
3 Nearest Neighbor
Search

Lab Objective: The nearest neighbor problem is an optimization problem that arises in applications

such as computer vision, internet marketing, and data compression. The problem can be solved

e�ciently with a k-d tree, a generalization of the binary search tree. In this lab we implement a k-d

tree, use it to solve the nearest neighbor problem, then use that solution as the basis of an elementary

machine learning algorithm.

The Nearest Neighbor Problem
Let X ⊂ Rk be a collection of data, called the training set, and let z ∈ Rk, called the target. The

nearest neighbor search problem is determining the point x∗ ∈ X that is �closest� to z.

For example, suppose you move into a new city with several post o�ces. Since your time is

valuable, you wish to know which post o�ce is closest to your home. The set X could be addresses

or latitude and longitude data for each post o�ce in the city; z would be the data that represents

your new home. The task is to �nd the closest post o�ce in x ∈ X to your home z.

Metrics and Distance

Solving the nearest neighbor problem requires a de�nition for distance between z and elements of X.

In Rk, distance is typically de�ned by the Euclidean metric.

d(x, z) = ‖x− z‖ =

√√√√ k∑
i=1

(xi − zi)2 (3.1)

Here ‖ · ‖ is the standard Euclidean norm, which computes vector length. In other words, d(x, z) is

the length of the straight line from x to z. With this notation, the nearest neighbor search problem

can be written as follows.

x∗ = argmin
x∈X

d(x, z) d∗ = min
x∈X

d(x, z) (3.2)

NumPy and SciPy implement the Euclidean norm (and other norms) in linalg.norm(). This

function accepts vectors or matrices. Use the axis argument to compute the norm along the rows

or columns of a matrix: axis=0 computes the norm of each column, and axis=1 computes the norm

of each row (see the NumPy Visual Guide).

1

2 Lab 3. Nearest Neighbor Search

>>> import numpy as np

>>> from scipy import linalg as la

>>> x0 = np.array([1, 2, 3])

>>> x1 = np.array([6, 5, 4])

Calculate the length of the vectors x0 and x1 using the Euclidean norm.

>>> la.norm(x0)

3.7416573867739413

>>> la.norm(x1)

8.7749643873921226

Calculate the distance between x0 and x1 using the Euclidean metric.

>>> la.norm(x0 - x1)

5.9160797830996161

>>> A = np.array([[1, 2, 3], # or A = np.vstack((x0,x1)).

... [6, 5, 4]])

>>> la.norm(A, axis=0) # Calculate the norm of each column of A.

array([6.08276253, 5.38516481, 5.])

>>> la.norm(A, axis=1) # Calculate the norm of each row of A.

array([3.74165739, 8.77496439]) # This is ||x0|| and ||x1||.

Exhaustive Search

Consider again the post o�ce example. One way to �nd out which post o�ce is closest is to drive

from home to each post o�ce, measuring the distance travelled in each trip. That is, we solve (3.2)

by computing ‖x − z‖ for every point x ∈ X. This strategy is called a brute force or exhaustive

search.

Problem 1. Write a function that accepts a m × k NumPy array X (the training set) and a

1-dimensional NumPy array z with k entries (the target). Each of the m rows of X represents

a point in Rk that is an element of the training set.

Solve (3.2) with an exhaustive search. Return the nearest neighbor x∗ and its Euclidean

distance d∗ from the target z.

(Hint: use array broadcasting and the axis argument to avoid using a loop.)

The complexity of an exhaustive search for X ⊂ Rk with m points is O(km), since (3.1) is

O(k) and there are m norms to compute. This method works, but it is only feasible for relatively

small training sets. Solving the problem with greater e�ciency requires the use of a specialized data

structure.

K-D Trees
A k-d tree is a generalized binary search tree where each node in the tree contains k-dimensional

data. Just as a BST makes searching easy in R, a k-d tree provides a way to e�ciently search Rk.

https://en.wikipedia.org/wiki/K-d_tree

3

A BST creates a partition of R: if a node contains the value x, all of the nodes in its left subtree

contain values that are less than x, and the nodes of its right subtree have values that are greater

than x. Similarly, a k-d tree partitions Rk. Each node is assigned a pivot value i ∈ {0, 1, . . . , k − 1}
corresponding to the depth of the node: the root has i = 0, its children have i = 1, their children

have i = 2, and so on. If a node has i = k − 1, its children have i = 0, their children have i = 1,

and so on. The tree is constructed such that for a node containing x = [x0, x1, . . . , xk−1]
T ∈ Rk, if a

node in the left subtree contains y, then yi < xi. Conversely, if a node in the right subtree contains

z, then xi ≤ zi. See Figure 3.1 for an example where k = 3.

[3, 1, 4]

[1, 2, 7]

[2, 0, 3] [2, 4, 5]

[1, 4, 3] [0, 5, 7]

[4, 3, 5]

[6, 1, 4]

[5, 2, 5]

pivot=0

pivot=1

pivot=2

pivot=0

Figure 3.1: A k-d tree with k = 3. The root [3, 1, 4] has an pivot of 0, so [1, 2, 7] is to the left of the

root because 1 < 3, and [4, 3, 5] is to the right since 3 ≤ 4. Similarly, the node [2, 4, 5] has an pivot

of 2, so [1, 4, 3] is to its left since 4 < 5 and [0, 5, 7] is to its right because 5 ≤ 7. The nodes that are

furthest from the root have an pivot of 0 because their parents have an pivot of 2 = k − 1.

Problem 2. Write a KDTNode class whose constructor accepts a single parameter x ∈ Rk. If x

is not a NumPy array (of type np.ndarray), raise a TypeError. Save x as an attribute called

value, and initialize attributes left, right, and pivot as None. The pivot will be assigned

when the node is inserted into the tree, and left and right will refer to child nodes.

Constructing the Tree

Locating Nodes

The find() methods for k-d trees and binary search trees are very similar. Both recursively compare

the values of a target and nodes in the tree, but in a k-d tree, these values must be compared according

to their pivot attribute. Every comparison in the recursive _step() function, implemented below,

compares the data of target and current based on the pivot attribute of current. See Figure 3.2.

class KDT:

"""A k-dimensional tree for solving the nearest neighbor problem.

Attributes:

root (KDTNode): the root node of the tree. Like all other nodes in

4 Lab 3. Nearest Neighbor Search

the tree, the root has a NumPy array of shape (k,) as its value.

k (int): the dimension of the data in the tree.

"""

def __init__(self):

"""Initialize the root and k attributes."""

self.root = None

self.k = None

def find(self, data):

"""Return the node containing the data. If there is no such node in

the tree, or if the tree is empty, raise a ValueError.

"""

def _step(current):

"""Recursively step through the tree until finding the node

containing the data. If there is no such node, raise a ValueError.

"""

if current is None: # Base case 1: dead end.

raise ValueError(str(data) + " is not in the tree")

elif np.allclose(data, current.value):

return current # Base case 2: data found!

elif data[current.pivot] < current.value[current.pivot]:

return _step(current.left) # Recursively search left.

else:

return _step(current.right) # Recursively search right.

Start the recursive search at the root of the tree.

return _step(self.root)

[3, 1, 4]

[1, 2, 7]

[2, 0, 3] [2, 4, 5]

[1, 4, 3] [0, 5, 7]

[4, 3, 5]

[6, 1, 4]

[5, 2, 5]

pivot=0

pivot=1

pivot=2

pivot=0

Figure 3.2: To locate the node containing [1, 4, 3], start by comparing [1, 4, 3] to the root [3, 1, 4].

The root has an pivot of 0, so compare the �rst component of the data to the �rst component of the

root: since 1 < 3, step left. Next, [1, 4, 3] must be to the right of [1, 2, 7] because 2 ≤ 4. Similarly,

[1, 4, 3] must be to the left of [2, 4, 5] as 3 < 5.

5

[5, 5]

A B

���- []

A B

(a) Insert [5, 5] as the root. The root always has an pivot of 0, so nodes to the left of the root contain points

from A = {(x, y) ∈ R2 : x < 5}, and nodes on the right branch have points in B = {(x, y) ∈ R2 : 5 ≤ x}.

[5, 5]

[3, 2]

A B

[8, 4]

C D

���-

A

B

C

D

(b) Insert [3, 2], then [8, 4]. Since 3 < 5, [3, 2] becomes the left child of [5, 5]. Likewise, as 5 ≤ 8, [8, 4] becomes

the right child of [5, 5]. These new nodes have an pivot of 1, so they partition the space vertically: nodes to

the right of [3, 2] contain points from B = {(x, y) ∈ R2 : x < 5, 2 ≤ y}; nodes to the left of [8, 4] hold points

from C = {(x, y) ∈ R2 : 5 ≤ x, y < 8}.

[5, 5]

[3, 2]

A [2, 6]

B C

[8, 4]

D E

���-

A

B C

D

E

(c) Insert [2, 6]. The pivot cycles back to 0 since k = 2, so nodes to the left of [2, 6] have points that lie in

B = {(x, y) ∈ R2 : x < 2, 2 ≤ y} and nodes to the right store points in C = {(x, y) ∈ R2 : 2 ≤ x < 5, 2 ≤ y}.

Figure 3.3: As a k-d tree is constructed (left), it creates a partition of Rk (right) by de�ning separating

hyperplanes that pass through the points. The more points, the �ner the partition.

6 Lab 3. Nearest Neighbor Search

Inserting Nodes

To add a new node to a k-d tree, determine which existing node should be the parent of the new

node by recursively stepping down the tree as in the find() method. Next, assign the new node as

the left or right child of the parent, and set its pivot based on its parent's pivot: if the parent's

pivot is i, the new node's pivot should be i+ 1, or 0 if i = k − 1.

Consider again the k-d tree in Figure 3.2. To insert [2, 3, 4], search the tree for [2, 3, 4] until

hitting an empty slot. In this case, the search steps from the root down to [1, 4, 3], which has an

pivot of 0. Then since 1 ≤ 2, the new node should be to the right of [1, 4, 3]. However, [1, 4, 3] has

no right child, so it becomes the parent of [2, 3, 4]. The pivot of the new node should therefore be

1. See Figure 3.3 for another example.

Problem 3. Write an insert() method for the KDT class that accepts a point x ∈ Rk.

1. If the tree is empty, create a new KDTNode containing x and set its pivot to 0. Assign

the root attribute to the new node and set the k attribute as the length of x. Thereafter,

raise a ValueError if data to be inserted is not in Rk.

2. If the tree is nonempty, create a new KDTNode containing x and �nd the existing node that

should become its parent. Determine whether the new node will be the parent's left or

right child, then link the parent to the new node accordingly. Set the pivot of the new

node based on its parent's pivot.

(Hint: write a recursive function like _step() to �nd and link the parent.)

3. Do not allow duplicates in the tree: if there is already a node in the tree containing x,

raise a ValueError.

To test your method, use the __str__() method provided in the Additional Materials section.

Try constructing the trees in Figures 3.1 and 3.3. Also check that the provided find() method

works as expected.

Nearest Neighbor Search with K-D Trees

Given a target z ∈ Rk and a k-d tree containing a set X ⊂ Rk of m points, the nearest neighbor

problem can be solved by traversing the tree in a manner that is similar to the find() or insert()

methods from the previous section. The advantage of this strategy over an exhaustive search is that

not every x ∈ X has to be compared to z via (3.1); the tree structure makes it possible to rule out

some elements of X without actually computing their distances to z. The complexity is O(k log(m)),

a signi�cant improvement over the O(km) complexity of an exhaustive search.

To begin, set x∗ as the value of the root and compute d∗ = d(x∗, z). Starting at the root, step

down through the tree as if searching for the target z. At each step, determine if the value x of the

current node is closer to z than x∗. If it is, assign x∗ = x and recompute d∗ = d(x∗, z). Continue

this process until reaching a leaf node.

Next, backtrack along the search path and determine if the non-explored branch needs to be

searched. To do this, check that the sphere of radius d∗ centered at z does not intersect with the

separating hyperplane de�ned by the current node. That is, if the separating hyperplane is further

than d∗ from z, then no points on the other side of the hyperplane can possibly be the nearest

neighbor. See Figure 3.4 for an example and Algorithm 3.1 for the details of the procedure.

7

[5, 5]

[3, 2]

[2, 6]

[8, 4]

[7, 7]

���-

(a) Start at the root, setting x∗ = [5, 5]. The sphere of radius d∗ = d(x∗, z) centered at z intersects the

hyperplane x = 5, so (at this point) it is possible that a nearer neighbor lies to the right of the root.

[5, 5]

[3, 2]

[2, 6]

[8, 4]

[7, 7]

���-

(b) If the target z = [3, 2.75] were in the tree, it would be to the left of the root, so step left and examine

x = [3, 2]. Since d(x, z) < d(x∗, z), reassign x∗ = x and recompute d∗. Now the sphere of radius d∗ centered

at z no longer intersects the root's hyperplane, so the nearest neighbor cannot be in the root's right subtree.

[5, 5]

[3, 2]

[2, 6]

[8, 4]

[7, 7]

���-

(c) Continuing the search, step right to check the point x = [2, 6]. In this case d(x, z) > d(x∗, z), meaning

x is not nearer to z than x∗. Since [2, 6] is a leaf node, retrace the search steps up the tree to check the

non-searched branches. However, the sphere around z does not intersect any splitting hyperplanes de�ned

by the tree, so x∗ is guaranteed to be the nearest neighbor.

Figure 3.4: Nearest neighbor search of a k-d tree with k = 2. The target is z = [3, 2.75] and the

nearest neighbor is x∗ = [3, 2] with minimal distance d∗ = 0.75. The tree structure allows the

algorithm to eliminate [8, 4] and [7, 7] from consideration without computing their distance from z.

8 Lab 3. Nearest Neighbor Search

Algorithm 3.1 k-d tree nearest neighbor search

1: procedure Nearest Neighbor Search(z, root)

2: procedure KDSearch(current, nearest, d∗)

3: if current is None then . Base case: dead end.

4: return nearest, d∗

5: x← current.value

6: i← current.pivot

7: if d(x, z) < d∗ then . Check if current is closer to z than nearest.

8: nearest ← current

9: d∗ ← d(x, z)

10: if zi < xi then . Search to the left.

11: nearest, d∗ ← KDSearch(current.left, nearest, d∗)

12: if zi + d∗ ≥ xi then . Search to the right if needed.

13: nearest, d∗ ← KDSearch(current.right, nearest, d∗)

14: else . Search to the right.

15: nearest, d∗ ← KDSearch(current.right, nearest, d∗)

16: if zi − d∗ ≤ xi then . Search to the left if needed.

17: nearest, d∗ ← KDSearch(current.left, nearest, d∗)

18: return nearest, d∗

19: node, d∗ ← KDSearch(root, root, d(root.value, z))

20: return node.value, d∗

Problem 4. Write a method for the KDT class that accepts a target point z ∈ Rk. Use Al-

gorithm 3.1 to solve (3.2). Return the nearest neighbor x∗ (the actual NumPy array, not the

KDTNode) and its distance d∗ from z.

Compare your method to the exhaustive search in Problem 1 and to SciPy's built-in

KDTree class. This structure is essentially a heavily optimized version of the KDT class. To

solve the nearest neighbor problem, initialize the tree with data, then �query� the tree with the

target point. The query() method returns a tuple of the minimum distance and the index of

the nearest neighbor in the data.

>>> from scipy.spatial import KDTree

Initialize the tree with data (in this example, use random data).

>>> data = np.random.random((100,5)) # 100 5-dimensional points.

>>> target = np.random.random(5)

>>> tree = KDTree(data)

Query the tree for the nearest neighbor and its distance from 'target'.

>>> min_distance, index = tree.query(target)

>>> print(min_distance)

0.24929868807

>>> tree.data[index] # Get the actual nearest neighbor.

array([0.26927057, 0.03160271, 0.46830759, 0.26766863, 0.63073275])

9

Achtung!

There are a few caveats to using a k-d tree for the nearest neighbor search problem.

� Constructing the tree takes time. For small enough data sets, an exhaustive search may

be faster than the combined time of constructing and searching a tree. On the other hand,

once the tree is constructed, it can be used for multiple nearest-neighbor queries.

� In the worst case�when the tree is completely unbalanced�the search complexity is

O(km) instead of O(k log(m)). Fortunately, there are algorithms for constructing the

tree intelligently so that it is mostly balanced, and a random insertion order usually

results in a somewhat balanced tree.

K-Nearest Neighbors
The nearest neighbor algorithm provides one way to solve a common machine learning problem.

In supervised learning, a training set X ⊂ D has a corresponding set of labels Y that speci�es a

category for each element of X. For instance, X could contain �nancial data on m individuals, and

Y could be a set of m booleans indicating which individuals have �led for bankruptcy. Supervised

learning algorithms use the training data to construct a function f : D → Y that maps points to their

corresponding label. In other words, the algorithm �learns� enough about the relationship between

X and Y to intelligently label arbitrary elements of D. In the bankruptcy example, a person could

then use their own �nancial data to learn whether or not they look more like someone who �les for

bankruptcy or someone who does not.

A k-nearest neighbors classi�er uses a simple strategy to label an arbitrary z ∈ D: �nd the k

elements of X that are nearest to z (usually in terms of the Euclidean metric) and choose the most

common label from those k elements as the label of z. That is, the points in the k labeled points

that are most like z are allowed to �vote� on how z should be labeled. See Figure 3.5.

Figure 3.5: To classify the center node, determine its k-nearest neighbors and pick the most common

label of the neighbors. If k = 3, the k nearest points are two blues and a yellow, so the center node

is labeled blue. For k = 5, the k nearest points consists of two blues and three yellows, so the center

node is labeled yellow.

Achtung!

The k in k-d tree refers to the dimension of the data housed in the tree, but the k in k-nearest

neighbors refers to the number of neighbors to use in the voting scheme. Unfortunately,

both names are standard.

10 Lab 3. Nearest Neighbor Search

Problem 5. Write a KNeighborsClassifier class with the following methods.

1. The constructor should accept an integer n_neighbors, the number of neighbors to include

in the vote (the k in k-nearest neighbors). Save this value as an attribute.

2. fit(): accept an m× k NumPy array X (the training set) and a 1-dimensional NumPy

array y with m entries (the training labels). As in Problems 1 and 4, each of the m rows

of X represents a point in Rk. Here yi is the label corresponding to row i of X.

Load a SciPy KDTree with the data in X. Save the tree and the labels as attributes.

3. predict(): accept a 1-dimensional NumPy array z with k entries. Query the KDTree for

the n_neighbors elements of X that are nearest to z and return the most common label

of those neighbors. If there is a tie for the most common label (such as if k = 2 in Figure

3.5), choose the alphanumerically smallest label.

(Hint: use scipy.stats.mode(). The default behavior splits ties correctly.)

To get several nearest neighbors from the tree, specify k in KDTree.query().

>>> data = np.random.random((100,5)) # 100 5-dimensional points.

>>> target = np.random.random(5)

>>> tree = KDTree(data)

Query the tree for the 3 nearest neighbors.

>>> distances, indices = tree.query(target, k=3)

>>> print(indices)

[26 30 32]

Note

The format of the KNeighborsClassifier in Problem 5 conforms to the style of scikit-learn

(sklearn), a large machine learning library in Python. In fact, scikit-learn has a class called

sklearn.neighbors.KNeighborsClassifier that is a more robust version of the class from

Problem 5. See http://scikit-learn.org/stable/modules/neighbors.html for more tools

from scikit-learn for solving the nearest neighbor problem in the context of machine learning.

Handwriting Recognition

Computer vision is a challenging area of arti�cial intelligence that focuses on autonomously interpret-

ing images. Perhaps the simplest computer vision problem is that of translating images into text.

Roughly speaking, computers store grayscale images as M × N arrays of pixel brightness values:

0 corresponds to black, and 255 to white. Flattening out such an array yields a vector in RMN .

Given some images of characters with labels (assigned by humans), a k-nearest neighbor classi�er

can intelligently decide what character the image represents.

http://scikit-learn.org/stable/modules/neighbors.html

11

Problem 6. The �le mnist_subset.npz contains part of the MNIST dataset,a a collection of

28× 28 images of handwritten digits and their labels. The data is split into four parts.

� X_train: A 3000 × 728 matrix, the training set. Each of the 3000 rows is a �attened

28× 28 image to be used in training the classi�er.

� y_train: A 1-dimensional NumPy array with 3000 entries. The entries are integers from

0 to 9, the labels corresponding to the images in X_train.

� X_test: A 500× 728 matrix of 500 images to classify.

� y_test: A 1-dimensional NumPy array with 500 entries. These are the labels correspond-

ing to X_test, the �right answers� that the classi�er will try to guess.

The following code uses np.load() to extract the data.

>>> data = np.load("mnist_subset.npz")

>>> X_train = data["X_train"].astype(np.float) # Training data

>>> y_train = data["y_train"] # Training labels

>>> X_test = data["X_test"].astype(np.float) # Test data

>>> y_test = data["y_test"] # Test labels

To visualize one of the images, reshape it as a 28× 28 array and use plt.imshow().

>>> from matplotlib import pyplot as plt

>>> plt.imshow(X_test[0].reshape((28,28)), cmap="gray")

>>> plt.show()

Write a function than accepts an integer n_neighbors. Load a classi�er from Problem 5

with the data X_train and the corresponding labels y_train. Use the classi�er to predict the

labels of each image in X_test. Return the classi�cation accuracy, the percentage of predictions

that match y_test. The accuracy should be at least 90% using 4 nearest neighbors.

aSee http://yann.lecun.com/exdb/mnist/.

Note

The k-nearest neighbors algorithm is not the best machine learning algorithm for this problem,

but it is a good starting point because of its simplicity. In fact, k-nearest neighbors is often

used as a baseline to compare against more complicated machine learning techniques.

http://yann.lecun.com/exdb/mnist/

12 Lab 3. Nearest Neighbor Search

Additional Material
Ball Trees

The nearest neighbor problem can also be solved e�ciently with a ball tree, another space-partitioning

data structure. Instead of separating Rk by hyperplanes, a ball tree uses nested hyperspheres to split

up the space. Since the partitioning scheme is di�erent, a nearest neighbor search through a ball

tree is more e�cient than the k-d tree search for some data sets. See https://en.wikipedia.org/

wiki/Ball_tree for more details.

The Curse of Dimensionality

The curse of dimensionality refers to a phenomena that occurs when dealing with high-dimensional

data: the computational cost of an algorithm increases much more rapidly as the dimension increases

than it does when the number of points increases. This problem occurs in many other areas involving

multi-dimensional data, but it is quite apparent in a nearest neighbor search.

25 27 29 211 213 215

m

10 4

10 3

10 2

10 1
Construction Time
NN Search Time

(a) Fixing k and increasing m leads to consistent

growth in execution time.

25 27 29 211 213 215

k

10 4

10 3

10 2

10 1
Construction Time
NN Search Time

(b) For �xed m, the times takes a sharp upturn

around k = 29 relative to previous growth rates.

Figure 3.6: Construction and nearest neighbor search times for a k-d tree with a m× k training set.

See https://en.wikipedia.org/wiki/Curse_of_dimensionality for more examples. One

way to avoid the curse of dimensionality is via dimension reduction, a process usually based on the

singular value decomposition (SVD) that projects data into a lower-dimensional space.

Tiebreaker Strategies

As mentioned in Problem 5, the majority voting scheme in the k-nearest neighbor algorithm can

often result in a tie. Breaking the tie intelligently is a science unto itself, but here are a few common

strategies.

1. For binary classi�cation (meaning there are only two labels), choose an odd k to avoid a tie in

the �rst place.

2. Redo the search with k − 1 neighbors, repeating as needed until k = 1.

3. Choose the label that appears more frequently in the test set.

4. Choose randomly among the labels that are tied for most common.

https://en.wikipedia.org/wiki/Ball_tree
https://en.wikipedia.org/wiki/Ball_tree
https://en.wikipedia.org/wiki/Curse_of_dimensionality

13

Additional Code

The following code creates a string representation for the KDT class. Use this to test Problem 3.

class KDT:

...

def __str__(self):

"""String representation: a hierarchical list of nodes and their axes.

Example: 'KDT(k=2)

[5,5] [5 5] pivot = 0

/ \ [3 2] pivot = 1

[3,2] [8,4] [8 4] pivot = 1

\ \ [2 6] pivot = 0

[2,6] [7,5] [7 5] pivot = 0'

"""

if self.root is None:

return "Empty KDT"

nodes, strs = [self.root], []

while nodes:

current = nodes.pop(0)

strs.append("{}\tpivot = {}".format(current.value, current.pivot))

for child in [current.left, current.right]:

if child:

nodes.append(child)

return "KDT(k={})\n".format(self.k) + "\n".join(strs)

	Nearest Neighbor Search

