
9 Finding Patterns in
Data: LSI and more
about Scikit-Learn

Lab Objective: Understand the basics of principal component analysis and latent semantic index-

ing. Learn more about scikit-learn and implement a machine learning pipeline.

Principal Component Analysis
Principal Component Analysis (PCA) is a multivariate statistical tool used to change the basis

of a set of samples from the basis of original features (which may be correlated) into a basis of

uncorrelated variables called the principal components. It is a direct application of the singular value

decomposition (SVD). The �rst principal component will account for the greatest variance in the

samples, the second principal component will be orthogonal to the �rst and account for the second

greatest variance, etc. By projecting the samples onto the space spanned by the �rst few principal

components, we can reduce the dimensionality of the data while preserving most of the variance.

Take a matrix X with samples as rows and features as columns. The �rst step in PCA is to pre-

process the data, which usually includes translating the columns of X to have mean 0. Some datasets

require additional scaling based on variance and units of measurement. Call the new pre-processed

matrix Y .

We next compute the truncated SVD of our centered data, Y = UΣV T , where the columns of

V are the principal components and form an orthonormal basis for the space spanned by the samples.

The variance captured by each principal component can be calculated by the equation below, where

σi is the i-th nonzero singular value and there are k total singular values.

σ2
i∑k

j=1 σ
2
j

(9.1)

In general, we are only interested in the �rst several principal components. But just how many

principal components should we keep? One method is to keep the �rst two principal components so

that we can project the data into 2-dimensional space. Another is to only keep the set of principal

components accounting for a certain percentage of the variance, using the equation above.

Once we have decided how many principal components to keep (say the �rst l), we can project

the samples from the original feature space onto the principal component space by computing

Ŷ = U:,:lΣ:l,:l = Y V:,:l
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Problem 1. The breast cancer dataset from scikit-learn has 569 samples with 30 features each.

Each sample is labeled as 0 (malignant) or 1 (benign). With 30 features, this data can't be

directly visualized, so we will use PCA to graph the �rst two principal components, which

account for nearly all of the variance in the data.

You can load this data using the following code.

>>> cancer = sklearn.datasets.load_breast_cancer()

>>> X = cancer.data

>>> y = cancer.target # Class labels (0 or 1)

Write a function that performs PCA on the breast cancer dataset. Graph the �rst two

principal components, with the �rst along the x-axis. Your graph should resemble Figure 9.1

below. Include in the graph title the amount of variance captured by the �rst two principal

components, calculated with Equation 9.1.
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Figure 9.1: First two principal components of the transformed breast cancer data

Latent Semantic Indexing
Latent Semantic Indexing (LSI) is an application of PCA to the realm of natural language processing.

In particular, LSI employs the SVD to reduce the dimensionality of a large corpus of text documents

in order to enable us to evaluate the similarity between two documents. Many information-retrieval

systems used in government and in industry are based on LSI.

To motivate the problem, suppose we have a large collection of documents about various topics.

How can we �nd an article about BYU? We might consider simply choosing the article that contains

the acronym the greatest number of times, but this is a crude method. A better way is to use a form

of PCA on the collection of documents.

In order to do so, we need to represent the documents as numerical vectors. A standard

way of doing this is to de�ne an ordered set of words occurring in the collection of documents
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(called the vocabulary) and then to represent each document as a vector of word counts from the

vocabulary. More formally, let our vocabulary be V = {w1, w2, . . . , wm}. Then a document is a vector

x = (x1, x2, . . . , xm) ∈ Rm such that xi is the number of occurrences of word wi in the document.

In this setup, we represent the entire collection of m documents as an n×m matrix X, where m is

the number of vocabulary words and n is the number of documents in our collection, so each row

is a document vector. As expected, we let Xi,j be the number of times term j occurs in document

i. Note that X is often a sparse matrix, as any single document likely does not contain most of the

vocabulary words. This mode of representation is called the bag of words model for documents.

We calculate the SVD of X without centering or scaling the data so that we may retain the

sparsity. This is unique to this particular problem. We now have X = UΣV T . If we are keeping l

principal components, we can represent the corpus of documents by the matrix

X̂ = U:,:lΣ:l,:l = XV:,:l

Note that X̂ will no longer be a sparse matrix, but will have dimension n× l.
Now that we have our documents represented in terms of the �rst l principal components, we

can �nd the similarity between two documents. Our measure for similarity is simply the cosine of

the angle between the vectors; a small angle (large cosine) indicates greater similarity, while a large

angle (small cosine) indicates greater dissimilarity. Recall that we can use the inner product to �nd

the cosine of the angle between two vectors. Under this metric, the similarity between document i

and document j (represented by the i-th and j-th row of X̂, notated X̂i and X̂j , respectively) is just

〈X̂i, X̂j〉
‖X̂i‖‖X̂j‖

.

To �nd the document most similar to document i, we simply compute

argmaxj 6=i
〈X̂i, X̂j〉
‖X̂i‖‖X̂j‖

.

Problem 2. Create a function similar that takes in a sparse matrix Xhat and an index i and

returns the indices of the most similar and the least similar documents.

Application: State of the Union
We now discuss some practical issues involved in creating the bag of words representation X from

the raw text. Our dataset will consist of the US State of the Union addresses from 1945 through

2013, each contained in a separate text �le in the folder Addresses. We would like to avoid loading

in all of the text into memory at once, and so we will stream the documents one at a time.

The �rst thing we need to establish is the vocabulary set, i.e. the set of unique words that occur

throughout the collection of documents. A Python set object automatically preserves the uniqueness

of the elements, so we will create a set and then iteratively read through the documents, adding the

unique words of each document to the set. As we read in each document, we will remove punctuation

and numerical characters and convert everything to lower case. The following code, found in the

function document_converter(), will accomplish this task.

# Get list of file paths to each text file in the folder
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>>> folder = "./Addresses/"

>>> paths = [folder+p for p in os.listdir(folder) if p.endswith(".txt")]

# Helper function to get list of words in a string

>>> def extractWords(text):

... ignore = string.punctuation + string.digits

... cleaned = "".join([t for t in text.strip() if t not in ignore])

... return cleaned.lower().split()

# Initialize vocab set, then read each file and add to the vocab set.

>>> vocab = set()

>>> for p in paths:

... with open(p, 'r') as infile:

... for line in infile:

... vocab.update(extractWords(line))

We now have a set containing all of the unique words in the corpus. However, many of the

most common words do not provide important information. We call these stop words. Examples in

English include the, a, an, and, I, we, you, it, there, etc; a list of common English stop words is given

in stopwords.txt. We remove the stop words from our vocabulary set as follows and then �x an

ordering to the vocabulary by creating a dictionary with key-value pairs of the form (word, index).

# Load stopwords.

>>> with open("stopwords.txt", 'r') as f:

... stops = set([w.strip().lower() for w in f.readlines()])

# Remove stopwords from vocabulary, create ordering.

>>> vocab = {w:i for i, w in enumerate(vocab.difference(stops))}

We are now ready to create the word count vectors for each document, and we store these in a

sparse matrix X. It is convenient to use the Counter object from the collections module, as this

object automatically counts the occurrences of each distinct element in a list.

>>> from collections import Counter

>>> counts = [] # holds the entries of X

>>> doc_index = [] # holds the row index of X

>>> word_index = [] # holds the column index of X

# Iterate through the documents.

>>> for doc, p in enumerate(paths):

... with open(p, 'r') as f:

... # create the word counter

... ctr = Counter()

... for line in f:

... ctr.update(extractWords(line))

... # Iterate through the word counter, storing counts

... for word, count in ctr.items():

... if word in vocab:

... word_index.append(vocab[word])
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... counts.append(count)

... doc_index.append(doc)

# Create sparse matrix holding these word counts.

>>> X = sparse.csr_matrix((counts, [doc_index, word_index]),

... shape=(len(paths), len(vocab)), dtype=np.float)

Problem 3. Applying the techniques of LSI discussed above to the word count matrix X, and

keeping the �rst 7 principal components, write a function that takes in the path to a single

State of the Union address speech and returns a tuple of the addresses that are most and least

similar to speech. For Ronald Reagan's 1984 speech, the input would be `./Addresses/1984-

Reagan.txt', and your output should be ('1988-Reagan', '1946-Truman'). Be sure to format the

strings properly.

Since X is a sparse matrix, you will need to use the SVD method found in scipy.

sparse.linalg. This method operates slightly di�erently than the SVD method found in

scipy.linalg, so be sure to read the documentation.

The simple bag of words representation is a bit crude, as it fails to consider how some words

may be more important than others in determining the similarity of documents. Words appearing

in few documents tend to provide more information than words occurring in every document. For

example, while the word war might not be considered a stop word, it is likely to appear in many

more addresses than the word Afghanistan. Two speeches sharing the word Afghanistan are probably

more closely related than two speeches sharing the word war. So while Xi,j is a good measure of

the importance of term j in document i, we also need to consider some kind of global weight for

each term j, indicating how important the term is over the entire collection. There are a number of

di�erent weights we could choose; we will employ the following approach. De�ne

pi,j =
Xi,j∑
j Xi,j

.

We then let

gj = 1 +

m∑
i=1

pi,j log(pi,j + 1)

logm
,

where m is the number of documents in the collection. We call gj the global weight of term j. We

replace each term frequency in the matrix X by weighting it globally. Speci�cally, we de�ne a matrix

A with entries

Ai,j = gj log(Xi,j + 1).

We can now perform LSI on the matrix A, whose entries are both locally and globally weighted.

Problem 4. Use the equation above to edit the function weighted_document_converter()

to calculate the sparse matrix A. Similar to the function document_converter(), this function

should return A and a list of �le paths.
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Scikit-Learn
Scikit-learn is one of the fundamental tools Python o�ers for machine learning. It includes classi-

�ers, such as RandomForestClassifier and KNeighborsClassifier, as well as transformers, which

preprocess data before classi�cation. In the remainder of this lab, we will discuss transformers,

validation tools, how to �nd optimal hyperparameters, and how to build a machine learning pipeline.

Transformers

A scikit-learn transformer processes data to make it better suited for classi�cation. This may involve

shifting or scaling data, dropping columns, replacing missing values, and so on. The function from

Problem 4 is an example of a transformer, as is PCA.

Note

A hyperparameter is not dependent on data. Hyperparameters are declared in the constructor

__init__(), before data is even passed in. Parameters set during the fit() method are often

called model parameters and do depend on speci�c data. For example, a StandardScaler

transformer shifts and scales data to have a mean of 0 and a standard deviation of 1.

Scikit-learn's transformers have three main methods: fit_transform(), which �ts model

parameters and also transforms given data; fit(), which sets model parameters but does not

perform a transformation; and transform(), which transforms data according to pre-�tted

model parameters. Model parameters are �tted according to training data, and they are not

re�tted to testing data, so a StandardScaler will shift and scale testing data according to the

mean and variance of the training data; the transformed test data likely will not have mean 0

and variance 1.

Scikit-learn has a built-in PCA package. Its hyperparameters include the desired number of

principal components and the type of SVD solver to use. Its fit_transform() method takes in an

array of data and returns the decomposition with n_components.

>>> from sklearn.decomposition import PCA

>>> pca = PCA(n_components=5) # Create the PCA transformer with hyperparameters

>>> Xhat = pca.fit_transform(X) # Fit the transformer and transform the data

Problem 5. Repeat Problem 3 using your weighted document converter function and scikit-

learn's built-in PCA decomposition. Do your answers seem more reasonable than before? For

Bill Clinton's 1993 speech, your code should return ('./Addresses/1994-Clinton.txt', './Addresses/1951-

Truman.txt').

Hint: Scikit-learn's PCA does not accept sparse matrices.

Validation Tools

We now turn our attention from transformers to classi�ers. A classi�er is trained to predict how a

new sample should be classi�ed or labeled. Knowing how to determine whether or not a classi�er
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performs well is an essential part of machine learning. This often turns out to be a surprisingly

sophisticated issue that largely depends on the type of problem being solved and the kind of data

that is available for training. Scikit-learn has validation tools for many situations; for brevity, we

restrict our attention to the simple (but important) case of binary classi�cation, where the possible

labels are only 0 or 1.

The score() method of a scikit-learn classi�er returns the accuracy of the model, or the percent

of labels predicted correctly. However, accuracy isn't always the best measure of success. Consider

the confusion matrix for a classi�er, the matrix where the (i, j)th entry is the number of samples

with actual label i but that are classi�ed with label j. Call the class with label 0 the negatives and

the class with label 1 the positives. Then the confusion matrix is as follows.

Predicted: 0 Predicted: 1[ ]
Actual: 0 True Negatives (TN) False Positives (FP )

Actual: 1 False Negatives (FN) True Positives (TP )

With this terminology, we de�ne the following metrics.

� Accuracy :
TN + TP

TN + FN + FP + TP
, the percent of labels predicted correctly.

� Precision:
TP

TP + FP
, the percent of predicted positives that are actually correct.

� Recall :
TP

TP + FN
, the percent of actual positives that are predicted correctly.

Precision is useful in situations where false positives are dangerous or costly, while recall is

important when avoiding false negatives takes priority. For example, an email spam �lter should

avoid �ltering out an email that isn't actually spam; here a false positive is more dangerous, so

precision is a valuable metric for the �lter. On the other hand, recall is more important in disease

detection: it is better to test positive and not have the disease than to test negative when the disease

is actually present. Focusing on a single metric often leads to skewed results, so the following metric

is also common.

Fβ Score : (1 + β2)
precision · recall

(β2 · precision) + recall
=

(1 + β2)TP

(1 + β2)TP + FP + β2FN
.

Choosing β < 1 weighs precision more than recall, while β > 1 prioritizes recall over precision.

The choice of β = 1 yields the common F1 score, which weighs precision and recall equally. This is

an important alternative to accuracy when, for example, the training set is heavily unbalanced with

respect to the class labels.

Scikit-learn implements all of these metrics in sklearn.metrics. The general syntax for

such functions is some_score(actual_labels, predicted_labels). We will be using the func-

tion classification_report(), which returns precision, recall, and F1 scores for each label. Each

row in the report corresponds to a speci�c label and gives the scores with its label as the "positive"

classi�cation. For example, in binary classi�cation, the row corresponding to 1 gives the scores as

they would normally be calculated, with 1 as "positive."

>>> from sklearn.neighbors import KNeighborsClassifier

>>> from sklearn.metrics import confusion_matrix, classification_report
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>>> from sklearn.model_selection import train_test_split

# Split the data into training and testing sets

>>> X_train, X_test, y_train, y_test = train_test_split(X, y)

# Fit the esimator to training data and predict the test labels.

>>> knn = KNeighborsClassifier(n_neighbors=2)

>>> knn.fit(X_train, y_train)

>>> knn_predicted = knn.predict(X_test)

# Compute the confusion matrix by comparing actual labels to predicted labels.

>>> CM = confusion_matrix(y_test, knn_predicted)

>>> CM

array([[44, 5],

[10, 84]])

# Get precision, recall, and F1 scores all at once.

# The row labeled 1 gives these scores as we normally calculate them.

>>> print(classification_report(y_test, knn_predicted))

precision recall f1-score support

0 0.81 0.90 0.85 49

1 0.94 0.89 0.92 94

accuracy 0.90 143

macro avg 0.88 0.90 0.89 143

weighted avg 0.90 0.90 0.90 143

Problem 6. For this problem, use the cancer dataset from Problem 1 to compare a RandomForestClassifier

and a KNeighborsClassifier, using the default parameters for each.

Use train_test_split() with random_state=2 to split up the data. Fit the classi�ers

with the training set and predict the labels for the testing set. Print out a classi�cation report

for each classi�er, making sure to clearly label which report corresponds to which classi�er.

Write a few sentences explaining which of these classi�ers would be better to use in this

situation and why, using the information from the report as evidence. Remember that in this

dataset, the label 1 means benign and 0 means malignant.

Grid Search

Finding the optimal hyperparameters for a given model is a challenging and active area of research.1

However, brute-force searching over a small hyperparameter space is simple in scikit-learn: a sklearn

.model_selection.GridSearchCV object is initialized with a classi�er, a dictionary of hyperparam-

eters, and some validation parameters. When its fit() method is called, it tests the given classi�er

with every possible hyperparameter combination.

1Intelligent hyperparameter selection is sometimes called metalearning.
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For example, a KNeighborsClassifier has a few important hyperparameters that can have a

signi�cant impact on the speed and accuracy of the model. These include n_neighbors, the number

of nearest neighbors allowed to vote, and weights, which speci�es a strategy for weighting the

distances between points. The code box below tests various combinations of these hyperparameters.

The cost of a grid search rapidly increases as the hyperparameter space grows. However, the

outcomes of each trial are completely independent of each other, so the problem of training each

classi�er is embarassingly parallel, meaning the trials can easily be computed simultaneously. To

parallelize the grid search over n CPU cores, set the n_jobs parameter to n, or set it to −1 to divide

the labor between as many cores as are available.

>>> from sklearn.model_selection import GridSearchCV

>>> knn = KNeighborsClassifier()

# Specify values for certain hyperparameters

>>> param_grid = {"n_neighbors": [2, 3, 4, 5, 6],

... "weights": ["uniform", "distance"]}

>>> knn_gs = GridSearchCV(knn, param_grid, scoring="f1", n_jobs=-1)

# Run the actual search. This may take some time.

>>> knn_gs.fit(X_train, y_train)

# After fitting, you can access data about the results.

>>> print(knn_gs.best_params_, knn_gs.best_score_, sep='\n')

{'n_neighbors': 5, 'weights': 'uniform'}

0.9532526583188765

# Access the model

>>> knn_gs.best_estimator_

KNeighborsClassifier(weights='distance')

In some circumstances, the parameter grid can be organized in a way that eliminates redun-

dancy. For example, with a RandomForestClassifier, you could test each max_depth argument

with entirely di�erent sets of values for min_samples_leaf. To specify certain combinations of

parameters, enter the parameter grid as a list of dictionaries.

Problem 7. Do a grid search on the breast cancer dataset using a RandomForestClassifier.

Modify at least three parameters in your grid. Use scoring="f1" for the GridSearchCV object.

Fit your model with the same train-test split as in Problem 6. Print out the best parameters

and the best score.

Next, use the GridSearchCV object to predict labels for your test set. Print out a confusion

matrix using these values.

Pipelines
Most machine learning problems require at least a little data preprocessing before estimation in

order to get good results. A scikit-learn pipeline chains together one or more transformers and one

estimator (such as a classi�er) into a single object, complete with fit() and predict() methods.
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This simpli�es and automates the machine learning process so that when you get new data or make

changes to various functions and features, you can easily rerun the new version from beginning to

end.

The following example demonstrates how to use a pipeline with a StandardScaler transformer

and a KNeighborsClassifier. Like classi�ers, pipelines have fit(), predict(), and score() meth-

ods. Each member of the pipeline is declared as a tuple where the �rst element is a string naming

the step and the second is the actual transformer or classi�er.

>>> from sklearn.preprocessing import StandardScaler

>>> from sklearn.pipeline import Pipeline

# Chain together a StandardScaler transformer and a KNN classifier.

>>> pipe = Pipeline([("scaler", StandardScaler()), # "scaler" is the step name

... ("knn", KNeighborsClassifier())]) # "knn" is the step name

>>> pipe.fit(X_train, y_train)

>>> pipe.score(X_test, y_test)

0.972027972027972

Since Pipeline objects follow fit() and predict() conventions, they can be used with tools

like GridSearchCV. To specify which hyperparameters belong to which steps of the pipeline, precede

each hyperparameter name with <stepname>__. For example, knn__n_neighbors corresponds to

the n_neighbors hyperparameter of the pipeline step labeled knn.

# Create the Pipeline, labeling each step.

>>> pipe = Pipeline([("scaler", StandardScaler()),

("knn", KNeighborsClassifier())])

# Specify the hyperparameters to test for each step.

>>> pipe_param_grid = {"scaler__with_mean": [True, False],

... "scaler__with_std": [True, False],

... "knn__n_neighbors": [2,3,4,5,6],

... "knn__weights": ["uniform", "distance"]}

# Pass the Pipeline object to the GridSearchCV and fit it to the data.

>>> pipe_gs = GridSearchCV(pipe, pipe_param_grid,

... n_jobs=-1).fit(X_train, y_train)

>>> print(pipe_gs.best_params_, pipe_gs.best_score_, sep='\n')

{'knn__n_neighbors': 6, 'knn__weights': 'distance',

'scaler__with_mean': True, 'scaler__with_std': True}

0.971830985915493

Pipelines can also be used to compare di�erent transformations or estimators. For example, a

pipeline can end in either a KNeighborsClassifier() or a classi�er called SVC(), even though they

have di�erent hyperparameters. Like before, you can use a list of dictionaries to specify the speci�c

combinations of the hyperparameter space.

# Create the pipeline, using any classifier as a placeholder

>>> pipe = Pipeline([("scaler", StandardScaler()),
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("classifier", KNeighborsClassifier())])

# Create the grid

>>> pipe_param_grid = [

... {"classifier": [KNeighborsClassifier()], # Try a KNN classifier...

... "classifier__n_neighbors": [2,3,4,5],

... "classifier__weights": ["uniform", "distance"]},

... {"classifier": [SVC(kernel="rbf")], # ...and an SVM classifier.

... "classifier__C": [.001, .01, .1, 1, 10, 100],

... "classifier__gamma": [.001, .01, .1, 1, 10, 100]}]

# Fit using training data

>>> pipe_gs = GridSearchCV(pipe, pipe_param_grid,

... scoring="f1", n_jobs=-1).fit(X_train, y_train)

# Get the best hyperparameters

>>> params = pipe_gs.best_params_

>>> print("Best classifier:", params["classifier"])

Best classifier: SVC(C=10, cache_size=200, class_weight=None, coef0=0.0,

decision_function_shape='ovr', degree=3, gamma=0.01, kernel='rbf',

max_iter=-1, probability=False, random_state=None, shrinking=True,

tol=0.001, verbose=False)

# Check the best classifier against the test data

>>> confusion_matrix(y_test, pipe_gs.predict(X_test))

array([[48, 1], # Near perfect!

[ 1, 93]])

Problem 8. The breast cancer dataset has 30 features. By using PCA, we can drastically

reduce the dimensionality while still retaining predictive power.

Create a pipeline with a StandardScaler, PCA, and a KNeighborsClassifier. Use the

same train-test split as before. Do a grid search on this pipeline, modifying at least six hy-

perparameters and using scoring="f1". Use no more than 5 principal components. Print out

your best parameters and best score. Attain a score of at least .96.

Hint: The documentation for StandardScaler, PCA, and KNeighborsClassifier can be

found at these links.

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
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