
10 Non-negative Matrix
Factorization
Recommender

Lab Objective: Understand and implement the non-negative matrix factorization for recommen-

dation systems.

Introduction
Collaborative �ltering is the process of �ltering data for patterns using collaboration techniques.

More speci�cally, it refers to making prediction about a user's interests based on other users' interests.

These predictions can be used to recommend items and are why collaborative �ltering is one of the

common methods of creating a recommendation system.

Recommendation systems look at the similarity between users to predict what item a user is

most likely to enjoy. Common recommendation systems include Net�ix's Movies you Might Enjoy

list, Spotify's Discover Weekly playlist, and Amazon's Products You Might Like.

Non-negative Matrix Factorization
Non-negative matrix factorization is one algorithm used in collaborative �ltering. It can be applied

to many other cases, including image processing, text mining, clustering, and community detection.

The purpose of non-negative matrix factorization is to take a non-negative matrix V and factor it

into the product of two non-negative matrices.

For V ∈ Rm×n, 0 �W ,

minimize ||V −WH||
subject to 0 �W, 0 � H

where W ∈ Rm×k, H ∈ Rk×n

k is the rank of the decomposition and can either be speci�ed or found using the Root Mean

Squared Error (the square root of the MSE), SVD, Non-negative Least Squares, or cross-validation

techniques.

1

2 Lab 10. Non-negative Matrix Factorization Recommender

For this lab, we will use the Frobenius norm, given by

||A||F =

√√√√ m∑
i=1

n∑
j=1

|a|2ij .

It is equivalent to the square root of the sum of the diagonal of AHA

Problem 1. Create the NMFRecommender class, which will be used to implement the NMF

algorithm. Initialize the class with the following parameters: random_state defaulting to 15,

tol defaulting to 1e− 3, maxiter defaulting to 200, and rank defaulting to 3.

Add a method called initialize_matrices that takes in m and n, the dimensions of V .

Set the random seed so that initializing the matrices can be replicated

>>> np.random.seed(self.random_state)

Initialize W and H using randomly generated numbers between 0 and 1, where W ∈ Rm×k and

H ∈ Rk×n. Return W and H.

Finally, add a method called compute_loss() that takes as parameters V, W, and H and

returns the Frobenius norm of V −WH.

Multiplicative Update

After initializing W and H, we iteratively update them using the multiplicative update step. There

are other methods for optimization and updating, but because of the simplicity and ease of this

solution, it is widely used. As with any other iterative algorithm, we perform the step until the tol

or maxiter is met.

Hn+1
ij = Hn

ij

((Wn)TV)ij
((Wn)TWnHn)ij

(10.1)

and

Wn+1
ij = Wn

ij

(V (Hn+1)T)ij
(WnHn+1(Hn+1)T)ij

(10.2)

Problem 2. Add a method to the NMF class called update_matrices that takes as inputs

matrices V , W , H and returns Wn+1 and Hn+1 as described in Equations 10.1 and 10.2.

Problem 3. Finish the NMF class by adding a method fit that �nds an optimal W and H. It

should accept V as a numpy array, perform the multiplicative update algorithm until the loss

is less than tol or maxiter is reached, and return W and H.

Finally add a method called reconstruct that reconstructs and returns V by multiplying

W and H.

3

Using NMF for Recommendations

Consider the following marketing problem where we have a list of �ve grocery store customers and

their purchases. We want to create personalized food recommendations for their next visit. We start

by creating a matrix representing each person and the number of items they purchased in di�erent

grocery categories. So from the matrix, we can see that John bought two fruits and one sweet.

V =

John Alice Mary Greg Peter Jennifer

0 1 0 1 2 2 V egetables

2 3 1 1 2 2 Fruits

1 1 1 0 1 1 Sweets

0 2 3 4 1 1 Bread

0 0 0 0 1 0 Coffee

After performing NMF on V , we'll get the following W and H.

W =

Component1 Component2 Component3

2.1 0.03 0. V egetables

1.17 0.19 1.76 Fruits

0.43 0.03 0.89 Sweets

0.26 2.05 0.02 Bread

0.45 0. 0. Coffee

H =

John Alice Mary Greg Peter Jennifer 0.00 0.45 0.00 0.43 1.0 0.9 Component1

0.00 0.91 1.45 1.9 0.35 0.37 Component2

1.14 1.22 0.55 0.0 0.47 0.53 Component3

W represents how much each grocery feature contributes to each component; a higher weight

means it's more important to that component. For example, component 1 is heavily determined by

vegetables followed by fruit, then co�ee, sweets and �nally bread. Component 2 is represented almost

entirely by bread, while component 3 is based on fruits and sweets, with a small amount of bread.

H is similar, except instead of showing how much each grocery category a�ects the component, it

shows a much each person belongs to the component, again with a higher weight indicating that the

person belongs more in that component. We can see the John belongs in component 3, while Jennifer

mostly belongs in component 1.

To get our recommendations, we reconstruct V by multiplying W and H.

WH =

John Alice Mary Greg Peter Jennifer

0.0000 0.9723 0.0435 0.96 2.1105 1.9011 V egetables

2.0064 2.8466 1.2435 0.8641 2.0637 2.0561 Fruits

1.0146 1.3066 0.533 0.2419 0.8588 0.8698 Sweets

0.0228 2.0069 2.9835 4.0068 0.9869 1.0031 Bread

0.0000 0.2025 0.0000 0.1935 0.45 0.405 Coffee

Most of the zeros from the original V have been �lled in. This is the collaborative filtering

portion of the algorithm. By sorting each column by weight, we can predict which items are more

4 Lab 10. Non-negative Matrix Factorization Recommender

attractive to the customers. For instance, Mary has the highest weight for bread at 2.9835, followed

by fruit at 1.2435 and then sweets at .533. So we would recommend bread to Mary.

Another way to interpret WH is to look at a feature and determine who is most likely to buy

that item. So if we were having a sale on sweets but only had funds to let three people know, using

the reconstructed matrix, we would want to target Alice, John, and Jennifer in that order. This gives

us more information that V alone, which says that everyone except Greg bought one sweet.

Problem 4. Use the NMFRecommender class to run NMF on V , de�ned above, with 2 compo-

nents. Return W , H, and the number of people who have higher weights in component 2 than

in component 1.

Sklearn NMF
Python has a few packages for recommendation algorithms: Surprise, CaseRecommender and of

course SkLearn. They implement various algorithms used in recommendation models. We'll use

SkLearn, which is similar to the NMFRecommender class, for the last problems.

from sklearn.decomposition import NMF

>>> model = NMF(n_components=2, init='random', random_state=0)

>>> W = model.fit_transform(X)

>>> H = model.components_

As mentioned earlier, many big companies use recommendation systems to encourage purchas-

ing, ad clicks, or spending more time in their product. One famous example of a Recommendation

system is Spotify's Discover Weekly. Every week, Spotify creates a playlist of songs that the user has

not listened to on Spotify. This helps users �nd new music that they enjoy and keeps Spotify at the

forefront of music trends.

Problem 5. Read the �le artist_user.csv as a pandas dataframe. The rows represent users,

with the user id in the �rst column, and the columns represent artists. For each artist j that a

user i has listened to, the ij entry contains the number of times user i has listened to artist j.

Identify the rank, or number of components to use. Ideally, we want the smallest rank that

minimizes the error. However, this rank may be too computationally expensive, as in this situa-

tion. We'll choose the rank by using the following method. First, calculate the frobenius norm of

the dataframe and multiply it by .0001. This will be our benchmark value. Next, iterate through

rank = 3, 4, 5, For each iteration, run NMF using n_components=rank and reconstruct the

matrix V . Calculate the root mean square error using sklearn.metrics.mean_squared_error

of the original dataframe and the reconstructed matrix V . When the RMSE is less than the

benchmark value, stop. Return the rank and the reconstructed matrix of this rank.

Problem 6. Write a function discover_weekly that takes in a user id and the reconstructed

matrix from Problem 5, and returns a list of 30 artists to recommend.

The list should be sorted so that the �rst artist is the recommendation with the highest

5

weight and the last artist is the least, and it should not contain any artists that the user has

already listed to. Use the �le artists.csv to match the artist ID to their name.

As a check, the Discover Weekly for user 2 should return

[['Britney Spears'],['Avril Lavigne'],['Rihanna'],

['Paramore'],['Christina Aguilera'],['U2'],

['The Devil Wears Prada'],['Muse'],['Hadouken!'],

['Ke$ha'],['Good Charlotte'],['Linkin Park'],

['Enter Shikari'],['Katy Perry'],['Miley Cyrus'],

['Taylor Swift'],['Beyoncé'],['Asking Alexandria'],

['The Veronicas'],['Mariah Carey'],['Martin L. Gore'],

['Dance Gavin Dance'],['Erasure'], ['In Flames'],

['3OH!3'],['Blur'],['Kelly Clarkson'],

['Justin Bieber'],['Alesana'],['Ashley Tisdale']]

	Non-negative Matrix Factorization Recommender

