
7 Data Cleaning and
Feature Importance

Lab Objective: The quality of a data analysis or model is limited by the quality of the data used. In

this lab we learn techniques for cleaning data, creating features, and determining feature importance.

Almost every dataset has problems that make it unsuitable for regression or other modeling.

At a basic level, these problems might cause simple functions to error out. More substantially, data

problems could signi�cantly change the result of your model or analysis.

Data cleaning is the process of identifying and correcting bad data. This could be data that

is missing, duplicated, irrelevant, inconsistent, incorrect, in the wrong format, or does not make

sense. Though it can be tedious, data cleaning is the most important step of data analysis. Without

accurate and legitimate data, any results or conclusions are suspect and may be incorrect.

We will demonstrate common issues with data and how to correct them using the following

dataset. It consists of family members and some basic details.

Example dataset

>>> df = pd.read_csv('toy_dataset.csv')

>>> df

Name Age name DOB Marital_Status

0 John Doe 30 john 01/01/2010 Divorcee

1 Jane Doe 29 jane 12/02/1990 Divorced

2 Jill smith 40 NaN 03/04/1980 married

3 Jill smith 40 jill 03/04/1980 married

4 jack smith 100 jack 4/4/1980 marrieed

5 Jenny Smith 5 NaN 05/05/2015 NaN

6 JAmes Smith 2 NaN 20/06/2018 single

7 Rover 2 NaN 05/05/2018 NaN

Height Weight Marriage_Len Spouse

0 72.0 175 5 NaN

1 5.5 125 5 John Doe

2 64.0 120 10 Jack Smith

1

2 Lab 7. Data Cleaning and Feature Importance

3 64.0 120 NaN jack smith

4 1.8 220 10 jill smith

5 105.0 40 NaN NaN

6 27.0 25 Not Applicable NaN

7 36.0 50 NaN NaN

Inspection
The �rst step of data cleaning is to analyze the quality of the data. If the quality is poor, the data

might not be worth using. Knowing the quality of the data will also give you an idea of how long

it will take to clean it. A quality dataset is one in which the data is valid, accurate, complete,

consistent, and uniform. Some of these issues, like uniformity, are fairly easy to �x during cleaning,

while other aspects like accuracy are more di�cult, if not impossible.

Validity is the degree that the data conforms to given rules. If a column corresponds to the

temperature in Salt Lake City, measured in degrees Farenheit, then a value over 110 or below 0

should make you suspicious, since those would be extreme values for Salt Lake City. In fact, checking

the all-time temperature records for Salt Lake shows that the values in this column should never be

more than 107 and never less than −30. Any values outside that range are almost certainly errors

and should probably be reset to NaN , unless you have special information that allows you to impute

more accurate values.

Some standard rules are

� data type: The data types of each column should all be the same.

� data range: The data of a column, typically numbers or dates, should all be in the same

range.

� mandatory constraints: Certain columns cannot have missing data.

� unique constraint: Certain columns must be unique.

� regular expression patterns: A text column must be in the same format, like phone numbers

must in the form 999-999-9999.

� cross-�eld validation: Conditions must hold across multiple columns, a hospital discharge

date can't be earlier than the admittance date.

� duplicated data: Rows or columns that are repeated. In some cases, they may not be exact.

We can check the data type in Pandas using dtype. A dytpe of object means that the data

in that column contains either strings or mixed dtypes. These �elds should be investigated to

determine if they contain mixed datatypes. In our toy example, we would expect that Marriage_Len

is numerical, so an object dtype is suspicious. Looking at the data, we see that James has Not

Applicable, which is a string.

Check validity of data

Check Data Types

>>> df.dtypes

Name object

Age int64

3

name object

DOB object

Marital_Status object

Height float64

Weight int64

Marriage_Len object

Spouse object

dtype: object

Duplicates can be easily identi�ed in Pandas using the duplicated() function. When no

parameters are passed, it returns a DataFrame of the �rst duplicates. We can identify rows that are

duplicated in only some columns by passing in the column names. The keep parameter has three

possible values, �rst, last, and False. False keeps all duplicated values, while �rst and last only keep

one of the duplicated values, the �rst and last ones respectively.

Display duplicated rows

>>> df[df.duplicated()]

Empty DataFrame

Columns: [Name, Age, name, DOB, Marital_Status, Height, Weight, Marriage_Len, ←↩
Spouse]

Index: []

Display rows that have duplicates in some columns

>>> df[df.duplicated(['Name','DOB','Marital_Status'],keep=False)]

Name Age name DOB Marital_Status Height Weight ←↩
Marriage_Len Spouse

2 Jill smith 40 NaN 03/04/1980 married 64.0 120 ←↩
10 Jack Smith

3 Jill smith 40 jill 03/04/1980 married 64.0 120 ←↩
NaN jack smith

We can check the range of values in a numeric column using the min and max attributes. Other

options for looking at the values include line plots, histograms, and boxplots. Some other useful

Pandas commands for evaluating data include pd.unique() and df.nunique(), which identify and

count unique values. value_counts() counts the number of values in each item of a column, like a

histogram.

Count the number of unique values in each row

>>> df.nunique()

Name 7

Age 6

name 2

DOB 7

Marital_Status 5

Height 7

Weight 7

Marriage_Len 4

Spouse 4

dtype: int64

4 Lab 7. Data Cleaning and Feature Importance

Print the unique Marital_Status values

>>> pd.unique(df['Marital_Status'])

array(['Divorcee', 'Divorced', 'married', 'marrieed', nan, 'single'],

dtype=object)

Count the number of each Marital_Status values

>>> df['Marital_Status'].value_counts()

married 2

single 1

marrieed 1

Divorcee 1

Divorced 1

Name: Marital_Status, dtype: int64

The accuracy of the data, how close the data is to reality, is harder to con�rm. Just because

a data point is valid, doesn't mean that it is true. For example, a valid street address doesn't have

to exist, or a person might lie about their weight. The �rst case could be checked using mapping

software, but the second could be unveri�able.

The percentage of missing data is the completeness of the data. All uncleaned data will have

missing values, but datasets with large amounts of missing data, or lots of missing data in key columns,

are not going to be as useful. Pandas has several functions to help identify and count missing values.

In Pandas, all missing data is considered a NaN and does not a�ect the dtype of a column. df.isna

() returns a boolean DataFrame indicating whether each value is missing. df.notnull() returns a

boolean DataFrame with True where a value is not missing.

Count number of missing data points in each column

>>> df.isna().sum()

Name 0

Age 0

name 6

DOB 0

Marital_Status 2

Height 0

Weight 0

Marriage_Len 2

Spouse 4

dtype: int64

Consistency measures how consistent the data is in the dataset and across multiple datasets.

For example, in our toy dataset, Jack Smith is 100 years old, but his birth year is 1980. Data is

inconsistent across datasets when the data points should be the same and are di�erent. This could be

due to incorrect entries or syntax. An example is using multiple �nance dataset to build a predictive

model. The dates in each dataset should have the same format so that they can all be used equally

in the model. Any columns that have monetary data should all be in the same unit, like dollars or

pesos.

5

Lastly, uniformity is the measure of how similarly the data is formatted. Data that has the

same units of measure and syntax are considered uniform. Looking at the Height column in our

dataset, we see values ranging from 1.8 to 105. This is likely the result of di�erent units of measure.

When looking at the quality of the data, there are no set rules on how to measure these concepts

or at what point the data is considered bad data. Sometimes, even if the data is bad, it is the only

data available and has to be used. Having an idea of the quality of the data will help you know what

cleaning steps are needed and help with analyzing the results. Creating a summary statistics,

also known as data profiling is a good way to get a general idea of the quality of the data. The

summary statistics should be speci�c to the dataset and describe aspects of the data discussed

in this section. It could also include visualizations and basic statistics, like the mean and standard

deviation.

Visualization is an important aspect of the inspection phase. Using histograms, box plots, and

hexbins can identify outliers in the data. Outliers should be investigated to determine if they are

accurate. Removing outliers will improve your model, but you should only remove an outlier if you

have a legitimate reason. Columns that have a small distribution or variance, or consist of one value,

could be worth removing since they might contribute little to the model.

Problem 1. The g_t_results.csv �le is a set of parent-reported scores on their child's Gifted

and Talented tests. The two tests, OLSAT and NNAT, are used by NYC to determine if children

are quali�ed for gifted programs. The OLSAT Verbal has 16 questions for Kindergartners and

30 questions for �rst and second graders. The NNAT has 48 questions. Using this dataset,

answer the following questions.

1) What column has the highest number of null values and what percent of its values are

null? Print the answer as a tuple with (column name, percentage)

2) List the columns with have mixed types that should be numeric. Print the answer as

a tuple.

3) How many third graders have scores outside the valid range for the OLSAT Verbal

Score? Print the answer

4) How many data values are missing (NaN)? Print the number.

Cleaning

After the data has been inspected, it's time to start cleaning. There are many aspects and methods

of cleaning; not all of them will be used in every dataset. Which ones you choose should be based

on your dataset and the goal of the project.

Unwanted Data

Removing unwanted data typically falls into two categories, duplicated data and irrelevant data.

Duplicated observations usually occur when data is scraped, combined from multiple datasets, or a

user submits the data twice. Irrelevant data consists of observations that don't �t the speci�c problem

you are trying to solve or don't have enough variation to a�ect the model. We can drop duplicated

data using the duplicated() function described above with drop() or using drop_duplicates,

which has the same parameters as duplicated.

6 Lab 7. Data Cleaning and Feature Importance

Validity Errors

After moving unwanted data, we correct any validity errors found during inspection. All features

should have a consistent type, standard formatting (like capitalization), and the same units. Syntax

errors should be �xed, and white space at the beginning and ends of strings should be removed.

Some data might need to be padded so that it's all the same length.

Method Description

series.str.lower() Convert to all lower case

series.str.upper() Convert to all upper case

series.str.strip() Remove all leading and trailing white space

series.str.lstrip() Remove leading white space

series.str.replace(" ","") Remove all spaces

series.str.pad() Pad strings

Table 7.1: Pandas String Formatting Methods

Validity also includes correcting or removing contradicting values. This might be two values

in a row or values across datasets. For example, a child shouldn't have a marital status of married.

Another example is if two columns should sum to a third but don't for a speci�c row.

Missing Data

There will always be missing data in any uncleaned dataset. Some commonly suggested methods

for handling data are removing the missing data and setting the missing values to some value based

on other observations. However, missing data can be informative and removing or replacing missing

data erases that information. Also, removing missing values from a dataset might result in signi�cant

amounts of data being lost. Removing missing data could also make your model less accurate if you

need to predict on data with missing values, so retaining the missing values can help increase accuracy.

So how can we handle missing data? Dropping missing data is the easiest method. Dropping

rows should only be done if the are a small number of missing data points in a column or if the row is

missing a signi�cant amount of data. If a column is very sparse, consider dropping the entire column.

Another option is to estimate the missing data's value and replace it. There are many ways to do

this, including mean, mode, median, randomly choosing from the distribution, linear regression, and

hot-decking.

Hot-deck is when you �ll in the data based on similar observations. It can be applied to

numerical and categorical data, unlike most of the other options listed above. The easiest hot-deck

method is to �ll in the data with random numbers after dividing the data into groups based on

some characteristic, like gender. Sequential hot-deck sorts the column with missing data based on

an auxiliary column and then �lls in the data with the value from the next available data point.

K-Nearest Neighbors can also be used to identify similar data points.

The last option is to �ag the data as missing. This retains the information from missing data

and removes the missing data (by replacing it). For categorical data, simply replace the data with

a new category. For numerical data, we can �ll the missing data with 0, or some value that makes

sense, and add an indicator variable for missing data. This allows the algorithm to estimate the

constant for missing data instead of just using the mean.

Replace missing data

import numpy as np

7

Add an indicator column based on missing Marriage_Len

>>> df['missing_ML'] =df['Marriage_Len'].isna()

Fill in all missing data with 0

>>> df['Marriage_Len'] = df['Marriage_Len'].fillna(0)

Change all other NaNs to missing

>>> df = df.fillna('missing')

Change Not Applicable row to NaNs

>>> df = df.replace('Not Applicable',np.nan)

Drop rows will NaNs

>>> df = df.dropna()

>>> df

Name Age DOB Marital_Status

0 JOHN DOE 30 01/01/2010 divorcee

1 JANE DOE 29 12/02/1990 divorced

2 JILL SMITH 40 03/04/1980 married

3 JACK SMITH 40 4/4/1980 married

4 JENNY SMITH 5 05/05/2015 missing

Height Weight Marriage_Len Spouse missing_ML

0 72.0 175 5 missing False

1 68.0 125 5 John Doe False

2 64.0 120 10 Jack Smith False

3 71.0 220 10 jill smith False

4 41.0 40 0 missing True

Nonnumerical Values Misencoded as Numbers

More dangerous, in many ways, than numerical errors, are entries that are recorded as a numerical

value (float or int) when they should be recorded as nonnumerical data, that is, in a format that

cannot be summed, multiplied, or averaged. One example is missing data recorded as 0. Missing

data should always be stored in a form that cannot accidentally be incorporated into the model.

Typically this is done by storing NaN as the value. However, the above method of using missing

as the value is more valuable since some algorithms will not run on data with NaN . Unfortunately,

many datasets have recorded missing values with a 0 or some other number. You should verify that

this does not occur in your dataset. Similarly, a survey with a scale from 1 to 5 will sometimes have

the additional choice of �N/A� (meaning �not applicable�), which could be coded as 6, not because

the value 6 is meaningful, but just because that is the next thing after 5. Again, this should be �xed

so that the �N/A� choice cannot accidentally be used for any computations.

Categorical data are also often encoded as numerical values. These values should not be left

as numbers that can be computed with. For example, postal codes are shorthand for locations,

and there is no numerical meaning to the code. It makes no sense to add, subtract, or multiply

8 Lab 7. Data Cleaning and Feature Importance

postal codes, so it is important not to let those accidentally be added, subtracted, or multiplied, for

example by inadvertently including them in the design matrix (unless they are one-hot encoded or

given some other meaningful numerical value). It is good practice to convert postal codes, area codes,

ID numbers, and other non-numeric data into strings or other data types that cannot be computed

with.).

Ordinal Data

Ordinal data is data that has a meaningful order, but the di�erences between the values aren't

consistent, or maybe aren't even meaningful at all. For example, a survey question might ask about

your level of education, with 1 being high-school graduate, 2 bachelor's degree, 3 master's degree,

and 4 doctoral degree. These values are called ordinal data because it is meaningful to talk about an

answer of 1 being less than an answer of 2. However, the di�erence between 1 and 2 is not necessarily

the same as the di�erence between 3 and 4, and it would not make sense to compute an average

answer�the average of a high school diploma and a masters degree is not a bachelor's degree, despite

the fact that the average of 1 and 3 is 2. Treating these like categorical data loses the information of

the ordering, but treating it like regular numerical data implies that a di�erence of 2 has the same

meaning whether it comes as 3 − 1 or 4 − 2. If that last assumption is approximately true, then it

may be ok to treat these data as numerical in your model, but if that assumption is not correct, it

may be better to treat the variable as categorical.

Problem 2. imdb.csv contains a small set of information about 99 movies. Clean the data

set by doing the following in order:

1. Remove duplicate rows. Print the shape of the dataframe after removing the rows.

2. Drop all rows that contain missing data. Print the shape of the dataframe after removing

the rows.

3. Remove rows that have data outside valid data ranges and explain brie�y how you deter-

mined your ranges for each column.

4. Identify and drop columns with three or fewer di�erent values. Print a tuple with the

names of the columns dropped.

5. Convert the titles to all lower case.

Print the �rst �ve rows of your dataframe.

Feature Engineering
One often needs to construct new columns, commonly referred to as features in the context of

machines learning, for a dataset, because the dependent variable is not necessarily a linear function

of the features in the original dataset. Constructing new features is called feature engineering. Once

new features are created, we can analyze how much a model depends on each feature. Features with

low importance probably do not contributed much and could potentially be removed.

Fognets are �ne mesh nets that collect water that condenses on the netting. These are used in

some desert cities in Morocco to produce drinking water. Consider a dataset measuring the amount of

water Y collected from fognets, where one of the features WindDir is the wind direction, measured in

9

degrees. This feature is not likely to contribute meaningfully in a linear model because the direction

359 is almost the same as the direction 0, but no nonzero linear multiple of WindDir will re�ect this

relation. One way to improve the situation is to replace the WindDir with two new (engineered)

features: sin
(

π
180WindDir

)
and cos

(
π

180WindDir
)
.

Discrete Fourier transforms and wavelet decomposition often reveal important properties of

data collected over time (called time-series), like sound, video, economic indicators, etc. In many

such settings it is useful to engineer new features from a wavelet decomposition, the DFT, or some

other function of the data.

Problem 3. basketball.csv contains data for all NBA players between 2001 and 2018. Each

row represents a player's stats for a year. The features in this data set are

� player (str): the player's name

� age (int): the player's age

� team_id (cat): the player's team

� per (�oat): player e�ciency rating, how much a player produced in one minute of play

� ws (�oat): win shares, an estimate of how much the player contributed to

� bpm (�oat): box plus/minus is the estimated number of points a player contributed to

over 100 possessions

� year (int): the year

(�oat):

Create two new features:

� career_length (int): number of years player has been playing

� target (str): The target team if the player is leaving. If the player is retiring, the target

should be 'retires'.

Remove all rows except those where a player changes team, that is, target is not null nor

'retires'. Drop the player, year, and team_id columns.

Use the provided function, identify_importance(), to determine how important each fea-

ture is in a Random Forest algorithm by passing in the dataframe. It will return a dictionary

of features with the feature importance (in percentages) as values. Sort the resulting dictionary

from most important feature to least and print the results.

Engineering for Categorical Variables

Categorical features are those that take only a �nite number of values, and usually no categorical

value has a numerical meaning, even if it happens to be number. For example in an election dataset,

the names of the candidates in the race are categorical, and there is no numerical meaning (neither

ordering nor size) to numbers assigned to candidates based soley on their names.

Consider the following election data.

10 Lab 7. Data Cleaning and Feature Importance

Ballot number For Governor For President

001 Herbert Romney

002 Cooke Romney

003 Cooke Obama

004 Herbert Romney

005 Herbert Romney

006 Cooke Stein

A common mistake occurs when someone assigns a number to each categorical entry (say 1

for Cooke, 2 for Herbert, 3 for Romney, etc.). While this assignment is not, in itself, inherently

incorrect, it is incorrect to use the value of this number in a statistical model. Any such model would

be fundamentally wrong because a vote for Cooke cannot, in any reasonable way, be considered

half of a vote for Herbert or a third of a vote for Romney. Many researchers have accidentally used

categorical data in this way (and some have been very publicly embarrassed) because their categorical

data was encoded numerically, which made it hard to recognize as categorical data.

Whenever you encounter categorical data that is encoded numerically like this, immediately

change it either to non-numerical form (�Cooke,� �Herbert,� �Romney,�. . .) or apply a one-hot

encoding as described below.

In order to construct a meaningful model with categorical data, one normally applies a one-hot

encoding or dummy variable encoding. 1 To do this construct a new feature for every possible value

of the categorical variable, and assign the value 1 to that feature if the variable takes that value and

zero otherwise. Pandas makes one-hot encoding simple:

one-hot encoding

df = pd.get_dummies(df, columns=['For President']])

The previous dataset, when the presidential race is one-hot encoded, becomes

Ballot number Governor Romney Obama Stein

001 Herbert 1 0 0

002 Cooke 1 0 0

003 Cooke 0 1 0

004 Herbert 1 0 0

005 Herbert 1 0 0

006 Cooke 0 0 1

Note that the sum of the terms of the one-hot encoding in each row is 1, corresponding to the fact

that every ballot had exactly one presidential candidate.

When the gubernatorial race is also one-hot encoded, this becomes

Ballot number Cooke Herbert Romney Obama Stein

001 0 1 1 0 0

002 1 0 1 0 0

003 1 0 0 1 0

004 0 1 1 0 0

005 0 1 1 0 0

006 1 0 0 0 1

1Yes, these are silly names, but they are the most common names for it. Unfortunately, it is probably too late to

change these now.

11

Now the sum of the terms of the one-hot encodings in each row is 2, corresponding to the fact that

every ballot had two names�one gubernatorial candidate and one presidential candidate.

Summing the columns of the one-hot-encoded data gives the total number of votes for the

candidate of that column. So the numerical values in the one-hot encodings are actually numerically

meaningful, and summing the entries gives meaningful information. One-hot encoding also avoids

the pitfalls of incorrectly using numerical proxies for categorical data.

The main disadvantage of one-hot encoding is that it is an ine�cient representation of the data.

If there are C categories and n datapoints, a one-hot encoding takes an n × 1-dimensional feature

and turns it into an n×C sparse matrix. But there are ways to store these data e�ciently and still

maintain the bene�ts of the one-hot encoding.

Achtung!

When performing linear regression, it is good practice to add a constant column to your dataset

and to remove one column of the one-hot encoding of each categorical variable.

To see why, notice that summing terms in one row corresponding to the one-hot encoding

of a speci�c categorical variable (for example the presidential candidate) always gives 1. If the

dataset already has a constant column (which you really always should add if it isn't there

already), then the constant column is a linear combination of the one-hot encoded columns.

This cause the matrix to fail to be invertible and can cause identi�ability problems.

The standard way to deal with this is to remove one column of the one-hot embedding

for each categorical variable. For example, with the elections dataset above, we could remove

the Cooke and Romney columns. Doing that means that in the new dataset a row sum of 0

corresponds to a ballot with a vote for Cooke and a vote for Romney, while a 1 in any column

indicates how the ballot di�ered from the base choice of Cooke and Romney.

When using pandas, you can drop the �rst column of a one-hot encoding by passing in

drop_first=True.

Problem 4. Load housing.csv into a dataframe with index=0. Descriptions of the features

are in housing_data_description.txt. The goal is to construct a regression model that

predicts SalePrice using the other features of the dataset. Do this as follows:

1. Identify and handle the missing data. Hint: Dropping every row with some missing data

is not a good choice because it gives you an empty dataframe. What can you do instead?

2. Identify the variable with nonnumerical values that are misencoded as numbers. One-hot

encode it. Hint: don't forget to remove one of the encoded columns to prevent collinearity

with the constant column).

3. Add a constant column to the dataframe.

4. Save a copy of the dataframe.

5. Choose four categorical features that seem very important in predicting SalePrice. One-

hot encode these features, and remove all other categorical features.

6. Run an OLS regression on your model.

12 Lab 7. Data Cleaning and Feature Importance

Print the ten features that have the highest coef in your model and the summary.

To run an OLS model in python, use the following code.

import statsmodels.api as sm

>>> results = sm.OLS(y, X).fit()

Print the summary

>>> results.summary()

Convert the summary table to a dataframe

>>> results_as_html = a.tables[1].as_html()

>>> result_df = pd.read_html(results_as_html, header=0, index_col=0)[0]

Problem 5. Using the copy of the dataframe you created in Problem 4, one-hot encode all the

categorical variables. Print the shape of you database, and Run OLS.

Print the ten features that have the highest coef in your model and the summary. Write

a couple of sentences discussing which model is better and why.

	Data Cleaning and Feature Importance

