
2 Binary Search Trees

Lab Objective: A tree is link-based data structure where each node may refer to more than one

other node. This structure makes trees more useful and e�cient than regular linked lists in many

applications. Many trees are constructed recursively, so we begin with an overview of recursion. We

then implement a recursively structured doubly linked binary search tree (BST). Finally, we compare

the standard linked list, our BST, and an AVL tree to illustrate the relative strengths and weaknesses

of each data structure.

Recursion
A recursive function is one that calls itself. When the function is executed, it continues calling itself

until reaching a base case where the value of the function is known. The function then exits without

calling itself again, and each previous function call is resolved. The idea is to solve large problems

by �rst solving smaller problems, then combining their results.

As a simple example, consider the function f : N→ N that sums all positive integers from 1 to

some integer n.

f(n) =

n∑
i=1

i = n+

n−1∑
i=1

i = n+ f(n− 1)

Since f(n− 1) appears in the formula for f(n), f can be implemented recursively. Calculating f(n)

requires the value of f(n − 1), which requires f(n − 2), and so on. The base case is f(1) = 1, at

which point the recursion halts and unwinds. For example, f(4) is calculated as follows.

f(4) = 4 + f(3)

= 4 + (3 + f(2))

= 4 + (3 + (2 + f(1)))

= 4 + (3 + (2 + 1))

= 4 + (3 + 3)

= 4 + 6

= 10

The implementation accounts separately for the base case and the recursive case.

1

2 Lab 2. Binary Search Trees

def recursive_sum(n):

"""Calculate the sum of all positive integers in [1, n] recursively."""

if n <= 1: # Base case: f(1) = 1.

return 1

else: # Recursive case: f(n) = n + f(n-1).

return n + recursive_sum(n-1)

Many problems that can be solved iteratively can also be solved with a recursive approach.

Consider the function g : N→ N that calculates the nth Fibonacci number.

g(n) = g(n− 1) + g(n− 2), g(0) = 0, g(1) = 1.

This function is doubly recursive since g(n) calls itself twice, and there are two di�erent base cases to

deal with. On the other hand, g(n) could be computed iteratively by calculating g(0), g(1), . . . , g(n)

in that order. Compare the iterative and recursive implementations for g given below.

def iterative_fib(n):

"""Calculate the nth Fibonacci number iteratively."""

if n <= 0: # Special case: g(0) = 0.

return 0

g0, g1 = 0, 1 # Initialize g(0) and g(1).

for i in range(1, n): # Calculate g(2), g(3), ..., g(n).

g0, g1 = g1, g0 + g1

return g1

def recursive_fib(n):

"""Calculate the nth Fibonacci number recursively."""

if n <= 0: # Base case 1: g(0) = 0.

return 0

elif n == 1: # Base case 2: g(1) = 1.

return 1

else: # Recursive case: g(n) = g(n-1) + g(n-2).

return recursive_fib(n-1) + recursive_fib(n-2)

g(4)

g(3)

g(2)

g(1) g(0)

g(1)

g(2)

g(1) g(0)

3

2

1

1 0

1

1

1 0

Figure 2.1: To calculate g(n) recursively, call g(n− 1) and g(n− 2), down to the base cases g(0) and

g(1). As the recursion unwinds, the values from the base cases are passed up to previous calls and

combined, eventually giving the value for g(n).

3

Problem 1. Consider the following class for singly linked lists.

class SinglyLinkedListNode:

"""A node with a value and a reference to the next node."""

def __init__(self, data):

self.value, self.next = data, None

class SinglyLinkedList:

"""A singly linked list with a head and a tail."""

def __init__(self):

self.head, self.tail = None, None

def append(self, data):

"""Add a node containing the data to the end of the list."""

n = SinglyLinkedListNode(data)

if self.head is None:

self.head, self.tail = n, n

else:

self.tail.next = n

self.tail = n

def iterative_find(self, data):

"""Search iteratively for a node containing the data."""

current = self.head

while current is not None:

if current.value == data:

return current

current = current.next

raise ValueError(str(data) + " is not in the list")

Write a method that does the same task as iterative_find(), but with the following recursive

approach. De�ne a function within the method that checks a single node for the data. There are

two base cases: if the node is None, meaning the data could not be found, raise a ValueError;

if the node contains the data, return the node. Otherwise, call the function on the next node

in the list. Start the recursion by calling this inner function on the head node.

(Hint: see BST.find() in the next section for a similar idea.)

Achtung!

It is usually not better to rewrite an iterative method recursively, partly because recursion

results in an increased number of function calls. Each call requires a small amount of memory

so the program remembers where to return to in the program. By default, Python raises a

RuntimeError after 1000 calls to prevent a stack over�ow. On the other hand, recursion lends

itself well to some problems; in this lab, we use a recursive approach to construct a few data

structures, but it is possible to implement the same structures with iterative strategies.

4 Lab 2. Binary Search Trees

Binary Search Trees
Mathematically, a tree is a directed graph with no cycles. Trees can be implemented with link-based

data structures that are similar to a linked list. The �rst node in a tree is called the root, like the

head of a linked list. The root node points to other nodes, which are called its children. A node with

no children is called a leaf node.

A binary search tree (BST) is a tree that allows each node to have up to two children, usually

called left and right. The left child of a node contains a value that is less than its parent node's

value; the right child's value is greater than its parent's value. This speci�c structure makes it easy

to search a BST: while the computational complexity of �nding a value in a linked list is O(n) where

n is the number of nodes, a well-built tree �nds values in O(log n) time.

4

5 3

2 7

5

2

1

7

6 8

Figure 2.2: Both of these graphs are trees, but the tree on the left is not a binary search tree because

5 is to the left of 4. Swapping 5 and 3 in the graph on the left would result in a BST.

Binary search tree nodes have attributes that keep track of their value, their children, and (in

doubly linked trees) their parent. The actual binary search tree has an attribute to keep track of its

root node.

class BSTNode:

"""A node class for binary search trees. Contains a value, a

reference to the parent node, and references to two child nodes.

"""

def __init__(self, data):

"""Construct a new node and set the value attribute. The other

attributes will be set when the node is added to a tree.

"""

self.value = data

self.prev = None # A reference to this node's parent node.

self.left = None # self.left.value < self.value

self.right = None # self.value < self.right.value

class BST:

"""Binary search tree data structure class.

The root attribute references the first node in the tree.

"""

def __init__(self):

"""Initialize the root attribute."""

self.root = None

5

Note

Conceptually, each node of a BST partitions the data of its subtree into two halves: the data

that is less than the parent, and the data that is greater. We will extend this concept to higher

dimensions in the next lab.

Locating Nodes

Finding a node in a binary search tree can be done recursively. Starting at the root, check if the

target data matches the current node. If it does not, then if the data is less than the current node's

value, search again on the left child; if the data is greater, search on the right child. Continue the

process until the data is found or until hitting a dead end. This method illustrates the advantage of

the binary structure�if a value is in a tree, then we know where it ought to be based on the other

values in the tree.

class BST:

...

def find(self, data):

"""Return the node containing the data. If there is no such node

in the tree, including if the tree is empty, raise a ValueError.

"""

Define a recursive function to traverse the tree.

def _step(current):

"""Recursively step through the tree until the node containing

the data is found. If there is no such node, raise a Value Error.

"""

if current is None: # Base case 1: dead end.

raise ValueError(str(data) + " is not in the tree.")

if data == current.value: # Base case 2: data found!

return current

if data < current.value: # Recursively search left.

return _step(current.left)

else: # Recursively search right.

return _step(current.right)

Start the recursion on the root of the tree.

return _step(self.root)

Insertion

New elements are always added to a BST as leaf nodes. To insert a new value, recursively step

through the tree as if searching for the value until locating an empty slot. The node with the empty

child slot becomes the parent of the new node; connect it to the new node by modifying the parent's

left or right attribute (depending on which side the child should be on) and the child's prev

attribute.

6 Lab 2. Binary Search Trees

5

2

1

7

3 8

root

5

2

1

7

3 8

parent

Figure 2.3: To insert 3 to the BST on the left, start at the root and recurse down the tree as if

searching for 3: since 3 < 5, step left to 2; since 2 < 3, step right. However, 2 has no right child, so

2 becomes the parent of a new node containing 3.

Problem 2. Write an insert() method for the BST class that accepts some data.

1. If the tree is empty, assign the root attribute to a new BSTNode containing the data.

2. If the tree is nonempty, create a new BSTNode containing the data and �nd the existing

node that should become its parent. Determine whether the new node will be the parent's

left or right child, then double link the parent to the new node accordingly.

(Hint: write a recursive function like _step() to �nd and link the parent).

3. Do not allow duplicates in the tree: if there is already a node in the tree containing the

insertion data, raise a ValueError.

To test your method, use the __str__() and draw() methods provided in the Additional

Materials section. Try constructing the binary search trees in Figures 2.2 and 2.3.

Removal

Node removal is much more delicate than node insertion. While insertion always creates a new leaf

node, a remove command may target the root node, a leaf node, or anything in between. There are

three main requirements for a successful removal.

1. The target node is no longer in the tree.

2. The former children of the removed node are still accessible from the root. In other words, if

the target node has children, those children must be adopted by other nodes in the tree.

3. The tree still has an ordered binary structure.

When removing a node from a linked list, there are three possible cases that must each be accounted

for separately: the target node is the head, the target node is the tail, or the target node is in the

middle of the list. For BST node removal, we must similarly account separately for the removal of a

leaf node, a node with one child, a node with two children, and the root node.

7

Removing a Leaf Node

Recall that Python's garbage collector automatically deletes objects that cannot be accessed by the

user. If the node to be removed�called the target node�is a leaf node, then the only way to access

it is via the target's parent. Locate the target with find(), get a reference to the parent node (using

the prev attribute of the target), and set the parent's right or left attribute to None.

5

3

1

2

4

9

parent

target

5

3

1

2

4

9

Figure 2.4: To remove 2, get a reference to its parent. Then set the parent's right attribute to None.

Even though 2 still points to 1, 2 is deleted since nothing in the tree points to it.

Removing a Node with One Child

If the target node has one child, the child must be adopted by the target's parent in order to remain

in the tree. That is, the parent's left or right attribute should be set to the child, and the child's

prev attribute should be set to the parent. This requires checking which side of the target the child

is on and which side of the parent the target is on.

5

3

1

2

4

9parent

target

child

5

3

1

2

4

9

Figure 2.5: To remove 1, locate its parent (3) and its child (2). Set the parent's left attribute to

the child and the child's prev attribute to the parent. Even though 1 still points to other nodes, it

is deleted since nothing in the tree points to it.

Removing a Node with Two Children

Removing a node with two children requires a slightly di�erent approach in order to preserve the

ordering in the tree. The immediate predecessor of a node with value x is the node in the tree with

8 Lab 2. Binary Search Trees

the largest value that is still smaller than x. Replacing a target node with its immediate predecessor

preserves the order of the tree because the predecessor's value is greater than the values in the

target's left branch, but less than the values in the target's right branch. Note that because of how

the predecessor is chosen, any immediate predecessor can only have at most one child.

To remove a target with two children, �nd its immediate predecessor by stepping to the left

of the target (so that it's value is less than the target's value), and then to the right for as long as

possible (so that it has the largest such value). Remove the predecessor, recording its value. Then

overwrite the value of the target with the predecessor's value.

5

3

1

2

4

9target

predecessor

5

2

1

3

4

9

Figure 2.6: To remove 3, locate its immediate predecessor 2 by stepping left to 1, then right as far as

possible. Since it is a leaf node, the predecessor can be deleted using the process in Figure 2.4. Delete

the predecessor, and replace the value of the target with the predecessor's value. If the predecessor

has a left child, it can be deleted with the procedure from Figure 2.5.

Removing the Root Node

If the target is the root node, the root attribute may need to be reassigned after the target is

removed. This adds two extra cases to consider:

1. If the root has no children, meaning it is the only node in the tree, set the root to None.

2. If the root has one child, that child becomes the new root of the tree. The new root's prev

attribute should be set to None so the garbage collector deletes the target.

When the targeted root has two children, the node stays where it is (only its value is changed), so

root does not need to be reassigned.

Problem 3. Write a remove() method for the BST class that accepts some data. If the tree is

empty, or if there is no node in the tree containing the data, raise a ValueError. Otherwise,

remove the node containing the speci�ed data using the strategies described in Figures 2.4�2.6.

Test your solutions thoroughly.

(Hint: Before coding anything, outline the entire method with comments and if-else

blocks. Consider using the following control �ow to account for all possible cases.)

9

1. The target is a leaf node.

(a) The target is the root.

(b) The target is to the left of its parent.

(c) The target is to the right of its parent.

2. The target has two children.

(Hint: use remove() on the predecessor's value).

3. The target has one child.

(Hint: start by getting a reference to the child.)

(a) The target is the root.

(b) The target is to the left of its parent.

(c) The target is to the right of its parent.

AVL Trees
The advantage of a BST is that it organizes its data so that values can be located, inserted, or

removed in O(log n) time. However, this e�ciency is dependent on the balance of the tree. In a

well-balanced tree, the number of descendants in the left and right subtrees of each node is about the

same. An unbalanced tree has some branches with many more nodes than others. Finding a node

at the end of a long branch is closer to O(n) than O(log n). This is a common problem; inserting

ordered data, for example, results in a �linear� tree, since new nodes always become the right child

of the previously inserted node (see Figure 2.7). The resulting structure is essentially a linked list

without a tail attribute.

An Adelson-Velsky Landis tree (AVL) is a BST that prevents any one branch from getting longer

than the others by recursively �balancing� the branches as nodes are added or removed. Insertion

and removal thus become more expensive, but the tree is guaranteed to retain its O(log n) search

e�ciency. The AVL's balancing algorithm is beyond the scope of this lab, but the Volume 2 text

includes details and exercises on the algorithm.

1

2

3

4

5

6

root

4

2

1 3

5

6

root

Figure 2.7: On the left, the unbalanced BST resulting from inserting 1, 2, 3, 4, 5, and 6, in that

order. On the left, the balanced AVL tree that results from the same insertion. After each insertion,

the AVL tree rebalances if necessary.

10 Lab 2. Binary Search Trees

Problem 4. Write a function to compare the build and search times of the SinglyLinkedList

from Problem 1, the BST from Problems 2 and 3, and the AVL provided in the Additional

Materials section. Begin by reading the �le english.txt, storing the contents of each line in a

list. For n = 23, 24, . . . , 210, repeat the following experiment.

1. Get a subset of n random items from the data set.

(Hint: use a function from the random or np.random modules.)

2. Time (separately) how long it takes to load a new SinglyLinkedList, a BST, and an AVL

with the n items.

3. Choose 5 random items from the subset, and time how long it takes to �nd all 5 items

in each data structure. Use the find() method for the trees, but to avoid exceeding the

maximum recursion depth, use the provided iterative_find() method from Problem 1

to search the SinglyLinkedList.

Report your �ndings in a single �gure with two subplots: one for build times, and one for search

times. Use log scales where appropriate.

11

Additional Material

Possible Improvements to the BST Class

The following are a few ideas for expanding the functionality of the BST class.

1. Add a keyword argument to the constructor so that if an iterable is provided, each element of

the iterable is immediately added to the tree. This makes it possible to cast other iterables as

a BST the same way that an iterable can be cast as one of Python's standard data structures.

2. Add an attribute that keeps track of the number of items in the tree. Use this attribute to

implement the __len__() magic method.

3. Add a method for translating the BST into a sorted Python list.

(Hint: examine the provided __str__() method carefully.)

4. Add methods min() and max() that return the smallest or largest value in the tree, respectively.

Consider adding head and tail attributes that point to the minimal and maximal elements;

this would make inserting new minima and maxima O(1).

Other Kinds of Binary Trees

In addition to the AVL tree, there are many other variations on the binary search tree, each with its

own advantages and disadvantages. Consider writing classes for the following structures.

1. A B-tree is a tree whose nodes can contain more than one piece of data and point to more than

one other node. See the Volume 2 text for details.

2. The nodes of a red-black tree are labeled either red or black. The tree satis�es the following

rules to maintain a balanced structure.

(a) Every leaf node is black.

(b) Red nodes only have black children.

(c) Every (directed) path from a node to any of its descendent leaf nodes contains the same

number of black nodes.

When a node is added that violates one of these constraints, the tree is rebalanced and recolored.

3. A Splay Tree includes an additional operation, called splaying, that makes a speci�ed node the

root of the tree. Splaying several nodes of interest makes them easier to access because they

are placed close to the root.

4. A heap is similar to a BST but uses a di�erent binary sorting rule: the value of every parent

node is greater than each of the values of its children. This data structure is particularly useful

for sorting algorithms; see the Volume 2 text for more details.

Additional Code: Tree Visualization

The following methods may be helpful for visualizing instances of the BST and AVL classes. Note

that the draw() method uses NetworkX's graphviz_layout, which requires the pygraphviz module

(install it with pip install pygraphviz).

https://en.wikipedia.org/wiki/B-tree
https://en.wikipedia.org/wiki/Red%E2%80%93black_tree
https://en.wikipedia.org/wiki/Splay_tree
https://en.wikipedia.org/wiki/Heap_(data_structure)

12 Lab 2. Binary Search Trees

import networkx as nx

from matplotlib import pyplot as plt

from networkx.drawing.nx_agraph import graphviz_layout

class BST:

...

def __str__(self):

"""String representation: a hierarchical view of the BST.

Example: (3)

/ \ '[3] The nodes of the BST are printed

(2) (5) [2, 5] by depth levels. Edges and empty

/ / \ [1, 4, 6]' nodes are not printed.

(1) (4) (6)

"""

if self.root is None:

return "[]"

out, current_level = [], [self.root]

while current_level:

next_level, values = [], []

for node in current_level:

values.append(node.value)

for child in [node.left, node.right]:

if child is not None:

next_level.append(child)

out.append(values)

current_level = next_level

return "\n".join([str(x) for x in out])

def draw(self):

"""Use NetworkX and Matplotlib to visualize the tree."""

if self.root is None:

return

Build the directed graph.

G = nx.DiGraph()

G.add_node(self.root.value)

nodes = [self.root]

while nodes:

current = nodes.pop(0)

for child in [current.left, current.right]:

if child is not None:

G.add_edge(current.value, child.value)

nodes.append(child)

Plot the graph. This requires graphviz_layout (pygraphviz).

nx.draw(G, pos=graphviz_layout(G, prog="dot"), arrows=True,

with_labels=True, node_color="C1", font_size=8)

plt.show()

13

Additional Code: AVL Tree

Use the following class for Problem 4. Note that it inherits from the BST class, so its functionality is

dependent on the insert() method from Problem 2. Note that the remove() method is disabled,

though it is possible for an AVL tree to rebalance itself after removing a node.

class AVL(BST):

"""Adelson-Velsky Landis binary search tree data structure class.

Rebalances after insertion when needed.

"""

def insert(self, data):

"""Insert a node containing the data into the tree, then rebalance."""

BST.insert(self, data) # Insert the data like usual.

n = self.find(data)

while n: # Rebalance from the bottom up.

n = self._rebalance(n).prev

def remove(*args, **kwargs):

"""Disable remove() to keep the tree in balance."""

raise NotImplementedError("remove() is disabled for this class")

def _rebalance(self,n):

"""Rebalance the subtree starting at the specified node."""

balance = AVL._balance_factor(n)

if balance == -2: # Left heavy

if AVL._height(n.left.left) > AVL._height(n.left.right):

n = self._rotate_left_left(n) # Left Left

else:

n = self._rotate_left_right(n) # Left Right

elif balance == 2: # Right heavy

if AVL._height(n.right.right) > AVL._height(n.right.left):

n = self._rotate_right_right(n) # Right Right

else:

n = self._rotate_right_left(n) # Right Left

return n

@staticmethod

def _height(current):

"""Calculate the height of a given node by descending recursively until

there are no further child nodes. Return the number of children in the

longest chain down.

"""

if current is None: # Base case: the end of a branch.

return -1 # Otherwise, descend down both branches.

return 1 + max(AVL._height(current.right), AVL._height(current.left))

@staticmethod

def _balance_factor(n):

return AVL._height(n.right) - AVL._height(n.left)

14 Lab 2. Binary Search Trees

def _rotate_left_left(self, n):

temp = n.left

n.left = temp.right

if temp.right:

temp.right.prev = n

temp.right = n

temp.prev = n.prev

n.prev = temp

if temp.prev:

if temp.prev.value > temp.value:

temp.prev.left = temp

else:

temp.prev.right = temp

if n is self.root:

self.root = temp

return temp

def _rotate_right_right(self, n):

temp = n.right

n.right = temp.left

if temp.left:

temp.left.prev = n

temp.left = n

temp.prev = n.prev

n.prev = temp

if temp.prev:

if temp.prev.value > temp.value:

temp.prev.left = temp

else:

temp.prev.right = temp

if n is self.root:

self.root = temp

return temp

def _rotate_left_right(self, n):

temp1 = n.left

temp2 = temp1.right

temp1.right = temp2.left

if temp2.left:

temp2.left.prev = temp1

temp2.prev = n

temp2.left = temp1

temp1.prev = temp2

n.left = temp2

return self._rotate_left_left(n)

def _rotate_right_left(self, n):

temp1 = n.right

temp2 = temp1.left

15

temp1.left = temp2.right

if temp2.right:

temp2.right.prev = temp1

temp2.prev = n

temp2.right = temp1

temp1.prev = temp2

n.right = temp2

return self._rotate_right_right(n)

	Binary Search Trees

