
1 ARMA Models

Lab Objective: ARMA(p, q) models combine autoregressive and moving-average models in order
to forecast future observations using time-series. In this lab, we will build an ARMA(p, q) model to
analyze and predict future weather data and then compare this model to statsmodels built-in ARMA
package. Then we will forecast the future height of the Rio Negro.

Time Series
A time series is any discrete-time stochastic process. In other words, it is a sequence of random
variables, {yt}Tt=1, that are determined by their time t. Examples of time series include heart rate
readings over time, pollution readings over time, stock prices at the closing of each day, and air
temperature. Often when analyzing time series, we want to forecast future data, such as what will
the stock price of a company be in a week and what will the temperature be in 10 days.

ARMA(p, q) Models
One way to forecast a time series is using an ARMA model. An ARMA(p, q) model combines an
autoregressive model of order p and a moving average model of order q on a time series {yt}Tt=1. This
model is a dependent model as it is non-independent of previous data. Because of this, the model
needs to become stationary in order to compensate for the dependency of the data. To make data
stationary, we look at the time series {zt}Tt=1 where zt = yt − yt−1. The model itself is a stochastic
process on zt, satisfying the equation

zt =

(
p∑

i=1

φizt−i

)
︸ ︷︷ ︸

AR(p)

+εt +

 q∑
j=1

θjεt−j


︸ ︷︷ ︸

MA(q)

(1.1)

where each εt is an identically-distributed Gaussian variable N (µ, σ2), and φi and θj are constants.

AR(p) Models

An AR(p) model works similar to a weighted random walk. Recall that in a random walk, the
current position depends on the immediate past position. In the autogregressive model, the current

1

2 Lab 1. ARMA Models

data point in the time series depends on the past p data points. However, the importance of each of
the past p data points is not uniform. With an error term to represent white noise and a constant
term to adjust the model along the y-axis, we can model the stochastic process with the following
equation:

zt = c+ εt +

p∑
i=1

φizt−i (1.2)

If there is a high correlation between the current and previous values of the time series, then
the AR(p) model is a good representation of the data, and thus the ARMA(p, q) model will most
likely be a good representation. The coefficients {φi}pi=1 are larger when the correlation is stronger.

In this lab, we will be using weather data from Provo, Utah1. To check that the data can be
represented well, we need to look at the correlation between the current and previous values.

15 20 25
zt

12

14

16

18

20

22

24

26

28

z t
1

15 20 25
zt

12

14

16

18

20

22

24

26

28

z t
2

15 20 25
zt

12

14

16

18

20

22

24

26

28

z t
3

Correlations of Weather Data

Figure 1.1: These graphs show that the weather data is correlated to its previous values. The
correlation is weaker in each graph successively, showing that the further in the past the data is, the
less correlated the data becomes.

MA(q)

A moving average model of order q is used to factor in the varying error of the time series. This model
uses the error of the current data point and the previous data points to predict the next datapoint.
Similar to an AR(p) model, this model uses a linear combination (which includes a constant term to
adjust along the y-axis..

zt = c+ εt +

q∑
i=1

θiεt−i (1.3)

This part of the model simulates shock effects in the time series. Examples of shock effects
include volatility in the stock market or sudden cold fronts in the temperature.

Combining both the AR(p) and MA(q) models, we get an ARMA(p, q) model which forecasts
based on previous observations and error trends in the data.

1This data was taken from https://forecast.weather.gov/data/obhistory/metric/KPVU.html

3

Finding Parameters

One of the most difficult parts of using an ARMA(p, q) model is identifying the proper parameters
of the model. These parameters include {φi}pi=1, {θi}

q
i=1, µ, and σ, where µ and σ are the mean and

variance of the error. Note that {φi}pi=1 and {θi}qi=1 determine the order of the ARMA model.
A naive way to use an ARMA model is to choose p and q based on intuition. Figure 1.1 showed

that there is a strong correlation between zt and zt−1 and between zt and zt−2. The correlation is
weaker between zt and zt−3. Intuition then suggests to choose p = 2. By looking at the correlations
between the current noise with previous noise, similar to Figure 1.1, it can also be seen that there
is a weak correlation between zt and εt and between zt and εt−1. Between zt and εt−2 there is no
correlation. For more on how these error correlations were found, see Additional Materials. Intuition
from these correlations suggests to choose q = 1. Thus, a naive choice for our model is an ARMA(2, 1)

model.

14 15 16 17 18
Day of the Month

4

2

0

2

4

Ch
an

ge
 in

 T
em

pe
ra

tu
re

 (C
) -

=

0

ARMA(2,1) Naive Forecast

Old Data
New Data

Figure 1.2: Naive forecast on weather.npy

Problem 1. Write a function arma_forecast_naive() that builds an ARMA(p,q) model
where the values of φi = .5 and θi = .1 for all i. Let εi ∼ N (0, 1) for all i. Use your
function to predict the next n values of the time series. The function should accept a param-
eter p, q, and n (the number of observations to predict). Plot the observed differences {zt}Tt=1

followed by your predicted observations of zt.
The file weather.npy contains data on the temperature in Provo, Utah from 7:56 PM

May 13, 2019 to 6:56 PM May 16, 2019, taken every hour. Use this file to test your code, and
the future problems, by creating a time series of the difference in temperatures. For p = 2,
q = 1, and n = 20, your plot should look similar to Figure 1.2, however, due to the variance
of the error εt, the plot will not look exactly like Figure 1.2. The predictions may be higher or
lower on the x-axis.

Let Θ = {φi, θj , µ, σ2
a} be the set of parameters for an ARMA(p, q) model. Suppose we have

a set of observations {zt}nt=1. Our goal is to find the p, q, and Θ that maximize the likelihood of

4 Lab 1. ARMA Models

the ARMA model given the data. Using the chain rule, we can factorize the likelihood of the model
given this data as

p({zt}|Θ) =

n∏
t=1

p(zt|zt−1, . . . , z1,Θ) (1.4)

State Space Representation

In a general ARMA(p, q) model, the likelihood is a function of the unobserved error terms at and
is not trivial to compute. Simple approximations can be made, but these may be inaccurate under
certain circumstances. Explicit derivations of the likelihood are possible, but tedious. However, when
the ARMA model is placed in state-space, the Kalman filter affords a straightforward, recursive way
to compute the likelihood.

We demonstrate one possible state-space representation of an ARMA(p, q) model. Let r =

max(p, q + 1). Define

x̂t|t−1 =
[
xt−1 xt−2 · · · xt−r

]T
(1.5)

F =


φ1 φ2 · · · φr−1 φr
1 0 · · · 0 0

0 1 · · · 0 0
...

... · · ·
...

...
0 0 · · · 1 0

 (1.6)

H =
[
1 θ1 θ2 · · · θr−1

]
(1.7)

Q =


σ2
a 0 · · · 0

0 0 · · · 0
...

... · · ·
...

0 0 · · · 0

 (1.8)

wt ∼ MVN(0, Q), (1.9)

where φi = 0 for i > p, and θj = 0 for j > q. Note that Equation 1.2 gives

F x̂t−1|t−2 + wt =



∑r
i=1 φixt−i
xt−1
xt−2
...

xt−(r−1)

+


εt
0

0
...
0

 (1.10)

=
[
xt xt−1 · · · xt−(r−1)

]T
(1.11)

= x̂t|t−1 (1.12)

We note that zt|t−1 = Hx̂t|t−1 + µ.2

Then the linear stochastic dynamical system

x̂t+1|t = F x̂t|t−1 + wt (1.13)
zt|t−1 = Hx̂t|t−1 + µ (1.14)

describes the same process as the original ARMA model.
2For a proof of this fact, see Additional Materials.

5

Note

Equation 1.14 involves a deterministic component, namely µ. The Kalman filter theory devel-
oped in the previous lab, however, assumed E[εt] = 0 for the observations zt|t−1,. This means
you should subtract off the mean µ of the error from the time series observations zt|t−1 when
using them in the predict and update steps.

Likelihood via Kalman Filter

We assumed in Equation 1.9 that the error terms of the model are Gaussian. This means that each
conditional distribution in 1.4 is also Gaussian, and is completely characterized by its mean and
variance. These two quantities are easily found via the Kalman filter:

mean Hx̂t|t−1 + µ (1.15)

variance HPt|t−1H
T (1.16)

where x̂t|t−1 and Pt|t−1 are found during the Predict step. Given that each conditional distribution
is Gaussian, the likelihood can then be found as follows:

p({zt}|Θ) =

n∏
t=1

N(zt | Hx̂t|t−1 + µ, HPt|t−1H
T) (1.17)

Problem 2. Write a function arma_likelihood() that returns the log-likelihood of an AR-
MAmodel, given a time series {zt}Tt=1. This function should accept a file with the observations
and each of the parameters in Θ. In this case, using weather.npy, the time series should be
the change in temperature. Return the log-likelihood of the ARMA(p, q) model as a float.

Use the state_space_rep() function provided to create F,Q, and H. A kalman() filter
has been provided to calculate the means and covariances of each observation.

(Hint: Calling the function kalman() on a time series will return an array whose values
are xk|k−1 and an array whose values are Pk|k−1 for each k ≤ n. Remember that the time series
should have µ subtracted when using kalman().)

When done correctly, your function should match the following output:

>>> arma_likelihood(file='weather.npy', phis=np.array([0.9]), thetas=np.←↩
array([0]), mu=17., std=0.4)

-1375.1805469978776

Model Identification

Now that we can compute the likelihood of a given ARMA model, we want to find the best choice
of parameters given our time series. In this lab, we define the model with the "best" choice of
parameters as the model which minimizes the AIC. The benefit of minimizing the AIC is that it
rewards goodness of fit while penalizing overfitting. The AIC is expressed by

2k

(
1 +

k + 1

n− k

)
− 2`(Θ) (1.18)

6 Lab 1. ARMA Models

where n is the sample size, k = p+ q + 2 is the number of parameters in the model, and `(Θ) is the
maximum likelihood for the model class.

To compute the maximum likelihood for a model class, we need to optimize 1.17 over the space
of parameters Θ. We can do so by using an optimization routine such as scipy.optimize.fmin on
the function arma_likelihood() from Problem 2. Use the following code to run this routine.

>>> from scipy.optimize import fmin

>>> # assume p, q, and time_series are defined
>>> def f(x): # x contains the phis, thetas, mu, and std
>>> return -1*arma_likelihood(filename, phis=x[:p], thetas=x[p:p+q], mu=x←↩

[-2],std=x[-1])
>>> # create initial point
>>> x0 = np.zeros(p+q+2)
>>> x0[-2] = time_series.mean()
>>> x0[-1] = time_series.std()
>>> sol = fmin(f,x0,maxiter=10000, maxfun=10000)

This routine will return a vector sol where the first p values are {φi}pi=1, the next q values
are {θi}qi=1, and the last two values are µ and σ, respectively. Note the wrapper f(x) returns the
negative log-likelihood. This is because scipy.optimize.fmin finds the minimizer of f(x) and we
are solving for the maximum likelihood.

To minimize the AIC, we perform model identification. This is choosing the order of our model,
p and q, from some admissible set. The order of the model which minimizes the AIC is then the
optimal model.

Problem 3. Write a function model_identification() that accepts a file containing the
time series data and two integers, p and q. Return each parameter in Θ that minimizes the
AIC of an ARMA(i, j) model, given that 1 ≤ i ≤ p and 1 ≤ j ≤ q.

Your code should produce the following output (it may take awhile to run):

>>> model_identification(filename='weather.npy',p=4,q=4)
(array([1.27212808, -0.18810575, -0.05675297, -0.17660135]), array←↩

([-0.99998677]), 0.06041769590312662, 1.4181814024512955)

Forecasting with Kalman Filter
We now have identified the optimal ARMA(p, q) model. We can use this model to predict future
states. The Kalman filter provides a straightforward way to predict future states by giving the mean
and variance of the conditional distribution of future observations. Observations can be found as
follows

zt+k|z1, · · · , zt ∼ N(zt+k; Hx̂t+k|t + µ, HPt+k|tH
T) (1.19)

7

To evolve the Kalman filter, recall the predict and update rules of a Kalman filter.

Predict x̂k|k−1 = F x̂k−1|k−1 + u

Pk|k−1 = FPk−1|k−1F
T +Q

Update ỹk = zk −Hx̂k|k−1

Sk = HPk|k−1H
T +R

Kk = Pk|k−1H
TS−1k

x̂k|k = x̂k|k−1 +Kkỹk

Pk|k = (I −KkH)Pk|k−1

Achtung!

Recall that the values returned by kalman() are conditional on the previous observation. To
compute the mean and variance of future observations, the values xn|n and Pn|n MUST be
computed using the update step. Once computed, only the predict step is needed to find the
future means and covariances.

Problem 4. Write a function arma_forecast() that accepts a file containing a time series,
the parameters for an ARMA model, and the number n of observations to forecast. Calculate
the mean and covariance of the future n observations using a Kalman filter. Plot the original
observations as well as the mean for each future observation. Plot a 95% confidence interval (2
standard deviations away from the mean) around the means of future observations. Return the
means and standard deviations calculated.

(Hint: The standard deviation is the square root of the covariance calculated.)
The following code should create a plot similar to Figure 1.3.

>>> # Get optimal model
>>> phis, thetas, mu, std =np.array([0.72135856]), array([-0.26246788]), ←↩

0.35980339870105321, 1.5568331253098422)

>>> # Forecast optimal mode
>>> arma_forecast(filename='weather.npy', phis=phis, thetas=thetas, mu=mu,←↩

std=std)

How does this plot compare to the naive ARMA model made in Problem 1?

Statsmodel ARMA
The module statsmodels contains a package that includes an ARMA model class. This is accessed
through ARIMA model, which stands for Autoregressive Integrated Moving Average. This class also
uses a Kalman Filter to calculate the MLE. When creating an ARIMA object, initialize the variables
endog (the data) and order (the order of the model). The order is of the form (p, d, q) where d is

8 Lab 1. ARMA Models

14 15 16 17 18
Day of the Month

4

2

0

2

4

Ch
an

ge
 in

 T
em

pe
ra

tu
re

 (C
) -

=

0
ARMA(1,1)

Old Data
forecast
95% Confidence Interval

Figure 1.3: ARMA(1,1) forecast on weather.npy

the differences. To create an ARMA model, set d = 0. The object can then be fitted based on the
MLE using a Kalman Filter.

from statsmodels.tsa.arima.model import ARIMA
Intialize the object with weather data and order (1,1)
model = ARIMA(z,order=(p,0,q),trend='c').fit(method='innovations_mle')

Access p and q
>>> model.specification.k_ar
p
>>> model.specification.k_ma
q

As in other problems, the data passed in should be the time series stationary. The AIC of an
ARMA model object is saved as the attribute aic. Since the AIC is much faster to compute using
statsmodels, model identification is much faster. Once a model is chosen, the method predict will
forecast n observations, where n is the number of known observations. It will return the mean of
each future observation.

Predict from the beginning of the model to 30 observations in the future
model.predict(start=0,end=len(data)+30)

9

Problem 5. Write a function sm_arma() that accepts a file containing a time series, maxi-
mum integer values for p and q, and the number n of values to predict. Use statsmodels to
perform model identification as in Problem 3, where the order of ARMA(i, j) satisfies 1 ≤ i ≤ p
and 1 ≤ j ≤ q. Ensure the model is fit using the MLE.

Use the optimal model to predict n future observations of the time series. Plot the original
observations along with the mean of each future observations given by statsmodels. Return
the AIC of the optimal model.

For p = 3, q = 3, and n = 30, your graph should look similar to Figure 1.4. How does this
graph compare to Problem 1? Problem 4?

14 15 16 17 18
Day of the Month

4

2

0

2

4

Ch
an

ge
 in

 T
em

pe
ra

tu
re

 (C
) -

=

0

Statsmodel ARMA(1,1)

Old Data
ARMA Model

Figure 1.4: Statsmodel ARMA(3,1) forecast on weather.npy.

Optional
In the previous problem, we used the statsmodel ARIMA class. The following code and problem use
the soon to be depreciated ARMA class

The ARMA class can also perform model identification. The method arma_order_select_ic will
find the optimal order of the ARMA model based on certain criteria. The first parameter y is the

10 Lab 1. ARMA Models

data. The data must be a NumPy array, not a Pandas DataFrame. The parameter ic defines the
criteria trying to be minimized. The method will return a dictionary, where the minimal order of
each criteria can be accessed.

>>> import statsmodel as sm
>>> from statsmodel.tsa.stattools import arma_order_select_ic as order_select
>>> import pandas as pd

>>> # Get sunspot data and give DateTimeIndex
>>> sunspot = sm.datasets.sunspots.load_pandas().data[['SUNACTIVITY']]
>>> sunspot.index = pd.Index(sm.tsa.datetools.dates_from_range('1700', '2008'))

>>> # Find best order where p < 5 and q < 5
>>> # Use AICc as basis for minimization
>>> order = order_select(sunspot.values,max_ar=4,max_ma=4,ic=['aic','bic'],←↩

fit_kw={'method':'mle'})
>>> print(order['aic_min_order'])
(4,2)
>>> print(order['bic_min_order'])
(4,2)

The method plot_predict accepts a time series and plots the ARMA model alongside the
original data in a given range. The plot of the ARMA model is the mean calculated by ARMA at
each data point, both known and future. This method works by giving a range on which to plot the
ARMA model. This range can be given by indices (as in Problem 5) or by a DateTimeIndex.

>>> # Fit model
>>> model = ARMA(dta, (4, 2)).fit(method='mle')

>>> # Create plot
>>> fig, ax = plt.subplots(figsize=(13,7))
>>> # Plot from 1950 to 2012.
>>> fig = model.plot_predict(start='1950', end='2012', ax=ax)

>>> ax.set_title('Sunspot Dataset')
>>> ax.set_xlabel('Year')
>>> ax.set_ylabel('Number of Sunspots')
>>> plt.show()

11

1950 1960 1970 1980 1990 2000 2010
Year

0

25

50

75

100

125

150

175

200

Nu
m

be
r o

f S
un

sp
ot

s
Sunspot Dataset

forecast
SUNACTIVITY
95% confidence interval

Figure 1.5: Sunspot activity data is forecasted four years in the future using statsmodels.

Problem 6. The dataset manaus contains data on the height of the Rio Negro from every
month between January 1903 and January 1993. Write a function manaus() that accepts the
forecasting range as strings start and end, the maximum parameter for the AR model p and
the maximum parameter of the MA model q. The parameters start and end should be strings
corresponding to a DateTimeIndex in the form Y%M%D, where D is the last day of the month.

The function should determine the optimal order for the ARMA model based on the
AIC and the BIC. Then forecast and plot on the range given for both models and compare.
Return the order of the AIC model and the order of the BIC model, respectively. For the range
'1983-01-31' to '1995-01-31', your plot should look like Figure 1.6.

(Hint: The data passed into arma_order_select_ic must be a NumPy array. Use the
attribute values of the Pandas DataFrame.)

To get the manaus dataset and set it with a DateTimeIndex, use the following code:

>>> # Get dataset
>>> raw = pydata('manaus')
>>> # Convert to DateTimeIndex
>>> manaus = pd.DataFrame(raw.values,index=pd.date_range('1903-01','←↩

1993-01',freq='M'))
>>> manaus = manaus.drop(0,axis=1)
>>> # Set new column title
>>> manaus.columns = ['Water Level']

12 Lab 1. ARMA Models

1983 1985 1987 1989 1991 1993 1995
Year

4

2

0

2

4

W
at

er
 L

ev
el

AIC

forecast
Water Level
95% confidence interval

1983 1985 1987 1989 1991 1993 1995
Year

4

2

0

2

4

W
at

er
 L

ev
el

BIC

forecast
Water Level
95% confidence interval

Water Levels in the Rio Negro

Figure 1.6: AIC and BIC based ARMA models of manaus dataset.

13

Additional Materials

Finding Error Correlation

To find the correlation of the current error with past error, the noise of the data needs to be isolated.
Each data point yt can be decomposed as

yt = Tt + St +Rt, (1.20)

where Tt is the overall trend of the data, St is a seasonal trend, and Rt is noise in the data.
The overall trend is what the data tends to do as a whole, while the seasonal trend is what the data
does repeatedly. For example, if looking at airfare prices over a decade, the overall trend of the data
might be increasing due to inflation. However, we can break this data into individual years. We
call each year a season. The seasonal trend of the data might not be strictly increasing, but have
increases during busy seasons such as Christmas and summer vacations.

To find Tt, we use an M -fold method. In this case, M is the length of our season. We define
the equation

Tt =
1

M

∑
−M/2<i<M/2

yi+t. (1.21)

This means for each t, we take the average of the season surrounding yt.

To find the seasonal trend, first subtract the overall trend from the time series. Define xt =

yt − Tt. The value of the seasonal trend can then be found by averaging each day of the season over
every season. For example, if the season was one year, we would find the average value on the first
day of the year over all seasons, then the second, and so on. Thus,

St =
1

K

∑
i≡t (mod M)

xi (1.22)

where K is the number of seasons.

With the overall and seasonal trend known, the noise of the data is simply Rt = yt − Tt − St.
To determine the strength of correlations with the current error and the past error, plot yt vs. Rt−i
as in Figure 1.1.

14 Lab 1. ARMA Models

Proof of Equation 1.14

p∑
i=1

φi(zt−i − µ) + at +

q∑
j=1

θjat−j =

p∑
i=1

φi(Hx̂t−i) + at +

q∑
j=1

θjat−j (1.23)

=

r∑
i=1

φi(xt−i +

r−1∑
k=1

θkxt−i−k) + at +

r−1∑
j=1

θjat−j (1.24)

= at +

r∑
i=1

φi(xt−i) +

r−1∑
j=1

θj

(r∑
i=1

φixt−j−i + at−j

)
(1.25)

= at +

r∑
i=1

φi(xt−i) +

r−1∑
j=1

θjxt−k (1.26)

= xt +

r−1∑
j=1

θjxt−kθkxt−k (1.27)

= zt. (1.28)

	ARMA Models

