
1 Deep Learning

Lab Objective: Deep Learning is a popular method for machine learning tasks that have large
amounts of data, including image recognition, voice recognition, and natural language processing. In
this lab, we use PyTorch to write a convolution neural net to classify images. We also look at one of
the challenges of deep learning by performing an adversarial attack on our model.

Intro to Neural Networks

The brain, a biological neural network, is composed of neurons that are connected, either chemically
or electrically, via synapses. A synapse transfers a signal from one neuron to another until it reaches
a target cell, which acts on the signal. For instance, when you see a ball coming towards you, it’s a
collection of synapses traveling through the brain that trigger your arm to catch it. Every movement
of your body is the result of these connections, even the unconscious ones like breathing. Synapses
also play a role in developing or losing memory, and are therefore instrumental in how a human
learns.

An artificial neural network, simply called a neural net in this lab, takes this idea of neurons
passing information through synapses to learn a pattern. The network is composed of layers of neu-
rons, usually called nodes, that are connected. Each connection has a weight based on its importance,
and information is passed through the network from one layer to the next. For example, in Figure
1.1, the yellow input is passed to the first layer, blue, then the green layer, and then to the final
output layer. In the example of raising your hand to catch a ball, the only thing that you’re aware
of is the input, the incoming ball, and the output, the hand being raised. All of the synapses happen
unconsciously. Similarly, the middle layers for an artificial neural net are hidden because they’re not
visible.

1

2 Lab 1. Intro to Deep Learning and PyTorch

Figure 1.1: A high level diagram of an artificial neural network.

In a neural net, the input is often images, text, or sounds. This is transformed into tensors of
real numbers. A tensor is a data structure similar to a numpy array and is compatible with GPUs.
It has a shape and data type and can be multi-dimensional. The input tensors are sent to the first
hidden layer and multiplied by the weights of their respective edges to get a measure of importance.
An activation function takes the measures of importance and determines whether to pass the data
onto the next layer via some threshold value. The activation functions are nonlinear, which allows
the model to learn complex transformations between the input and output. This whole process is
repeated many times, with the weights and thresholds being adjusted until the labels of the training
data match the outputs.

Intro to PyTorch
PyTorch is an open source machine learning library. Developed by Facebook AI Research, it has two
main capabilities, deep neural networks and GPU tensor computing. Deep neural networks, a neu-
ral net with many hidden layers, are possible through automatic differentiation, in which computers
calculate derivatives automatically, accurately, and quickly, a necessary feature of computing the gra-
dient with many parameters. A GPU can compute thousands of operations at once and is necessary
for parallel computing. With the amount of data used in neural networks, GPUs significantly speed
up the process. For more information and documentation on PyTorch, visit https://pytorch.org/

We will be working in Google’s Colaboratory, https://colab.research.google.com/notebooks/
intro.ipynb. Colab notebooks use Google’s cloud servers, which have a built-in GPU. To enable
the GPU in a Colab notebook, select the Runtime tab and then Change runtime type. This will open
a popup called Notebook Settings. Under Hardware Settings, select GPU.

We can verify that GPU is enabled by the following code:

>>> import torch
>>> assert torch.cuda.is_available()

If the GPU is not enabled, there will be an Assertion Error when the assertion is run. This
means that the a GPU is not available, and the code will be run on the CPU.

https://pytorch.org/
https://colab.research.google.com/notebooks/intro.ipynb
https://colab.research.google.com/notebooks/intro.ipynb

3

CUDA is a parallel computing platform developed by Nvidia for GPU computing. torch.cuda
is the PyTorch package that supports CUDA and is what allows code to be run on the GPU. In
order to run on the GPU, variables, including the data and the model must be stored on the GPU.
We can set individual variables to be on the GPU by setting them directly using variable.cuda().
However, if the GPU is not available, this will cause an error. For flexibility, we create a device
variable that allows the code to run on either the CPU or the GPU, depending on what is available.
cuda:0 means that the device running is the default GPU. If you a running on machine that has more
than one GPU, you can set the device to be a specific GPU by changing the number appropriately.
In Colab, you only need to use cuda:0. You can check which device a variable is on by displaying
it. If it is on a GPU, it will list which number it is.

>>> x = torch.tensor([3., 4.]) # Create tensor on CPU
>>> y = torch.tensor([1., 2.]).cuda() # Create tensor on GPU

Create the device, choosing GPU if available
>>> device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
>>> z = torch.tensor([1., 2.]).to(device) # Create tensor on device

>>> x
tensor([3., 4.]) # Check location of x (CPU)

>>> x = x.to(device) # Move x to GPU
>>> x # Check location of x (GPU 0)
tensor([3., 4.], device='cuda:0')

Achtung!

Cross-GPU operations are not allowed. This means that the model and data must all be on
the same device. If the model is called on data that is on a different device, say the model is
located on the CPU and the data is on the GPU, you will get the following runtime exception:

RuntimeError: Input type (torch.FloatTensor) and weight type (torch.cuda.←↩
FloatTensor) should be the same.

If you get this error, you will need to move one the variables so that they are all on the
same device.

Data

For this lab, we will be using the CIFAR10 dataset, [Kri09]. It consists of 60, 000, 32 × 32 colored
images: 50, 000 in the training set and 10, 000 in the test set. Each image is a 3×32×32 matrix, with
the 3 channels describing RGB color levels. The images are evenly split into ten classes: airplanes,
cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks, represented by the numbers 0− 9.

The CIFAR10 dataset is built into PyTorch’s torchvision package, which makes getting the data
simple. To use the data, we must first transform it to a PyTorch tensor. When using PyTorch, all of
the data must be in tensor form so that it can be moved to a GPU. The next step is to normalize it.

4 Lab 1. Intro to Deep Learning and PyTorch

While this is not necessary, it generally improves the result. We will normalize the values from [0, 1]

to [−1, 1]. Torchvision has a handy model called Transforms, which allows us to convert the data
to a tensor and perform any other modification such as normalization, cropping, or rotating when
loading the data.

To download the CIFAR10 set, call the dataset and pass in the location you want the data
saved. There are three other important parameters. train indicates whether to get the training
data or the test data. Torchvision conveniently splits this data. download indicates whether to
download the data or not. If you have already downloaded the data in your current workspace, you
can pass in False, but otherwise, you will need to download it. The transform parameter applies
the given transform when loading the data. You should always have a transform that converts the
data to tensors when loading a torchvision dataset.

The data can then be accessed using indexing. Each data point is a tuple consisting of the
3x32x32 image and its class. You can also see the specs of the dataset by calling it without an index.

>>> from torchvision import datasets, transforms

Normalize data and transform it into a tensor
>>> transform = transforms.Compose(

[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

Download the CIFAR10 training data to ../data
>>> train_data = datasets.CIFAR10('../data', train=True, download=True, ←↩

transform=transform)

Get the specs of the CIFAR10 training set
>>> train_data
Dataset CIFAR10

Number of datapoints: 50000
Root location: ../data
Split: Train
StandardTransform

Transform: Compose(
ToTensor()
Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))

)

Get the first training data point
>>> train_data[0]
(tensor([[[-0.5373, ..., 0.1608],

[-0.8745, ..., -0.0431],
...,
[0.4118, ..., -0.3490],
[0.3882, ..., -0.0353]],

[[-0.5137, ..., -0.0275],
[-0.8431, ..., -0.3176],
...,
[0.0902, ..., -0.5843],

5

[0.1294, ..., -0.2784]],

[[-0.5059, ..., -0.1922],
[-0.8431, ..., -0.5529],
...,
[-0.2471, ..., -0.7333],
[-0.0902, ..., -0.4353]]]), 6)

Get the class of the first training data point
>>> train_data[0][1]
6

Once the data is loaded, PyTorch has a special class, DataLoader, that splits the data into
batches for easy manipulation. Batches are small groups of data that are loaded onto the GPU
individually before training. This allows us to run large amounts of data through our model while
not running out of space on the GPU. A smaller batch size will improve accuracy but increase the
number of iterations. Using larger batch sizes allows us to take advantage of GPUs, speeding up the
training time. Depending on the size of the model, data, and the GPU, too large of a batch size can
cause out of memory issues. Typical batch sizes are powers of 2: 32, 64, 128, 256.

Other parameters to the DataLoader include shuffle, defaulted to False, and num_worker, an
integer which creates multiple processes. Accessing the data is done in two ways. To get a single
batch of images, use the iter method. The other method is to loop through the batches in the
loader, which we will do in the training loop later. The code so far demonstrates how to download
and load the training set, as well as loop through the DataLoader for training. Loading the test set
is done in the same way with train=False.

>>> from torch.utils.data import DataLoader

Create a DataLoader from the shuffled training data
>>> train_loader = DataLoader(train_data,batch_size=36,shuffle=True)

Get the 36 images of size 3x32x32 and labels in the first batch
>>> dataiter = iter(train_loader)
>>> images, labels = dataiter.next()
>>> images.size()
torch.Size([36, 3, 32, 32])

>>> images[0].size()
torch.Size([3, 32, 32])

>>> labels[0]
tensor(3)

Loop through the data for training
>>> for batch, (x, y_truth) in enumerate(train_loader):
>>> x, y_truth = x.to(device), y_truth.to(device)

6 Lab 1. Intro to Deep Learning and PyTorch

Problem 1. Set the device as indicated above. Download the CIFAR10 training and test
datasets. Transform them into tensors, normalize them as described above in the code, and
create DataLoaders for each one. For the training set, use a batch size of 32, and for the test
set, use a batch size of 1.

Convolution Neural Network

A convolution neural network, CNN, is a neural net that includes sequences of convolution layers,
activation functions, and pooling layers. A convolution layer takes a two-dimensional array of weights
called a kernel (sometimes called a filter) and multiplies it by the input at all possible locations, sliding
around the input. This allows the model to retain some information from the model, hopefully
important information, and ignore the rest. Consider the following two-dimensional input image of
size 5× 5 and 3× 3 kernel.

2 4 7 6 2
9 7 1 2 1
8 3 4 5 8
4 3 3 1 2
5 2 1 5 3

5×5 Input Image

1 0 -1
1 0 -1
1 0 -1

3×3 Kernel

The stride of a convolution is how much the kernel slides as it passes over the input. If it slides
one spot over, there will be 9 different submatrices inside the input image that match the kernel size.
A stride of 2 means that on the first row, we’d only multiply the kernel by the image twice, once for
each of the following submatrices.

2 4 7
9 7 1
8 3 4

Top left hand 3× 3 square

7 6 2
1 2 1
4 5 8

Top right hand 3× 3 square

Notice that as the kernel slides around the image, the inside values are used in more multiplica-
tion than the outside value, causing us to lose information, especially about the corners. If we want
to keep more infomation about the edges of the image, or if we want the output to be the same size
as the input, we introduce padding. Padding refers to a border added around the input. It is usually
filled in with zeros.

7

2 4 7 6 2
9 7 1 2 1
8 3 4 5 8
4 3 3 1 2
5 2 1 5 3

5×5 input image

0 0 0 0 0 0 0
0 2 4 7 6 2 0
0 9 7 1 2 1 0
0 8 3 4 5 8 0
0 4 3 3 1 2 0
0 5 2 1 5 3 0
0 0 0 0 0 0 0

5×5 input image padded with 0

The size of the output for a convolution layer is calculated as follows:

(input size - kernel size + 2× Padding size)/stride + 1

In our example with stride 1 and no padding, the output size is (5 − 3) + 1 = 3. To get each
value in the output, the kernel is multiplied element-wise by every 3x3 square inside the input and
summed. For the top left square, the output is

2× 1 + 4× 0 + 7× (−1) + 9× 1 + 7× 0 + 1× (−1) + 8× 1 + 3× 0 + 4× (−1) = 7.

The 7 represents a feature of the 3×3 block in the top left corner. In an image, these are things
like lines, curves, and colors, or even objects like a nose.

2× 1 4× 0 7× (-1) 6 2
9× 1 7×0 1× (-1) 2 1
8× 1 3× 0 4× (-1) 5 8
4 3 3 1 2
5 2 1 5 3

5×5 Input Images

7

3×3 Kernel

After each convolution layer, we need to determine which features are important enough to pass
to the next layer. We do this with an activation function. As mentioned earlier, activation functions
are nonliner functions. Convolutions are linear, so the nonlinear activation functions are needed so
that the model can learn nonlinear relationships. ReLU is a common activation layer in which any
features with negative values are changed to 0. Since ReLU only decides whether or not to keep a
feature and doesn’t perform any multiplication or addition, it does not change the shape of its input.
In practice, it converges faster and is more computationally efficient than other activation functions.

ReLU(x) = max(0,x)

Pooling layers are used to reduce the size of the data while retaining some information. Often,
pooling layers reduce the data by 2, halving it. Max pooling does this by taking the maximum of
a block while average pooling takes the mean of the values in the block. In PyTorch, the pooling
functions take in a kernel_size parameter which is the size of the block, either an integer if the
block is square or a tuple of the length and width. This size is usually 2 and is not related to the
kernel size in a convolution layer.

8 Lab 1. Intro to Deep Learning and PyTorch

4 7 6 2
7 1 2 1
3 3 1 2
2 1 5 3

4×4 Input Image

7 6
3 5

2×2 output after max pooling

The final layer in a CNN is a fully connected layer that computes the final score for each class. It
takes the output from the previous layer, representing high level features and decides which features
are most important for each class. It then predicts which class of the image based on the amount
and type of features in the image. The final layer has the same number of outputs as the number of
classes; with the CIFAR10 data, this is 10. The index of the largest entry will be the predicted class.

1.0.1 CNN in PyTorch

PyTorch has several classes and modules that contain many of the functions needed for deep learning.
torch.nn contains the base class for all network models, nn.Module1. This is where the layers of a
deep learning algorithm are defined. Each module has a forward method that returns the output,
or the predicted y-values, on the input. Calling the module runs the forward method so forward()
does not need to be specifically called. Note that model is a variable, so it should be moved to the
GPU using to(device) once it is instantiated. We demonstrate how to create a basic convolution
model below.

>>> import torch
>>> import torch.nn as nn
>>> import torch.nn.functional as F

class ConvolutionModel(nn.Module):

def __init__(self):
super(ConvolutionModel, self).__init__()

Initialize the layers
self.conv1 = nn.Conv2d(in_channels=3, out_channels=6, kernel_size=5) #6←↩

x28x28
self.relu = nn.ReLU()# 6x28x28
self.maxpool = nn.MaxPool2d(kernel_size=2) # 6x14x14
self.conv2 = nn.Conv2d(in_channels=6, out_channels=10, kernel_size=3) ←↩

10x12x12
self.flatten = nn.Flatten() # 1x(10*12*12)
self.linear = nn.Linear(in_features=10 * 12 * 12, out_features=10) # 1←↩

x10

Call the layers on an image
def forward(self, x):

output = self.relu(self.conv1(x))
output = self.maxpool(output)

1For all of the layers, activation functions, and loss function, see https://pytorch.org/docs/stable/nn.html

https://pytorch.org/docs/stable/nn.html

9

output = self.relu(self.conv2(output))
output = self.flatten(output)
return self.linear(output)

The above example describes a CNN with one convolution layer as the first layer. nn.Conv2d
applies 2D convolutions over several channels of input. The images in the CIFAR10 dataset are
3× 32× 32 so we have 3 channels of 32× 32 tensors. The in_channels is this number of channels.
The out_channels is the number of channels we want to output and typically increases in size. The
convolution layer is always followed by the activation function. In this model, we apply a max pool
layer to cut the size of the data in half. In order to use the fully connected linear layer at the end, we
use nn.Flatten to flatten the tensor to one-dimension. We then apply a second convolution layer.
Its input is the output of the maxpool layer. The parameters for the Linear layer are the input
size and output size respectively. The sizes after applying each layer are indicated in the comments
to help see how the data changes. Each layer takes as input the previous layer’s output, creating a
chain that passes the data through the network. Notice that this model cannot be used on images
of different sizes because the layers have specific input and output sizes.

The model accepts an n× 3× 32× 32 tensor, where n is the number of images in our batch. If
the model is run on only one image, it must be converted from a 3×32×32 tensor into a 1×3×32×32
by using unsqueeze(i). The integer in unsqueeze is the dimension to expand.

Instantiate model
>>> model = Model()

Set model to the GPU if available
>>> model = model.to(device)

Apply the model to a single image
>>> m = model(images[0].unsqueeze(0))
tensor([[0.0000, 0.0000, 0.0000, 1.1688, 0.1514, 0.4041, 0.0000, 2.1056, ←↩

0.0000,
2.3942]], device='cuda:0', grad_fn=<ReluBackward0>)

Since the maximum value, 2.39, occurs in the final index, the predicted class←↩
is 10.

Parameters

Often we want to know how many learnable parameters, or weights, our model has. This number
of parameters dictates how much space we need to able to train the model, and gives us an idea of
the size of the model. We can calculate the number of parameters in each convolution layer with
equation 1.1 where the kernel size is (m× n). Using our example above, m = n = 3. l is the number
of channels in the previous layer. In PyTorch, this in the in_channels number. k is the number of
channels that layer is outputting, or the out_channels

number of parameters in convolution layer = ((l ∗m ∗ n) + 1) ∗ k) (1.1)

The MaxPool2d does not have any parameters since it does not have weights; there is no
multiplication.

10 Lab 1. Intro to Deep Learning and PyTorch

To calculate the parameters in the linear layer, use

(number of inputs +1) × number of outputs.

Each layer in the ConvolutionModel above has the following parameters, giving a total of 15, 416
parameters.

Layer Number of Parameters
self.conv1 ((3*5*5*)+1)*6 = 456

self.maxpool 0
self.conv2 ((6*3*3)+1)*10 = 550
self.linear (10x12x12+1)*10 = 14410

Problem 2. Create a convolution model class convolves an image of size 3× 32× 32 into a 1D
tensor that represents the 10 classes. The model should have at least three convolution layers,
each followed by an activation function, and include at least two linear layers and one maxpool
layer. Select channels and kernel sizes so that you get at least 50, 000 parameters.

Calculate and print the number of learnable parameters in your model.
Initialize your model and move it to the device. Run the model on a single image to make

sure there are no errors.
Hint: When creating your model, it’s helpful to keep track of the shape of the image,

image.shape, in each step.

Training

Now that we have data and a model, we need to train the model on the data. We do this by iterating
through the DataLoader, calling the model, and optimizing the parameters. To optimize, we use a
loss function to calculate the difference between the model’s prediction and the actual classification,
called label. A common classification loss function is Cross Entropy Loss, Eq 1.2. For each data
point i, it calculates the log of the Softmax probability pi and multiplies by the label. PyTorch’s
nn.CrossEntropyLoss() handles all of this.

LCE = −
n∑
i

ailog(pi) (1.2)

Once the loss is calculated, we can use it to determine how to change the weights to make
the loss smaller. This is done by calculating partial derivatives of the loss function with respect to
each weight. Then gradient descent is performed to update the weights. This process of calculating
loss and performing gradient descent to update weights is called backpropagation. PyTorch has
several predefined options that do this for you, and we’ll use the popular Adam algorithm. PyTorch
accumulates gradients when doing backpropagation. There are situations where this is good, but in
our case, it would cause the loss to increase. To prevent this, we need to zero out the gradients before
we perform backpropagation.

>>> objective = nn.CrossEntropyLoss()
>>> optimizer = optim.Adam(model.parameters(), lr=1e-4)

11

The following steps should be performed each iteration.
>>> optimizer.zero_grad() # Zero out the the gradients
>>> outputs = model(inputs) # Run the model
>>> loss = objective(outputs, labels) # Calculate loss
>>> loss.backward() # Compute gradients
>>> optimizer.step() # Optimize and update the weights

To improve accuracy, we loop through our data multiple times. Each of these loops is called an
epoch. Large neural nets are often trained for many epochs. A good guideline to how many epochs
to run is to stop training once the loss is no longer decreasing.

TQDM is a python package that shows a progress meter inside loops. Initialize tqdm outside
of the loop, then update it inside the loop. This will display a progress bar showing the number of
iterations. When running many iterations, tqdm can be helpful to estimate the time remaining.

>>> from tqdm import tqdm
>>> loop = tqdm(total=len(train_loader), position=0)

>>> for i in range(10):
>>> loop.set_description('loss:{:.4f}'.format(loss.item()))
>>> loop.update()

loss:1.8585: : 1402it [00:17, 79.69it/s]

Problem 3. Train the model by looping through the training data. Inside the loop, you should

1. Zero out the gradients.

2. Run the model on the inputs.

3. Calculate the loss on the model output and the actual label.

4. Backpropogate the error.

5. Optimize.

Run the loop for 10 epochs. At the end of each epoch, calculate the mean loss of the
training data for that epoch. Then calculate the accuracy of the model on the test data. Since
the model is no longer training, it needs to be set to evaluation mode using model.eval().
To resume training at the beginning of the next epoch, set the model to training mode using
model.train().

You should have around 50% accuracy at the end of 10 epochs.
Plot the epochs v. mean training loss each epoch and the epochs v. accuracy. Examples

of the plots are in Figure 1.2.

12 Lab 1. Intro to Deep Learning and PyTorch

Figure 1.2: Training Loss and Accuracy for a CNN on CIFAR10.

Adversarial Networks
Just like any algorithm or software, deep learning is susceptible to attacks. When designing a
machine learning model, accounting for security vulnerabilities is as important as speed and accuracy.
Examples of attacks, or adversarial networks, range from adding a small amount of noise to a picture
of a pandas, resulting in a gibbon classification [GSS15] to fooling facial recognition by printing a
pair of eyeglasses [GKB17].

In the famous panda example mentioned above, some researchers found that by adding a small
amount of noise to a picture of a panda, the algorithm incorrectly identified it as a Gibbon, with
99% accuracy!

Figure 1.3: Panda: 57.7% confidence

This is done via Fast Gradient Sign Attack, FGSM. FGSM is a white-box attack, meaning that
the attacker has access to the model. During model training, gradients are used to adjust the model
weights so that loss is minimized. In FGSM however, the input data uses the gradients to maximize
loss and perturb the image slightly, using the following equation.

perturbedx = x+ ε× (5xLoss(θ, x, y))

13

where x is the input, y is the label, and θ is the model parameters.
We can perform this perturbation in PyTorch using the built-in gradients x.grad.data. The

following function fgsm_attack, takes in an image, or batch of images, a perturbation amount ε, and
the gradient data. It then creates a modified image by adjusting each pixel slightly in the direction
of the gradient. Since we normalized the images to be between [−1, 1], we clamp the final image to
stay in that range.

FGSM attack code
def fgsm_attack(image, epsilon, data_grad):

Collect the element-wise sign of the data gradient
sign_data_grad = data_grad.sign()

Create the perturbed image by adjusting each pixel of the input image
perturbed_image = image + epsilon*sign_data_grad

Return the perturbed image adding clipping to maintain [-1,1] range
return torch.clamp(perturbed_image, -1, 1)

perturbed_data = fgsm_attack(data, epsilon, data_grad)
output = model(perturbed_data)

Using the fgsm_attack function, we perturb the data that has been classified correctly. The
process is described in Algorithm 1.1.

Algorithm 1.1 Advesarial Attack. This algorithm accepts a trained neural network model, data,
and perturbation value ε. It iterates through each data point and if the model is correct, modifies
the data based on ε. The algorithm returns the accuracy of the model after the attack.
1: procedure Advesarial Attack(model, dataloader, ε)
2: for x,y in test_loader do . Loop through test data
3: x. requires_grad ← True
4: output ← model(x)
5: if output ! = y then . Only modify correct images
6: continue
7: Update loss
8: Zero out gradients
9: Backwards step

10: data_grad ← x.grad .data
11: perturbed_data ← fgsm_attack(data , ε, data_grad)
12: output ← model(perturbed_data)
13: calculate accuracy

The algorithm is similar to the training loop done in Problem 3. However, before calling the
model on the input, we need to set data.requires_grad attribute to True so that we can calculate
data.grad.data.sign() in fgsm_attack. If the model is incorrect, we skip the rest of the steps. If
the model is correct, we perform the attack to modify the image slightly, with the goal of tricking the
model into predicting an incorrect label. The accuracy of the model is the percentage of modified
images that still match their labels over the total number of images. Notice that since we are
evaluating the test set, the model should be set to eval(), and we do not need to optimize.

14 Lab 1. Intro to Deep Learning and PyTorch

Problem 4. Write a function that loops through the test data, modifying the images as de-
scribed in Algorithm 1.1, using your trained model from Problem 3.

Run your function for each epsilon in [0, .05, .1, .15, .2, .25, .3], and plot epsilon v. accuracy.
Display the perturbed version of the first image in the test data for each epsilon, using

the following code. Your figure should look similar to Figure 1.4.

Move the image to cpu and convert to numpy array
>>> perturbed_data.squeeze().detach().cpu().numpy()

Plot the image
>>> img = ex/ 2 + 0.5 # unnormalize
>>> plt.imshow(np.transpose(img, (1, 2, 0)))

Figure 1.4: The first modified image for different εs.

15

Additional Materials

TensorBoard

TensorBoard is a visualization toolkit. Originally built for Tensorflow, TensorBoard can now be used
with PyTorch. Some of the big features of TensorBoard include visualizing the model, dimenionality
reduction, tracking and visualizing metrics, and displaying data.

To create a tensorboard, run the following code.

>>> %load_ext tensorboard
>>> logs_base_dir = "runs"
>>> os.makedirs(logs_base_dir, exist_ok=True)
>>> %tensorboard --logdir {logs_base_dir}

The TensorBoard homepage will show up inline.

Figure 1.5: The home page of an empty TensorBoard.

We write to TensorBoard using SummaryWriter. It writes to files in the logs_base_dir that
are used by TensorBoard to display information. You can view the logs_base_dir directory by
selecting the file icon on the far left of the page. For example, we can create an interactive graph of
our model.

>>> tb = SummaryWriter()
>>> tb.add_images("Image", images)
>>> tb.add_graph(model, images)
>>> tb.close()

This updates our TensorBoard with a GRAPHS tab, which describes the model. If it doesn’t
show up automatically, press the refresh button in the top right corner of the TensorBoard. You can
explore the model by clicking on the components.

16 Lab 1. Intro to Deep Learning and PyTorch

Figure 1.6: Examples of TensorBoard Graph Tab.

The following items can be added to TensorBoard, with more information at https://pytorch.
org/docs/stable/tensorboard.html.

• add_scalar/s

• add_image/s

• add_figure

• add_text

• add_graph

• add_hparams

To save the training loss, write a function that returns a matplotlib figure of the training loss
plot. Then use tb.add_figure(figure_name, plot_loss()).

writer.add_figure('Training Loss',plot_loss())

Problem 5. Create a TensorBoard for this project that includes the network, a plot of itera-
tions versus training loss and a plot of iterations versus test accuracy from the training done in
Problem 3.

https://pytorch.org/docs/stable/tensorboard.html
https://pytorch.org/docs/stable/tensorboard.html

Bibliography

[GKB17] Ian J. Goodfellow, Alexey Kurakin, and Samy Bengio. Adversarial examples in the physical
world. 2017. [12]

[GSS15] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. 2015. [12]

[Kri09] Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009. [3]

17

	Intro to Deep Learning and PyTorch
	CNN in PyTorch

	Bibliography

