
14 MongoDB

Lab Objective: Relational databases, including those managed with SQL or pandas, require data to

be organized into tables. However, many data sets have an inherently dynamic structure that cannot

be e�ciently represented as tables. MongoDB is a non-relational database management system that is

well-suited to large, fast-changing datasets. In this lab we introduce the Python interface to MongoDB,

including common commands and practices.

Database Initialization
Suppose the manager of a general store has all sorts of inventory: food, clothing, tools, toys, etc.

There are some common attributes shared by all items: name, price, and producer. However, other

attributes are unique to certain items: sale price, number of wheels, or whether or not the product

is gluten-free. A relational database housing this data would be full of mostly-blank rows, which is

extremely ine�cient. In addition, adding new items to the inventory requires adding new columns,

causing the size of the database to rapidly increase. To e�ciently store the data, the whole database

would have to be restructured and rebuilt often.

To avoid this problem, NoSQL databases like MongoDB avoid using relational tables. Instead,

each item is a JSON-like object, and thus can contain whatever attributes are relevant to the speci�c

item, without including any meaningless attribute columns.

Note

MongoDB is a database management system (DBMS) that runs on a server, which should be

running in its own dedicated terminal. Refer to the Additional Material section for installation

instructions.

The Python interface to MongoDB is called pymongo. After installing pymongo and with the

MongoDB server running, use the following code to connect to the server.

>>> from pymongo import MongoClient

Create an instance of a client connected to a database running

at the default host IP and port of the MongoDB service on your machine.

>>> client = MongoClient()

1

2 Lab 14. MongoDB

Creating Collections and Documents

A MongoDB database stores collections, and a collection stores documents. The syntax for creating

databases and collections is a little unorthodox, as it is done through attributes instead of methods.

Create a new database.

>>> db = client.db1

Create a new collection in the db database.

>>> col = db.collection1

Documents in MongoDB are represented as JSON-like objects, and therefore do not adhere to

a set schema. Each document can have its own �elds, which are completely independent of the �elds

in other documents.

Insert one document with fields 'name' and 'age' into the collection.

>>> col.insert_one({'name': 'Jack', 'age': 23})

Insert another document. Notice that the value of a field can be a string,

integer, truth value, or even an array.

>>> col.insert_one({'name': 'Jack', 'age': 22, 'student': True,

... 'classes': ['Math', 'Geography', 'English']})

Insert many documents simultaneously into the collection.

>>> col.insert_many([

... {'name': 'Jill', 'age': 24, 'student': False},

... {'name': 'John', 'nickname': 'Johnny Boy', 'soldier': True},

... {'name': 'Jeremy', 'student': True, 'occupation': 'waiter'}])

Note

Once information has been added to the database it will remain there, even if the python

environment you are working with is shut down. It can be reaccessed anytime using the same

commands as before.

>>> client = MongoClient()

>>> db = client.db1

>>> col = db.collection1

To delete a collection, use the database's drop_collection() method. To delete a

database, use the client's drop_database() method.

3

Problem 1. The �le trump.json contains posts from http://www.twitter.com (tweets) over

the course of an hour that have the key word �trump�.a Each line in the �le is a single JSON

message that can be loaded with json.loads().

Create a MongoDB database and initialize a collection in the database. Use the collection's

delete_many() method with an empty set as input to clear existing contents of the collection,

then �ll the collection one line at a time with the data from trump.json. Check that your

collection has 95,643 entries with its count() method.

aSee the Additional Materials section for an example of using the Twitter API.

Querying a Collection
MongoDB uses a query by example pattern for querying. This means that to query a database, an

example must be provided for the database to use in matching other documents.

Find all the documents that have a 'name' field containing the value 'Jack'.

>>> data = col.find({'name': 'Jack'})

Find the FIRST document with a 'name' field containing the value 'Jack'.

>>> data = col.find_one({'name': 'Jack'})

The find_one() method returns the �rst matching document as a dictionary. The find()

query may �nd any number of objects, so it will return a Cursor, a Python object that is used to

iterate over the query results. There are many useful functions that can be called on a Cursor, for

more information see http://api.mongodb.com/python/current/api/pymongo/cursor.html.

Search for documents containing True in the 'student' field.

>>> students = col.find({'student': True})

>>> students.count() # There are 2 matching documents.

2

List the first student's data.

Notice that each document is automatically assigned an ID number as '_id'.

>>> students[0]

{'_id': ObjectId('59260028617410748cc7b8c7'),

'age': 22,

'classes': ['Math', 'Geography', 'English'],

'name': 'Jack',

'student': True}

Get the age of the first student.

>>> students[0]['age']

22

List the data for every student.

>>> list(students)

[{'_id': ObjectId('59260028617410748cc7b8c7'),

http://www.twitter.com
http://api.mongodb.com/python/current/api/pymongo/cursor.html

4 Lab 14. MongoDB

'age': 22,

'classes': ['Math', 'Geography', 'English'],

'name': 'Jack',

'student': True},

{'_id': ObjectId('59260028617410748cc7b8ca'),

'name': 'Jeremy',

'occupation': 'waiter',

'student': True}]

The Logical operators listed in the following table can be used to do more complex queries.

Operator Description

$lt, $gt <, >

$lte,$gte <=, >=

$eq, $ne ==, !=

$in, $nin in, not in

$or, $and, $not or, and, not

$exists Match documents with a speci�c �eld

$type Match documents with values of a speci�c type

$all Match arrays that contain all queried elements

$size Match arrays with a speci�ed number of elements

$regex Search documents with a regular expression

Table 14.1: MongoDB Query Operators

Query for everyone that is either above the age of 23 or a soldier.

>>> results = col.find({'$or':[{'age':{'$gt': 23}},{'soldier': True}]})

Query for everyone that is a student (those that have a 'student' attribute

and haven't been expelled).

>>> results = col.find({'student': {'$not': {'$in': [False, 'Expelled']}}})

Query for everyone that has a student attribute.

>>> results = col.find({'student': {'$exists': True}})

Query for people whose name contains a the letter 'e'.

>>> import re

>>> results = col.find({'name': {'$regex': re.compile('e')}})

It is likely that a database will hold more complex JSON entries then these, with many nested

attributes and arrays. For example, an entry in a database for a school might look like this.

{'name': 'Jason', 'age': 16,

'student': {'year':'senior', 'grades': ['A','C','A','B'],'flunking': False},

'jobs':['waiter', 'custodian']}

To query the nested attributes and arrays use a dot, as in the following examples.

5

Query for student that are seniors

>>> results = col.find({'student.year': 'senior'})

Query for students that have an A in their first class.

>>> results = col.find({'student.grades.0': 'A'})

The Twitter JSON �les are large and complex. To see what they look like, either look at the

JSON �le used to populate the collection or print any tweet from the database. The following

website also contains useful information about the �elds in the JSON �le https://dev.twitter.

com/overview/api/tweets.

The distinct function is also useful in seeing what the possible values are for a given �eld.

Find all the values in the names field.

>>> col.distinct("name")

['Jack', 'Jill', 'John', 'Jeremy']

Problem 2. Query the Twitter collection from Problem 1 for the following information.

� How many tweets include the word Russia? Use re.IGNORECASE.

� How many tweets came from one of the main continental US time zones? These are listed

as "Central Time (US & Canada)", "Pacific Time (US & Canada)", "Eastern Time

(US & Canada)", and "Mountain Time (US & Canada)".

� How often did each language occur? Construct a dictionary with each language and it's

frequency count.

(Hint: use distinct() to get the language options.)

Deleting and Sorting Documents
Items can be deleted from a database using the same syntax that is used to �nd them. Use

delete_one to delete just the �rst item that matches your search, or delete_many to delete all

items that match your search.

Delete the first person from the database whose name is Jack.

>>> col.delete_one({'name':'Jack'})

Delete everyone from the database whose name is Jack.

>>> col.delete_many({'name':'Jack'})

Clear the entire collection.

>>> col.delete_many({})

Another useful function is the sort function, which can sort the data by some attribute. It

takes in the attribute by which the data will be sorted, and then the direction (1 for ascending and

-1 for descending). Ascending is the default. The following code is an example of sorting.

https://dev.twitter.com/overview/api/tweets
https://dev.twitter.com/overview/api/tweets

6 Lab 14. MongoDB

Sort the students by name in alphabetic order.

>>> results = col.find().sort('name', 1)

>>> for person in results:

... print(person['name'])

...

Jack

Jack

Jeremy

Jill

John

Sort the students oldest to youngest, ignoring those whose age is not listed.

>>> results = col.find({'age': {'$exists': True}}).sort('age', -1)

>>> for person in results:

... print(person['name'])

...

Jill

Jack

Jack

Problem 3. Query the Twitter collection from Problem 1 for the following information.

� What are the usernames of the 5 most popular (de�ned as having the most followers)

tweeters? Don't include repeats.

� Of the tweets containing at least 5 hashtags, sort the tweets by how early the 5th hashtag

appears in the text. What is the earliest spot (character count) it appears?

� What are the coordinates of the tweet that came from the northernmost location? Use

the latitude and longitude point in "coordinates".

Updating Documents

Another useful attribute of MongoDB is that data in the database can be updated. It is possible

to change values in existing �elds, rename �elds, delete �elds, or create new �elds with new values.

This gives much more �exibility than a relational database, in which the structure of the databse

must stay the same. To update a database, use either update_one or update_many, depending on

whether one or more documents should be changed (the same as with delete). Both of these take

two parameters; a �nd query, which �nds documents to change, and the update parameters, telling

these things what to update. The syntax is update_many({find query},{update parameters}).

The update parameters must contain update operators. Each update operator is followed by

the �eld it is changing and the value to change it. The syntax is the same as with query operators.

The operators are shown in the table below.

7

Operator Description

$inc , $mul +=, *=

$min, $max min(), max()

$rename Rename a speci�ed �eld to the given new name

$set Assign a value to a speci�ed �eld (creating the �eld if necessary)

$unset Remove a speci�ed �eld

$currentDate Set the value of the �eld to the current date.

With "$type": "date", use a datetime format;

with "$type": "timestamp:, use a timestamp.

Table 14.2: MongoDB Update Operators

Update the first person from the database whose name is Jack to include a

new field 'lastModified' containing the current date.

>>> col.update_one({'name':'Jack'},

... {'$currentDate': {'lastModified': {'$type': 'date'}}})

Increment everyones age by 1, if they already have an age field.

>>> col.update_many({'age': {'$exists': True}}, {'$inc': {'age': 1}})

Give the first John a new field 'best_friend' that is set to True.

>>> col.update_one({'name':'John'}, {'$set': {'best_friend': True}})

Problem 4. Clean the twitter collection in the following ways.

� Get rid of the "retweeted_status" �eld in each tweet.

� Update every tweet from someone with at least 1000 followers to include a popular �eld

whose value is True. Report the number of popular tweets.

� (OPTIONAL) The geographical coordinates used before in coordinates.coordinates

are turned o� for most tweets. But many more have a bounding box around the co-

ordinates in the place �eld. Update every tweet without coordinates that contains a

bounding box so that the coordinates contains the average value of the points that form

the bounding box. Make the structure of coordinates the same as the others, so it con-

tains coordinates with a longitude, latitude array and a type, the value of which should

be 'Point'.

(Hint: Iterate through each tweet in with a bounding box but no coordinates. Then for

each tweet, grab it's id and the bounding box coordinates. Find the average, and then

update the tweet. To update it search for it's id and then give the needed update param-

eters. First unset coordinates, and then set coordinates.coordinates and coordinates.type

to the needed values.)

8 Lab 14. MongoDB

Additional Material
Installation of MongoDB
MongoDB runs as an isolated program with a path directed to its database storage. To run a practice

MongoDB server on your machine, complete the following steps:

Create Database Directory

To begin, navigate to an appropriate directory on your machine and create a folder called data.

Within that folder, create another folder called db. Make sure that you have read, write, and execute

permissions for both folders.

Retrieve Shell Files

To run a server on your machine, you will need the proper executable �les from MongoDB. The

following instructions are individualized by operating system. For all of them, download your binary

�les from https://www.mongodb.com/download-center?jmp=nav#community.

1. For Linux/Mac:

Extract the necessary �les from the downloaded package. In the terminal, navigate into the

bin directory of the extracted folder. You may then start a Mongo server by running in a

terminal: ./mongod --dbpath /pathtoyourdatafolder.

2. For Windows:

Go into your Downloads folder and run the Mongo .msi �le. Follow the installation instruc-

tions. You may install the program at any location on your machine, but do not forget where

you have installed it. You may then start a Mongo server by running in command prompt:

C:\locationofmongoprogram\mongod.exe �dbpath C:\pathtodatafolder\data\db.

MongoDB servers are set by default to run at address:port 127.0.0.1:27107 on your machine.

You can also run Mongo commands through a mongo terminal shell. More information on this

can be found at https://docs.mongodb.com/getting-started/shell/introduction/.

Twitter API
Pulling information from the Twitter API is simple. First you must get a Twitter account and register

your app with them on apps.twitter.com. This will enable you to have a consumer key, consumer

secret, access token, and access secret, all required by the Twitter API.

You will also need to install tweepy, an open source library that allows python to easily work

with the Twitter API. This can be installed with pip by running from the command line

$pip install tweepy

The data for this lab was then pulled using the following code on May 26, 2017.

import tweepy

from tweepy import OAuthHandler

from tweepy import Stream

https://www.mongodb.com/download-center?jmp=nav#community
https://docs.mongodb.com/getting-started/shell/introduction/
apps.twitter.com

9

from tweepy.streaming import StreamListener

from pymongo import MongoClient

import json

#Set up the databse

client = MongoClient()

mydb = client.db1

twitter = mydb.collection1

f = open('trump.txt','w') #If you want to write to a file

consumer_key = #Your Consumer Key

consumer_secret = #Your Consumer Secret

access_token = #Your Access Token

access_secret = #Your Access Secret

my_auth = OAuthHandler(consumer_key, consumer_secret)

my_auth.set_access_token(access_token, access_secret)

class StreamListener(tweepy.StreamListener):

def on_status(self, status):

print(status.text)

def on_data(self, data):

try:

twitter.insert_one(json.loads(data)) #Puts the data into your ←↩
MongoDB

f.write(str(data)) #Writes the data to an output file

return True

except BaseException as e:

print(str(e))

print("Error")

return True

def on_error(self, status):

print(status)

if status_code == 420: #This means twitter has blocked us temporarily, ←↩
so we want to stop or they will get mad. Wait 30 minutes or so and ←↩
try again. Running this code often in a short period of time will ←↩
cause twitter to block you. But you can stream tweets for as long ←↩
as you want without any problems.

return False

else:

return True

stream_listener = StreamListener()

stream = tweepy.Stream(auth=my_auth, listener=stream_listener)

stream.filter(track=["trump"]) #This pulls all tweets that include the keyword ←↩
"trump". Any number of keywords can be searched for.

10 Lab 14. MongoDB

	MongoDB

