside several approximations using Euler's method.

Problem 1. Write a function which implements Euler's method for an IVP of the form (5.1).

Test your function on the IVP:

x′(t) = x(t)− 2t+ 4, 0 ≤ t ≤ 2,

x(0) = 0,
(5.3)

18 Lab 5. Numerical Methods for Initial Value Problems; Harmonic Oscillators

where the analytic solution is x(t) = −2 + 2t + 2et. Use the Euler method to numerically

approximate the solution with step sizes h = 0.2, 0.1, and 0.05. Plot the true solution alongside

the three approximations, and compare your results with Figure 5.2.

Midpoint Method

The midpoint method is very similar to Euler's method. For small h, use the approximation

x(ti+1) ≈ x(ti) + hf(x(ti) +
h

2
f(x(ti), ti), ti +

h

2
,).

In this approximation, �rst set x̂i = xi +
h
2 f(xi, ti), which is an Euler method step of size h/2.

Then evaluate f(x̂i, ti +
h
2), which is a more accurate approximation to the derivative x′(t) in the

interval [ti, ti+1]. Finally, a step is taken in that direction, scaled by h. It can be shown that the

local truncation error for the midpoint method is O(h3), giving global truncation error of O(h2).
This is a signi�cant improvement over the Euler method. However, it comes at the cost of additional

evaluations of f and a handful of extra �oating point operations on the side. This tradeo� will be

considered later in the lab.

Runge-Kutta Methods

The Euler method and the midpoint method belong to a family called Runge-Kutta methods. There

are many Runge-Kutta methods with varying orders of accuracy. Methods of order four or higher

are most commonly used. A fourth-order Runge-Kutta method (RK4) iterates as follows:

K1 = f(xi, ti),

K2 = f(xi +
h

2
K1, ti +

h

2
),

K3 = f(xi +
h

2
K2, ti +

h

2
),

K4 = f(xi + hK3, ti+1),

xi+1 = xi +
h

6
(K1 + 2K2 + 2K3 +K4).

Runge-Kutta methods can be understood as a generalization of quadrature methods for approx-

imating integrals, where the integrand is evaluated at speci�c points, and then the resulting values

are combined in a weighted sum. For example, consider a di�erential equation

x′(t) = f(t)

Since the function f has no x dependence, this is a simple integration problem. In this case, Euler's

method corresponds to the left-hand rule, the midpoint method becomes the midpoint rule, and RK4

reduces to Simpson's rule.

Advantages of Higher-Order Methods
It can be useful to visualize the order of accuracy of a numerical method. A method of order p has

relative error of the form

E(h) = Chp

19

taking the logarithm of both sides yields

log(E(h)) = p · log(h) + log(C)

Therefore, on a log-log plot against h, E(h) is a line with slope p and intercept log(C).

Problem 2. Write functions that implement the midpoint and fourth-order Runge-Kutta meth-

ods. Use the Euler, Midpoint, and RK4 methods to approximate the value of the solution for

the IVP (5.3) from Problem 1 for step sizes of h = 0.2, 0.1, 0.05, 0.025, and 0.0125.

Plot the following graphs

� The true solution alongside the approximation obtained from each method when h = 0.2.

� A log-log plot (use plt.loglog) of the relative error |x(2)− xn|/|x(2)| as a function of h

for each approximation.

Compare your second plot with Figure 5.3.

10 1

h

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

E(
h)

Euler method
Midpoint method
RK4 method

Figure 5.3: Loglog plot of the relative error in approximating x(2), using step sizes h = 0.2, 0.1, 0.05,

0.025, and 0.0125. The slope of each line demonstrates the �rst, second, and fourth order convergence

of the Euler, Midpoint, and RK4 methods, respectively.

20 Lab 5. Numerical Methods for Initial Value Problems; Harmonic Oscillators

The Euler, midpoint, and RK4 methods help illustrate the potential trade-o� between order

of accuracy and computational expense. To increase the order of accuracy, more evaluations of f

must be performed at each step. It is possible that this trade-o� could make higher-order methods

undesirable, as (in theory) one could use a lower-order method with a smaller step size h. However,

this is not generally the case. Assuming e�ciency is measured in terms of the number of f -evaluations

required to reach a certain threshold of accuracy, higher-order methods turn out to be much more

e�cient. For example, consider the IVP

x′(t) = x(t) cos(t), t ∈ [0, 8],

x(0) = 1.
(5.4)

Figure 5.4 illustrates the comparative e�ciency of the Euler, Midpoint, and RK4 methods applied to

(5.4). The higher-order RK4 method requires fewer f -evaluations to reach the same level of relative

error as the lower-order methods. As h becomes small, which corresponds to increasing functional

evaluations, each method reaches a point where the relative error |x(8)−xn|/|x(8)| stops improving.

This occurs when h is so small that �oating point round-o� error overwhelms local truncation error.

Notice that the higher-order methods are able to reach a better level of relative error before this

phenomena occurs.

101 102 103 104 105 106 107 108 109 1010 1011 1012

Functional Evaluations

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

R
e
la

ti
v
e
 E

rr
o
r

RK4
Euler
Midpoint

Figure 5.4: The relative error in computing the solution of (5.4) at x = 8 versus the number of times

the right-hand side of (5.4) must be evaluated.

21

Harmonic Oscillators and Resonance
Harmonic oscillators are common in classical mechanics. A few examples include the pendulum (with

small displacement), spring-mass systems, and the �ow of electric current through various types of

circuits. A harmonic oscillator y(t)1 is a solution to an initial value problem of the form

my′′ + γy′ + ky = f(t),

y(0) = y0, y′(0) = y′0.

Here, m represents the mass on the end of a spring, γ represents the e�ect of damping on the motion,

k is the spring constant, and f(t) is the external force applied.

Simple harmonic oscillators
A simple harmonic oscillator is a harmonic oscillator that is not damped, γ = 0, and is free, f = 0,

rather than forced, f 6= 0. A simple harmonic oscillator can described by the IVP

my′′ + ky = 0,

y(0) = y0, y′(0) = y′0.

The solution of this IVP is y = c1 cos(ω0t) + c2 sin(ω0t), where ω0 =
√
k/m is the natural frequency

of the oscillator and c1 and c2 are determined by applying the initial conditions.

To solve this IVP using a Runge-Kutta method, it must be written in the form

x′(t) = f(x(t), t)

This can be done by setting x1 = y and x2 = y′. Then we have

x′ =

[
x1
x2

]′
=

[
x2
−k
m x1

]
Therefore

f(x(t), t) =

[
x2
−k
m x1

]

Problem 3. Use the RK4 method to solve the simple harmonic oscillator satisfying

my′′ + ky = 0, 0 ≤ t ≤ 20,

y(0) = 2, y′(0) = −1,
(5.5)

for m = 1 and k = 1.

Plot your numerical approximation of y(t). Compare this with the numerical approxi-

mation when m = 3 and k = 1. Consider: Why does the di�erence in solutions make sense

physically?

1It is customary to write y instead of y(t) when it is unambiguous that y denotes the dependent variable.

22 Lab 5. Numerical Methods for Initial Value Problems; Harmonic Oscillators

0 5 10 15 20
x

3

2

1

0

1

2

3
y

m= 3

m= 1

Figure 5.5: Solutions of (5.5) for several values of m.

Damped free harmonic oscillators
A damped free harmonic oscillator y(t) satis�es the IVP

my′′ + γy′ + ky = 0,

y(0) = y0, y′(0) = y′0.

The roots of the characteristic equation are

r1, r2 =
−γ ±

√
γ2 − 4km

2m
.

Note that the real parts of r1 and r2 are always negative, and so any solution y(t) will decay over

time due to a dissipation of the system energy. There are several cases to consider for the general

solution of this equation:

1. If γ2 > 4km, then the general solution is y(t) = c1e
r1t + c2e

r2t. Here the system is said to be

overdamped. Notice from the general solution that there is no oscillation in this case.

2. If γ2 = 4km, then the general solution is y(t) = c1e
γt/2m + c2te

γt/2m. Here the system is said

to be critically damped.

23

3. If γ2 < 4km, then the general solution is

y(t) = e−γt/2m [c1 cos(µt) + c2 sin(µt)] ,

= Re−γt/2m sin(µt+ δ),

where R and δ are �xed, and µ =
√

4km− γ2/2m. This system does oscillate.

Problem 4. Use the RK4 method to solve for the damped free harmonic oscillator satisfying

y′′ + γy′ + y = 0, 0 ≤ t ≤ 20,

y(0) = 1, y′(0) = −1.

For γ = 1/2, and γ = 1, simultaneously plot your numerical approximations of y.

Forced harmonic oscillators without damping
Consider the systems described by the di�erential equation

my′′(t) + ky(t) = F (t). (5.6)

In many instances, the external force F (t) is periodic, so assume that F (t) = F0 cos(ωt). If ω0 =√
k/m 6= ω, then the general solution of 5.6 is given by

y(t) = c1 cos(ω0t) + c2 sin(ω0t) +
F0

m(ω2
0 − ω2)

cos(ωt).

If ω0 = ω, then the general solution is

y(t) = c1 cos(ω0t) + c2 sin(ω0t) +
F0

2mω0
t sin(ω0t).

When ω0 = ω, the solution contains a term that grows arbitrarily large as t → ∞. If we

included damping, then the solution would be bounded but large for small γ and ω close to ω0.

Consider a physical spring-mass system. Equation 5.6 holds only for small oscillations; this

is where Hooke's law is applicable. However, the fact that the equation predicts large oscillations

suggests the spring-mass system could fall apart as a result of the external force. This mechanical

resonance has been known to cause failure of bridges, buildings, and airplanes.

Problem 5. Use the RK4 method to solve the damped and forced harmonic oscillator satis-

fying

2y′′ + γy′ + 2y = 2 cos(ωt), 0 ≤ t ≤ 40,

y(0) = 2, y′(0) = −1.
(5.7)

For the following values of γ and ω, plot your numerical approximations of y(t): (γ, ω) =

(0.5, 1.5), (0.1, 1.1), and (0, 1). Compare your results with Figure5.7.

24 Lab 5. Numerical Methods for Initial Value Problems; Harmonic Oscillators

0 5 10 15 20 25 30 35 40
x

20

15

10

5

0

5

10

15

20
y

γ= . 5, ω= 1. 5

γ= . 1, ω= 1. 1

γ= 0, ω= 1

Figure 5.6: Solutions of (5.7) for several values of ω and γ.

	Pandas 2: Plotting
	Numerical Methods for Initial Value Problems; Harmonic Oscillators

