
1 Recurrent Neural
Networks

Lab Objective: Recurrent Neural Networks are powerful machine learning algorithms that accept
sequences as inputs and can process temporal data. In this lab, we generate a Mozart-like piano
sonata using the Long Short-term Memory RNN.

Recurrent Neural Networks
Convolution neural networks work well for problems like image classification because the inputs and
outputs are independent and of fixed size. However many problems do not have these constraints.
For example, what if we want to predict the next word in a sentence? This is clearly not independent
since the output for one iteration becomes the input for the next iteration. Recurrent neural networks,
RNNs, address these issues by using sequences as the input, output, or both, allowing for temporal
dynamic behavior. They perform the same task for every element of the sequence, hence the use
of recurrent in the name. Each task uses the input as well as recent previous information, called
memory, from the network to create the output. Even if the input is not sequential, it is possible to
process it sequentially using RNNs, resulting in powerful learning algorithms.

Data
For this lab, we will use Google Colab and its GPU capability. To enable the GPU in a Colab
notebook, select the Runtime tab and then Change runtime type. This will open a popup called
Notebook Settings. Under Hardware Settings, select GPU. We recommend mounting a Google
Drive to the notebook to make loading and saving data easier. This will save the data if the notebook
is disconnected; if the data is saved to the Colab directory, the entire project must be rerun. To
mount a Google Drive, run

>>> from google.colab import drive
>>> drive.mount('/content/drive')

Follow the instructions in the cell to authorize the account.
If you need to refresh your drive connection, you can run

>>> drive.mount('/content/drive', force_remount = True).
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Download Data

We will be using a collection of piano sonatas from Mozart as the data. For easy download, run the
following function to save the files to filepath in the Google Drive folder.

def download_data(filepath):
if not os.path.exists(os.path.join(filepath, 'mozart_sonatas.tar.gz')):

datasets.utils.download_url('https://github.com/Foundations-of-Applied-←↩
Mathematics/Data/raw/master/Volume3/mozart_sonatas.tar.gz', filepath,←↩
'mozart_sonatas.tar.gz', None)

print('Extracting {}'.format('mozart_sonatas.tar.gz'))
gzip_path = os.path.join(filepath, 'mozart_sonatas.tar.gz')
with open(gzip_path.replace('.gz', ''), 'wb') as out_f, gzip.GzipFile(←↩

gzip_path) as zip_f:
out_f.write(zip_f.read())

print('Untarring {}'.format('mozart_sonatas.tar'))
tar_path = os.path.join(filepath,'mozart_sonatas.tar')
z = tarfile.TarFile(tar_path)
z.extractall(tar_path.replace('.tar', ''))

>> download_data('drive/MyDrive/Colab')
Downloading https://raw.githubusercontent.com/Foundations-of-Applied-←↩

Mathematics/Data/master/RNN/mozart_sonatas.tar.gz to drive/MyDrive/Colab/←↩
mozart_sonatas.tar.gz

Extracting mozart_sonatas.tar.gz
Untarring mozart_sonatas.tar

Parsing the Data

Music21 is musical toolkit for Python developed by MIT. 1 It can read and write music files with
the .mid extension, which is a MIDI, Musical Instrument Digital Interface file. Midi files contain
information on music, like which notes are played, how loud each note is, and how long each note is
held.

There are two important object types: Notes and Chords. A note object is comprised of three
attributes. The pitch and octave give information about the frequency of the note. There are seven
pitches, A,B,C,D,E,F, and G. These are repeated, doubling the frequency of the vibration of the
previous matching pitch. When the frequency of a note is doubled, it is called an octave. A piano
has seven octaves, and the middle of the keyboard is called middle c. In Music21, it is represented
by C4, where 4 is the octave. Lastly, the offset is the location of the note in the file. It describes
how far apart the notes are, and thus how fast or slow they are played.

Chord objects are containers for multiple notes that are played at the same time.

from music21 import converter, instrument, note, chord, stream

1https://web.mit.edu/music21/doc/index.html.

https://web.mit.edu/music21/doc/index.html.
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# Read the file piano_sonota_279.mid
midi = converter.parse('piano_sonata_279.mid')
notes_to_parse = instrument.partitionByInstrument(midi).parts[0].recurse()

# Display the Note and Chord objects, their pitches and offsets
for element in notes_to_parse:

if isinstance(element, note.Note):
print(element, element.pitch, element.offset)

elif isinstance(element, chord.Chord):
print(element, element.pitches, element.offset)

<music21.note.Note E> E5 803.0
<music21.note.Note F> F5 803.5
<music21.chord.Chord B3 B2> (<music21.pitch.Pitch B3>, <music21.pitch.Pitch B2←↩

>) 803.5
<music21.note.Note G> G5 804.0
<music21.note.Note F> F5 804.5
<music21.chord.Chord C4 C3> (<music21.pitch.Pitch C4>, <music21.pitch.Pitch C3←↩

>) 804.5
<music21.note.Note E-> E-5 805.0
<music21.note.Note D> D5 805.5
<music21.chord.Chord E-3 E-4> (<music21.pitch.Pitch E-3>, <music21.pitch.Pitch ←↩

E-4>) 805.5

Problem 1. Download the data. Write a function that accepts the path to the .mid files,
parses the files, and returns a list of the 119348 pitches as strings. For the Chords, join the
pitches of the notes in the chords with a . as in ('D3.D2').

Print the length of your list.

# Sample of part of the list
['G5', 'A5', 'C6', 'G3.C4', 'B-5', 'A5', 'G5', 'D3.D2']

In order for the data to be applied to an RNN, we need to create the sequences. We do this
by looping through the list of notes and slicing it into lists of a given length. The labels for each
sequence, or the correct answer that we want the RNN to learn, is the element immediately following
the sequence. So if we have a list of 200 pitches and we want each sequence to be 100 elements
long, then the label for the first sequence, elements 0-99 would be the 100th element. The label for
elements 1-100, the second sequence, would be the 101st element and so on.

Since RNNs only accept numbers, we also convert the pitches to integers. Using the sample list
above, we can map ′G5′ to 0, ′A5′ to 1, ′C6′ to 2, and ′G3.C4′ to 3. Then the sequences of strings
become sequences of integers. The PyTorch DataLoader accepts a list of lists, where each element
is of the form [sequence, label]. The sequence is a PyTorch Long tensor, and label is an integer.
So in this case, the data is a sequence of integers representing the notes while the label is the integer
representing the first note that follows the sequence.
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# Example Sequence
example_sequence = [169, 269, 165, 187, 24, 366, 353, 269, 260, 233, 223, 169,←↩

162, 366,
353, 269, 260, 233, 223, 169, 162, 24, 8, 269, 260, 91, 79, 269,
260, 366, 353, 233, 223, 24, 8, 269, 260, 169, 162, 79, 72, 233,
223, 114, 110, 8, 2, 8, 2, 8, 2, 187, 269, 8, 187, 269,

2, 187, 269, 8, 187, 269, 2, 122, 233, 8, 122, 233, 2, 8,
2, 278, 187, 8, 278, 187, 2, 278, 187, 8, 278, 187, 2, 246,

122, 8, 246, 122, 2, 8, 2, 39, 278, 8, 39, 278, 2, 39,
278, 8, 382, 79]

# Convert sequences to Long Tensor

first_sequence = torch.LongTensor(example_sequence[0:99])
second_sequence = torch.LongTensor(example_sequence[1:100])
first_label = example_sequence[100]
second_label = example_sequence[101]

# Example of a data point formatted for the DataLoader, [sequence, label]
>>> [first_sequence,first_label]
[tensor([169, 269, 165, 187, 24, 366, 353, 269, 260, 233, 223, 169, 162, 366,

353, 269, 260, 233, 223, 169, 162, 24, 8, 269, 260, 91, 79, 269,
260, 366, 353, 233, 223, 24, 8, 269, 260, 169, 162, 79, 72, 233,
223, 114, 110, 8, 2, 8, 2, 8, 2, 187, 269, 8, 187, 269,

2, 187, 269, 8, 187, 269, 2, 122, 233, 8, 122, 233, 2, 8,
2, 278, 187, 8, 278, 187, 2, 278, 187, 8, 278, 187, 2, 246,

122, 8, 246, 122, 2, 8, 2, 39, 278, 8, 39, 278, 2, 39,
278]), 382]

Problem 2. Using the list returned in Problem 1, create the training and testing DataLoaders.
Make sure to do all of the following steps:

• Convert the pitches to integers.

• Split the data into Long tensors of length 100.

• Create the labels.

• Randomly split the data into training and test sets using an 80/20 split.

• Create the DataLoaders for both sets of data, using batch_size= 128 for the training
data and batch_size= 1 for the test data.

Print the length of each DataLoader.
Hint: To keep all batches the same size, drop the last training batch with the parameter

drop_last=True.
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LSTM
While RNNs have the ability to look at short-term history, like the previous word in a sentence, they
lack longer term contexts. For example, predicting the last word in the "The boat is in the water"
is relatively easy. Consider the following two sentences separated by some other text: "I grew up
in France ... I speak fluent French." It’s clear that the last word will be a language, but we need
the previous information of France to correctly identify which language. RNNs can’t remember this
information due to exploding and vanishing gradients.

Long short-term memory, LSTM, networks are a popular RNN variation capable of long-term
memory that solve this problem. They are used extensively in speech recognition, machine transla-
tion, and text-to-speech programs. Every step in the LSTM has three inputs: the current input, the
short-term memory (hidden state) from the previous input, and the long-term memory (cell state).
There are three gates that regulate these three types of memory. The Input Gate decides what
information will be added to the long-term memory, and the Forget Gate chooses which information
should be kept in the long-term memory. The Output Gate creates the new short-term memory.

Defining the Network Layers

In PyTorch, the memory is a tuple (hidden state, cell state) and must be initialized before the LSTM
layer is called. Usually, the hidden state initialization function is defined in the network class and is
called during the training loop for each batch. The LSTM layer can be stacked, with the input from
one layer going directly to the next layer; num_layers is how many stacked LSTM layers there are
in the model. The hidden_size is the number of features in the hidden layer. This can be any size,
and for this lab, we will use 512.

class RNN(nn.Module):
'''
Recurrent Neural Network Class
'''
def __init__(self):

super(Network, self).__init__()

# define function to initialize hidden states
def init_hidden(self, batch_size):

weight = next(self.parameters()).data
h0 = weight.new(self.num_layers, batch_size, self.hidden_size).←↩

zero_().to(device)
h1 = weight.new(self.num_layers, batch_size, self.hidden_size).←↩

zero_().to(device)

return (h0, h1)

# Initialize the model
model = RNN()

for epoch in range(30):
for x, y in train_loader:

# initialize the hidden states
(h0, h1) = model.initHidden(128)
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# pass data through the model
output, (h0, h1) = model(x, (h0,h1))

h0 = h0.detach()
h1 = h1.detach()

Before calling the LSTM layer, we will use an embedding layer to store the words. The em-
bedding layer is a lookup table that takes in indices and outputs the word embeddings. This is
PyTorch’s method of one-hot encoding, a process in which variables are converted to binary for bet-
ter predictions. The first parameter is the number of words in the dictionary; in our case, there are
741 possible notes and chords. The second parameter is the embedding dimension. 32 and 64 are
good choices for the embedding dimension.

The LSTM layer has 5 parameters. The first three have already been discussed. The parameter
batch_first is a boolean that indicates if the batch size is the first or the second dimension in
the input tensor. Since we are using the DataLoader, the batch size will be the first dimension and
batch_first=True. If the last parameter, dropout, is defined, a Dropout layer is added after each
LSTM layer, except the last. During a Dropout layer, elements of the input tensor are randomly
zeroed out with probability p, and the output is scaled. This is used for regularization to improve
the network.

Another layer we will use is the BatchNorm1d. It normalizes the input and has as parameter
the number of features of the input. The last layer should be softmax activation function. Softmax
rescales a tensor to [0, 1] with sum of all elements equal to 1. Thus the output of Softmax can
be thought of as a probability vector. Notice that all of the layers: Embedding, LSTM, Linear,
BatchNorm1d, Dropout, and LogSoftmax are initialized in the __init__() function.

During training, when the model is called, the input is embedded and then passed to the LSTM
layer with the hidden states. The hidden state output is saved for the next batch while the lstm
output from the final step is sent through the rest of the model. To prevent differentiating the hidden
states, we must call the detach() method before taking a backwards step. This disables automatic
differentiation on the hidden states. Note that because we don’t do a backwards step during the
testing

class Network(nn.Module):
""" Example class for LSTM model """
def __init__(self,vocab_size,embedding_dim):

super(Network, self).__init__()

self.hidden_size = 512
self.num_layers = 3
self.dropout = 0.3
self.vocab_size = vocab_size
self.embedding = nn.Embedding(vocab_size,embedding_dim)
self.lstm = nn.LSTM(embedding_dim, self.hidden_size, self.num_layers, ←↩

batch_first=True, dropout=.3)
self.batch1 = nn.BatchNorm1d(self.hidden_size)
self.dropout = nn.Dropout(.3)
self.linear = nn.Linear(self.hidden_size,self.vocab_size)
self.softmax = nn.LogSoftmax(dim=1)
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def forward(self, x, hidden):

embeds = self.embedding(x)
lstm_out, hidden = self.lstm(embeds, hidden)
out = self.dropout(self.batch1(lstm_out[:,-1])) #output from final step is ←↩

passed forward
return self.softmax(self.linear(out)), hidden

Problem 3. Create the network class. Include at least 3 LSTM layers, each followed by
Dropout layers with probability .3. Also have at least 2 Linear layers. The last LSTM layer
and each of the Linear layers should be followed by a BatchNorm1d layer, for at least 3 total
batchnorm layers. The final layer should be a Softmax activation.

Initialize the model, loss as CrossEntropyLoss, and optimizer as RMSprop,

optimizer = torch.optim.RMSprop(model.parameters(),lr=.001)

Train the model for at least 30 epochs, saving the weights every epoch with

torch.save({
'epoch': epoch_number,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': loss,},filepath)

After taking a backwards step during training, scale the gradients using

nn.utils.clip_grad_norm_(model.parameters(), 5)

This will ensure that the gradients are reasonably sized so that the model can learn.
At the end of each epoch, calculate the accuracy and mean loss on the test data. Remember

to change the model to eval() mode when running the test data and train() when running on
the training data. You will also need to reinitialize the hidden states (h0, h1) since the batch
sizes are different.

After the accuracy is above 95%, plot the training and test losses versus epochs on the
same plot. Plot the accuracy versus epochs.

Achtung!

Colab has a 12 hour limit on the amount of GPU available and the longer one runs, the
less priority one has. Plan on spending at least 2 hours training. Carefully watch the loss
and accuracy to ensure that the model is training correctly.
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Generating Music
Now that we have trained the model, we can create our own piano sonata excerpt. If the notebook
has disconnected, reinitialize the model, loss, and optimizer. Then load the saved model so that we
don’t have to retrain the model.

def load_model(filename):
""" Load a saved model to continue training or evaluate """
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

model = Network(n_vocab,32)
model = model.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.RMSprop(model.parameters(),lr=.001)

checkpoint = torch.load(filename,map_location=torch.device('cpu'))
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
last_epoch = checkpoint['epoch']
loss = checkpoint['loss']
model.eval() # For evaluation only

return model, criterion, optimizer

To start predicting, we will use a random sequence in our test data as our initial point. Then
we will initialize the hidden states and pass them into the model with the sequence, just as we did
in the training step. A new input sequence is created by appending the argmax of the output to the
sequence and dropping the first entry. To create the sequence of notes, we convert the max of the
output back to the corresponding pitch. This process is repeated to generate a sequence of pitches.

Problem 4. Write a function that randomly chooses a sequence in the test data and predicts
the next 500 elements. Return a list of the 600 pitches in the sequence. It should look similar
to

['D4', 'C#4', 'F#5', 'G5', 'A5', 'C6', 'G3.C4', 'B-5', 'A5', 'G5', 'A5', '←↩
G5', 'F5']

Now we just need to convert the pitches into Music21 Notes and Chords objects. For each
element in the list of pitches, we first determine if it’s a Note or Chord. For each Note, we create a
Note object with the pitch and instrument. Chords can be create from the individual note objects.

notes = [ ]

# Create note objects for each pitch in the chord
for pitch in chord_pitches:

new_note = note.Note(pitch)
new_note.storedInstrument = instrument.Piano()
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notes.append(new_note)

# Create a Chord object
new_chord = chord.Chord(notes)
new_chord.offset = offset

Ater creating the objects, the last attribute to add is the offset. To prevent the notes from
playing at the same time, we increase the offset after each note or chord. The simplest way to do this
is look at the distribution of offsets and increase by a set amount each time. Since the most common
offset difference, 0.0, results in notes being played at the same time, we’ll ignore it and choose to
increase the offset by either .25 or .5. For a more advanced option, you could randomly generate
which offset difference to use based on the probability of the distribution.

0.0 1999
0.25 1167
0.5 507

Table 1.1: The three most common offset distance and their frequency in the Mozart data.

Lastly, we write the the notes to a midi file and save it.

midi_stream = stream.Stream(output_notes)
midi_stream.write('midi', fp=file_location)

Problem 5. Convert the sequence from Problem 4 into note and chord objects and save it to
’mozart.mid’ file.


	Recurrent Neural Networks

