
9 Random Forests

Lab Objective: Understand how to build and use a classi�cation tree and a random forest.

Classification Trees

Decision Classi�cation trees are a class of decision trees used in a wide variety of settings where

labeled training data is available. The desired outcome is a model that can accurately assign labels

to unlabeled data. Decision trees are widely used because they have a fast run time, low computation

cost, and can handle irrelevant, missing, and noisy data easily.

We begin with a data set of samples, such as information about customers from a certain store.

Each sample contains a variety of features, such as if the individual is married or has children. The

sample also has a classi�cation label, such as whether or not the person made a speci�c purchase.

A classi�cation tree is composed of many nodes, which ask a question (i.e. �Is income >= 85?�)

and then split the data based on the answers. If the response is True, then the sample is �pushed�

down the tree to the left child node. If the response is False, then the sample is �pushed� down the

tree to the right child node. A leaf node is a node that has no child node. Upon arrival at a leaf, an

unlabeled sample is labeled with the classi�cation that matches the majority of labeled samples at

that leaf. Table 9.1 includes information about 10 individuals and then an indicator of whether or

not they made a certain purchase. To simplify construction of the tree, all data is numeric, so 1=Yes

and 0=No for yes/no questions.

Suppose we wanted to guess whether a single college student making under $30,000 would

purchase this item. Starting at the top of the tree, we compare our sample to the question and �rst

choose the right branch, and then we compare with the second question and choose the right branch

again. Now we reach a leaf with the dictionary {0:1}. The key 0 corresponds to the label, and the

value 1 means one of our original samples is at this leaf with that label. Since 100% of samples at

this leaf are labeled with 0, our new sample college student will be predicted to share the label 0.

If we arrived instead at a leaf with the dictionary {0:1, 1:4}, then one of our original samples

at this leaf would be labeled 0 and four would be labeled 1, so the majority vote would assign the

label 1 to our new sample.

1

2 Lab 9. Random Forests

Married (Y/N) Children Income ($1000) Purchased (Y/N)

0 5 125 0

1 0 100 0

0 0 70 0

1 3 120 0

0 0 95 1

1 0 60 0

0 2 220 1

0 0 85 1

1 0 75 0

0 0 90 1

Table 9.1: Customer data with 3 features (Married, Children, Income) and a label (Purchase) indi-

cating whether or not the customer bought the item.

Is Marriage >= 1?

{0: 4}

T

Is Income >= 85?

F

Is Children >= 5?

T

{0: 1}

F

{0: 1}

T

{1: 4}

F

Figure 9.1: A classi�cation tree built using Table 9.1. Each leaf includes a dictionary of the label (0

or 1) and how many individuals from the data match the classi�cation. In this example, each leaf

contains individuals with only one label.

Problem 1. At each node in a classi�cation tree, a question indicates which branch a sample

belongs to. Write a Match method for the class Question that accepts a sample and returns

True or False depending on how the sample's features compare to the question. For example,

in the example above, a single college student making $20,000 would be a sample represented

by the array [0, 0, 20].

Next, write a partition function that partitions a data set for a given question. Return

3

the left and right regions of the partition in that order. If one region is empty, return it as

None.

Measures

To use the partition function from Problem 1, we need to know which question to ask at each

node. Usually, the question is determined by the split that maximizes either the Gini impurity or

the information gain. Gini impurity measures how often a sample would be mislabeled based on the

distribution of labels. It is a measure of homogeneity of labels, so it is 0 when all samples at a node

have the same label.

De�nition 9.1. Let D be a data set with K di�erent class labels and N di�erent samples. Let Nk

be the number of samples labeled class k for each 1 ≤ k ≤ K, and let fk = Nk

N . We de�ne the Gini

impurity to be

G(D) = 1−
K∑

k=1

f2
k .

Information gain is based on the concept of Information Theory entropy. It measures the

di�erence between two probability distributions. If the distributions are equal, then the information

gain is 0. We will use a modi�ed version of information gain for simplicity.

De�nition 9.2. Let sD(p, x) = D1, D2 be a partition of data D. We de�ne the information gain of

this partition to be

I(sD(p, x)) = G(D)−
2∑

i=1

|Di|
|D|
·G(Di)

where |D| represents the number of samples (or rows) in D.

Problem 2. Write a function gini() that computes the Gini impurity of an array of data

with the class labels in the last column. Write another function info_gain() that computes

the information gain for a given split of data. Make sure these functions account for the case

of the data array containing only a single sample.

The �le animals.csv contains information about 7 features for 100 animals. The last

column, the class labels, indicates whether or not an animal lives in the ocean. You may use

this �le to test your functions. To test your functions, your values should match those below.

>>> import numpy as np

Load in the data

>>> animals = np.loadtxt('animals.csv', delimiter=',')

Load in feature names

>>> features = np.loadtxt('animal_features.csv', delimiter=',', dtype=str,

... comments=None)

Load in sample names

>>> names = np.loadtxt('animal_names.csv', delimiter=',', dtype=str)

4 Lab 9. Random Forests

Test your functions

>>> gini(animals)

0.4758

split animals into two sets with fifty animals in each

>>> info_gain(animals[:50], animals[50:], gini(animals))

0.14579999999999999

Optimal Split

The optimal split of a data set can be chosen by maximizes either the Gini impurity or the information

gain. We will optimize the information gain, so the optimal split is

s∗D = sD(p∗, x∗),

where

p∗, x∗ = argmaxp,xI(sD(p, x)).

Sometimes the partition to split on may separate the data into very small subsets with only

a few samples each. This can make the classi�cation tree vulnerable to over�tting and noisy data.

For this reason, classi�cation trees include an argument to specify the smallest allowable leaf size, or

the minimum number of samples at the node. This number depends on the size of the whole data

set; for example, data with 10,000 samples would have a larger minimum leaf than our �rst example

using data with only 10 samples.

Problem 3. Write a function find_best_split() that computes the optimal split of a data

set by checking through all possible Questions associated with the data (all values present

for each feature (column)). Recall that the �nal column has the class label and will have no

possible questions associated with it. Include a minimum leaf argument defaulting to 5. Do not

allow the best split to include a leaf smaller than this size. Return the information gain and

question associated with the best split. If two splits have the same information gain, choose

the �rst split.

The output for the animals data set should be (0.12259833679833688, Is # legs/tentacles

>= 2.0?).

Building the Tree

Once the optimal split is determined, the node is de�ned to be a Leaf node or a Decision node. As

described earlier, leaf nodes have no children nodes and is where the classi�cation for a sample is

made. If the optimal split returns a left and right tree, then the node is a decision node and has a

question associated with it to determine which path a sample should follow. The next two problems

will walk through building a classi�cation tree using the functions and classes from the previous

problems.

Problem 4. Write the class Leaf. It should have an attribute prediction that is the dictio-

nary of how many samples at the leaf belong to each label, as shown in the leaves of Figure

5

9.1.

Next, write the class Decision_Node. This should have three attributes: an associated

Question, a left branch, and a right branch. The branches will be Leaf or Decision_Node

objects. Name these three attributes question, left, and right.

In addition to having a minimum leaf size, it's also important to have a maximum depth for

trees. Without restricting the depth, the tree can become very large; if there is no minimum leaf size,

it can be one less than the number of training samples. Limiting the depth can stop the tree from

having too many splits, preventing it from becoming too complex and over�tting the training data.

It's also important to not have too shallow of a tree because then the tree will under�t the data.

Problem 5. Write a function build_trees() that uses your previous functions to build a

classi�cation tree. Include a minimum leaf argument defaulting to 5 and a maximum depth

argument defaulting to 4. Start counting depth at 0. For comparison, the tree in Figure 9.1

has depth 3.

You will probably want to build this tree recursively. If the remaining data has too few

samples, if the depth is too much, or if the information gain is 0, make a Leaf. Otherwise,

make a partition and build a new tree for each branch, returning those as Decision_Nodes.

The last column in the animals.csv �le indicates whether or not the animal lives in the

ocean; this is the class label for this data set. Test your classi�er with this �le and the function

draw_tree. This will display and save a pdf of the graph. Examine the �gure and test various

parameters to check if your functions are working properly.

How to draw a tree

>>> my_tree = build_tree(animals, features)

>>> draw_tree(my_tree)

Note

The function draw_tree relies on the Graphviz package, which you can download by typing

conda install -c conda-forge python-graphviz if you have the Anaconda distribution. If

draw_tree returns an error about pdf being an unrecognized �le type, try typing dot -c in

your terminal.

Predicting

It's important to test your tree to ensure that it predicts class labels fairly accurately and so that

you can adjust the minimum leaf and maximum depth parameters as needed. It is customary to

randomly assign some of your labeled data to a training set that you use to �t your tree and then

use the rest of your data as a testing set to check accuracy.

6 Lab 9. Random Forests

Problem 6. Write a function predict_tree that returns the predicted class label for a new

sample given a trained tree. You will probably have to make this recursive in order to traverse

the branches and reach a Leaf node with prediction information.

Next, write a function analyze_tree that accepts a labeled data set (with the labels in

the last column, as in animals.csv) and a trained classi�cation tree and returns the proportion

of samples that the tree labels correctly.

Test your function with the animals.csv �le. Shu�e the data set with np.random.

shuffle() and use 80 samples to train your classi�cation tree. Use the other 20 samples as

the test set to see how accurately your tree classi�es them. Your tree should be able to classify

this set with roughly 80% accuracy on average, given the default parameters.

Random Forest
As noted, one of the main issues with Decision Trees is their tendency to over�t Random forests are

a way of mitigating over�tting that cannot be �xed by restricting the depth and leaf size. A random

forest is just what it sounds like�a collection of trees. Each tree is trained randomly, meaning that

at each node, only a small, random subset of the features is available by which to determine the next

split. The size of this subset should be small relative to the total number of features present. Let n

be the total number of features in the data set. One common method, and the one we will use here,

is to split on
√
n features, rounding down where applicable.

When predicting the label of a new sample, each trained tree in the forest casts a vote, deter-

mined as above, and the sample is labeled according to the majority vote of the trees.

Problem 7. Add an argument random_subset to build_tree() and find_best_split(),

defaulting to False, that indicates whether or not the tree should be trained randomly. When

True, each node should be restricted to a random combination of
√
n features to use in its split,

where n is the total number of features (note that class labels are not features).

Next, write a function predict_forest() that accepts a new sample and a trained forest

(as a list of trees). It should return the assigned label, found by majority vote of the trees.

Finally, write a function analyze_forest() that accepts a labeled data set and a trained

forest and analyzes the accuracy of the forest's predictions.

Test your functions out on the animals.csv �le. Examine the graphs of the individual

trees to see how they compare to the non-randomized versions.

Scikit-Learn

Next, we'll compare our implementation to scikit-learn's RandomForestClassifier. Rather than

accepting all the data as a single array, as in our implementation, this package accepts the feature

data as the �rst argument and all of the labels as the second argument.

>>> from sklearn.ensemble import RandomForestClassifier

Create the forest with the appropriate arguments and 200 trees

>>> forest = RandomForestClassifier(n_estimators=200, max_depth=4,

... min_samples_leaf=5)

7

Shuffle the data

>>> shuffled = np.random.permutation(animals)

>>> train = shuffled[:80]

>>> test = shuffled[80:]

Fit the model to your data, passing the labels in as the second argument

>>> forest.fit(train[:,:-1], train[:,-1])

Test the accuracy with the testing set

>>> forest.score(test[:,:-1], test[:,-1])

0.85

Problem 8. The �le parkinsons.csv contains annotated speech data from people with and

without Parkinson's Disease. The �rst column is the subject ID, columns 2-27 are various

features, and the last column is the label indicating whether or not the subject has Parkinson's.

You will need to remove the �rst column so your forest doesn't use participant ID to predict

class labels. Feature names are contained in the �le parkinsons_features.csv.

Write a function to compare your forest implementation to the package from scikit-learn.

Because of the size of this data set, we will only use a small portion of the samples and build a

very simple forest. Randomly select 130 samples. Use 100 in training your forest and 30 more

in testing it. Include 5 trees in the forest and use min_samples_leaf=15. Time how long it

takes to train and analyze your forest.

Repeat this with scikit-learn's package, using the same 100 training samples and 30 test

samples. Set n_estimators=5 and min_samples_leaf=15.

Next, using scikit-learn's package, run the whole data set, using the default parameters.

Use 80% of the data to train the forest and the other 20% to test it.

Return three tuples, where each tuple contains the accuracy and time for each variation.

	Random Forests

