
2 Unix Shell 2

Lab Objective: Introduce system management, calling Unix Shell commands within Python, and

other advanced topics. As in the last Unix lab, the majority of learning will not be had in �nishing

the problems, but in following the examples.

Archiving and Compression
In �le management, the terms archiving and compressing are commonly used interchangeably. How-

ever, these are quite di�erent. Archiving is combining a certain number of �les into one �le. The

resulting �le will be the same size as the group of �les that were archived. Compressing takes a �le

or group of �les and shrinks the �le size as much as possible. The resulting compressed �le will need

to be extracted before being used.

The ZIP �le format is common for archiving and compressing �les. If the zip Unix command

is not installed on your system, you can download it by running

>>> sudo apt-get install zip

Note that you will need to have administrative rights to download this package. To unzip a �le, use

unzip.

Note

To begin this lab, unzip the Shell2.zip �le into your UnixShell2/ directory using a terminal

command.

Unzip a zipped file using the unzip command.

$ unzip Shell2.zip

Archive Shell2.zip

creating: Shell2/

creating: Shell2/Test/

inflating: Shell2/.DS_Store

creating: Shell2/Scripts/

1

2 Lab 2. Unix Shell 2

extracting: Shell2/Scripts/fiteen_secs

extracting: Shell2/Scripts/script3

extracting: Shell2/Scripts/hello.sh...

While the zip �le format is more popular on the Windows platform, the tar utility is more

common in the Unix environment.

Note

When submitting this lab, you will need to archive and compress your entire Shell2/ directory

into a �le called Shell2.tar.gz and push Shell2.tar.gz as well as shell2.py to your online

repository.

If you are doing multiple submissions, make sure to delete your previous Shell2.tar.gz

�le before creating a new one from your modi�ed Shell2/ directory. Refer to Unix1 for more

information on deleting �les.

As a �nal note, please do not push the entire directory to your online repository. Only

push ShellFinal.tar.gz and shell2.py.

The example below demonstrates how to archive and compress our Shell2/ directory. The -z

�ag calls for the gzip compression tool, the -v �ag calls for a verbose output, the -p �ag tells the

tool to preserve �le permission, and the -f �ag indicates the next parameter will be the name of the

archive �le. Note that the -f �ag must always come last.

Remove your archive tar.gz file if you already have one.

$ rm -v Shell2.tar.gz

removed 'Shell2.tar.gz'

Create a new one from your update Shell2 directory content.

Remember that the * is the wildcard that represents all strings.

$ tar -zcpf Shell2.tar.gz Shell2/*

Working with Files

Displaying File Contents

The unix �le system presents many opportunities for the manipulation, viewing, and editing of �les.

Before moving on to more complex commands, we will look at some of the commands available to

view the content of a �le.

The cat command, followed by the �lename, will display all the contents of a �le on the

terminal screen. This can be problematic if you are dealing with a large �le. There are a few

available commands to control the output of cat in the terminal. See Table 2.1.

As an example, use less <filename> to restrict the number of lines that are shown. With this

command, use the arrow keys to navigate up and down and press q to exit.

3

Command Description

cat Print all of the �le contents

more Print the �le contents one page at a time, navigating forwards

less Like more, but you navigate forward and backwards

head Print the �rst 10 lines of a �le

head -nk Print the �rst k lines of a �le

tail Print the last 10 lines of a �le

tail -nk Print the last k lines of a �le

Table 2.1: Commands for printing �le contents

Pipes and redirects

To combine terminal commands, we can use pipes. When we combine or pipe commands, the output

of one command is passed to the other. We pipe commands together using the | (bar) operator. In

the example directly below, the cat command output is piped to wc -l (wc stands for word count,

and the -l �ag tells the wc command to count lines).

In the second part of the example, ls -s is piped to sort -nr. Refer to the Unix 1 lab for

explanations of ls and sort. Recall that the man command followed by an additional command will

output details on the additional command's possible �ags and what they mean (for example man

sort).

$ cd Shell2/Files/Feb

Output the number of lines in assignments.txt.

$ cat assignments.txt | wc -l

9

Sort the files by file size and output file names and their size.

$ls -s | sort -nr

4 project3.py

4 project2.py

4 assignments.txt

4 pics

total 16

In addition to piping commands together, when working with �les speci�cally, we can use

redirects. A redirect, represented as < in the terminal, passes the �le to a terminal command.

To save a command's output to a �le, we can use > or >>. The > operator will overwrite anything

that may exist in the output �le whereas >> will append the output to the end of the output �le.

Examples of redirects and writing to a �le are given below.

Gets the same result as the first command in the above example.

$ wc -l < assignments.txt

9

Writes the number of lines in the assignments.txt file to word_count.txt.

$ wc -l < assignments.txt >> word_count.txt

4 Lab 2. Unix Shell 2

Problem 1. The words.txt �le in the Documents/ directory contains a list of words that are

not in alphabetical order. Write an alphabetically sorted list of words in words.txt to a new

�le in your Documents/ called sortedwords.txt using pipes and redirects. After you write the

alphabetized words to the designated �le, also write the number of words in words.txt to the

end of sortedwords.txt. Save this �le in the Documents/ directory. Try to accomplish this

with a total of two commands or fewer.

Resource Management
To be able to optimize performance, it is valuable to be aware of the resources, speci�cally hard drive

space and computer memory, being used.

Job Control

One way to monitor and optimize performance is in job control. Any time you start a program in

the terminal (you could be running a script, opening ipython, etc.,) that program is called a job.

You can run a job in the foreground and also in the background. When we run a program in the

foreground, we see and interact with it. Running a script in the foreground means that we will not

be able to enter any other commands in the terminal while the script is running. However, if we

choose to run it in the background, we can enter other commands and continue interacting with other

programs while the script runs.

Consider the scenario where we have multiple scripts that we want to run. If we know that these

scripts will take awhile, we can run them all in the background while we are working on something

else. Table 2.2 lists some common commands that are used in job control. We strongly encourage

you to experiment with some of these commands.

Command Description

COMMAND & Adding an ampersand to the end of a command

runs the command in the background

bg %N Restarts the Nth interrupted job in the background

fg %N Brings the Nth job into the foreground

jobs Lists all the jobs currently running

kill %N Terminates the Nth job

ps Lists all the current processes

Ctrl-C Terminates current job

Ctrl-Z Interrupts current job

nohup Run a command that will not be killed if the user logs out

Table 2.2: Job control commands

The fifteen_secs and five_secs scripts in the Scripts/ directory take �fteen seconds and

�ve seconds to execute respectively. The python �le fifteen_secs.py in the Python/ directoy takes

�fteen seconds to execute, this �le counts to �fteen and then outputs "Success!". These will be

particularly useful as you are experimenting with these commands.

Remember, that when you use the ./ command in place of other commands you will probably

need to change permissions. For more information on changing permissions, review Unix 1. Run the

following command sequence from the Shell2 directory.

5

Remember to add executing permissions to the user.

$./Scripts/fifteen_secs &

$ python Python/fifteen_secs.py &

$ jobs

[1]+ Running ./Scripts/fifteen_secs &

[2]- Running python Python/fifteen_secs.py &

$ kill %1

[1]- Terminated ./Scripts/fifteen_secs &

$ jobs

[1]+ Running python Python/fifteen_secs.py &

After the python script finishes it outputs the results.

$ Success!

To move on, click enter after "Success!" appears in the terminal.

List all current processes

$ ps

PID TTY TIME CMD

6 tty1 00:00:00 bash

44 tty1 00:00:00 ps

$./Scripts/fifteen_secs &

$ ps

PID TTY TIME CMD

6 tty1 00:00:00 bash

59 tty1 00:00:00 fifteen_secs

60 tty1 00:00:00 sleep

61 tty1 00:00:00 ps

Stop fifteen_secs

$ kill 59

$ ps

PID TTY TIME CMD

6 tty1 00:00:00 bash

60 tty1 00:00:00 sleep

61 tty1 00:00:00 ps

[1]+ Terminated ./fifteen_secs

Problem 2. In addition to the five_secs and fifteen_secs scripts, the Scripts/ folder

contains three scripts (named script1, script2, and script3) that each take about forty-

�ve seconds to execute. From the Scripts directory, execute each of these commands in the

background in the following order; script1, script2, and script3. Do this so all three are

running at the same time. While they are all running, write the output of jobs to a new �le

log.txt saved in the Scripts/ directory.

(Hint: In order to get the same output as the solutions �le, you need to run the ./ command

and not the bash command.)

6 Lab 2. Unix Shell 2

Using Python for File Management

OS and Glob

Bash has control �ow tools like if-else blocks and loops, but most of the syntax is highly unintuitive.

Python, on the other hand, has extremely intuitive syntax for these control �ow tools, so using

Python to do shell-like tasks can result in some powerful but speci�c �le management programs.

Table 2.3 relates some of the common shell commands to Python functions, most of which come from

the os module in the standard library.

Shell Command Python Function

ls os.listdir()

cd os.chdir()

pwd os.getcwd()

mkdir os.mkdir(), os.mkdirs()

cp shutil.copy()

mv os.rename(), os.replace()

rm os.remove(), shutil.rmtree()

du os.path.getsize()

chmod os.chmod()

Table 2.3: Shell-Python compatibility

In addition to these, Python has a few extra functions that are useful for �le management and

shell commands. See Table 2.4. The two functions os.walk() and glob.glob() are especially useful

for doing searches like find and grep. Look at the example below and then try out a few things on

your own to try to get a feel for them.

Function Description

os.walk() Iterate through the subfolders and subfolder �les of a given directory.

os.path.isdir() Return True if the input is a directory.

os.path.isfile() Return True if the input is a �le.

os.path.join() Join several folder names or �le names into one path.

glob.glob() Return a list of �le names that match a pattern.

subprocess.call() Execute a shell command.

subprocess.check_output() Execute a shell command and return its output as a string.

Table 2.4: Other useful Python functions for shell operations.

Your output may differ from the example's output.

>>> import os

>>> from glob import glob

Get the names of all Python files in the Python/ directory.

>>> glob("Python/*.py")

['Python/calc.py',

'Python/count_files.py',

'Python/fifteen_secs.py

'Python/mult.py',

7

'Python/project.py']

Get the names of all .jpg files in any subdirectory.

The recursive parameter lets '**' match more than one directory.

>> glob("**/*.jpg", rescursive=True)

['Photos/IMG_1501.jpg',

'Photos/img_1879.jpg',

'Photos/IMG_2164.jpg',

'Photos/IMG_2379.jpg',

'Photos/IMG_2182.jpg',

'Photos/IMG_1510.jpg',

'Photos/IMG_2746.jpg',

'Photos/IMG_2679.jpg',

'Photos/IMG_1595.jpg',

'Photos/IMG_2044.jpg',

'Photos/img_1796.jpg',

'Photos/IMG_2464.jpg',

'Photos/img_1987.jpg',

'Photos/img_1842.jpg']

Walk through the directory, looking for .sh files.

>>> for directory, subdirectories, files in os.walk('.'):

... for filename in files:

... if filename.endswith(".sh"):

... print(os.path.join(directory, filename))

...

./Scripts/hello.sh

./Scripts/organize_photos.sh

Problem 3. Write a Python function grep() that accepts the name of a target string and

a �le pattern. Find all �les in the current directory or its subdirectories that match the �le

pattern. Next, check within the contents of the matched �le for the target string. For example,

grep("*.py", "range()") should search Python �les for the command range(). Return a

list of the �lenames that matched the �le pattern and the target string.

The Subprocess module

The subprocess module allows Python to execute actual shell commands in the current working

directory. Some important commands for executing shell commands from the subprocess module

are listed in Table 2.5.

$ cd Shell2/Scripts

$ python

>>> import subprocess

>>> subprocess.call(["ls", "-l"])

8 Lab 2. Unix Shell 2

Function Description

subprocess.call() run a Unix command

subprocess.check_output() run a Unix command and record its output

subprocess.check_output.decode() this tranlates Unix command output to a string

subprocess.Popen() use this to pipe togethether Unix commands

Table 2.5: Python subprocess module important commands

total 40

-rw-r--r-- 1 username groupname 20 Aug 26 2016 five_secs

-rw-r--r-- 1 username groupname 21 Aug 26 2016 script1

-rw-r--r-- 1 username groupname 21 Aug 26 2016 script2

-rw-r--r-- 1 username groupname 21 Aug 26 2016 script3

-rw-r--r-- 1 username groupname 21 Aug 26 2016 fiften_secs

0

Decode() translates the result to a string.

>>> file_info = subprocess.check_output(["ls", "-l"]).decode()

>>> file_info.split('\n')

['total 40',

'-rw-r--r-- 1 username groupname 20 Aug 26 2016 five_secs',

'-rw-r--r-- 1 username groupname 21 Aug 26 2016 script1',

'-rw-r--r-- 1 username groupname 21 Aug 26 2016 script2',

'-rw-r--r-- 1 username groupname 21 Aug 26 2016 script3',

'-rw-r--r-- 1 username groupname 21 Aug 26 2016 fiften_secs',

'']

Popen is a class of the subprocess module, with its own atrributes and commands. It pipes

together a few commands, similar to we did at the beginning of the lab. This allows for more

versatility in the shell input commands. If you wish to know more about the Popen class, go to the

subprocess documentation on the internet.

$ cd Shell2

$ python

>>> import subprocess

>>> args = ["cat Files/Feb/assignments.txt | wc -l"]

shell = True indicates to open a new shell process

note that task is now an object of the Popen class

>>> task = subprocess.Popen(args, shell=True)

>>> 9

Achtung!

If shell commands depend on user input, the program is vulnerable to a shell injection attack.

This applies to Unix Shell commands as well as other situations like web browser interaction

with web servers. Be extremely careful when creating a shell process from Python. There are

speci�c functions, like shlex.quote(), that quote speci�c strings that are used to construct shell

https://docs.python.org/3/library/subprocess.html

9

commands. But, when possible, it is often better to avoid user input altogether. For example,

consider the following function.

>>> def inspect_file(filename):

... """Return information about the specified file from the shell."""

... return subprocess.check_output(["ls", "-l", filename]).decode()

If inspect_file() is given the input ".; rm -rf /", then ls -l . is executed innocently,

and then rm -rf / destroys the computer by force deleting everything in the root directory.a

Be careful not to execute a shell command from within Python in a way that a malicious user

could potentially take advantage of.

aSee https://en.wikipedia.org/wiki/Code_injection#Shell_injection for more example attacks.

Problem 4. Write a Python function that accepts an integer n. Search the current directory

and all subdirectories for the n largest �les. Then sort the list of �lenames from the largest to

the smallest �les. Next, write the line count of the smallest �le to a �le called smallest.txt

into the current directory. Finally, return the list of �lenames, including the �le path, in order

from largest to smallest.

(Hint: the shell commands ls -s shows the �le size.)

As a note, to get this problem correct, you do not need to only return �lenames, but

the entire �le path. For exampe, instead of returning 'data.txt' as part of your list, return

'Files/Mar/docs/data.txt'.

Downloading Files
The Unix shell has tools for downloading �les from the internet. The most popular are wget and

curl. At its most basic, curl is the more robust of the two while wget can download recursively.

This means that wget is capable of following links and directory structure when downloading content.

When we want to download a single �le, we just need the URL for the �le we want to download.

This works for PDF �les, HTML �les, and other content simply by providing the right URL.

$ wget https://github.com/Foundations-of-Applied-Mathematics/Data/blob/master/←↩
Volume1/dream.png

The following are also useful commands using wget.

Download files from URLs listed in urls.txt.

$ wget -i list_of_urls.txt

Download in the background.

$ wget -b URL

Download something recursively.

$ wget -r --no-parent URL

https://en.wikipedia.org/wiki/Code_injection#Shell_injection

10 Lab 2. Unix Shell 2

Problem 5. The �le urls.txt in the Documents/ directory contains a list of URLs. Download

the �les in this list using wget and move them to the Photos/ directory.

sed and awk
sed and awk are two di�erent scripting languages in their own right. sed is a stream editor; it

perfoms basic transformations on input text. Awk is a text processing language that manipulates and

reports data. Like Unix, these languages are easy to learn but di�cult to master. It is very common

to combine Unix commands and sed and awk commands.

Printing Specific Lines Using sed

We have already used the head and tail commands to print the beginning and end of a �le respec-

tively. What if we wanted to print lines 30 to 40, for example? We can accomplish this using sed.

In the Documents/ folder, you will �nd the lines.txt �le. We will use this �le for the following

examples.

Same output as head -n3.

$ sed -n 1,3p lines.txt

line 1

line 2

line 3

Same output as tail -n3.

$ sed -n 3,5p lines.txt

line 3

line 4

line 5

Print lines 1,3,5.

$ sed -n -e 1p -e 3p -e 5p lines.txt

line 1

line 3

line 5

Find and Replace Using sed

Using sed, we can also �nd and replace. We can perform this function on the output of another

commmand, or we can perform this function in place on other �les. The basic syntax of this sed

command is the following.

sed s/str1/str2/g

This command will replace every instance of str1 with str2. More speci�c examples follow.

11

$ sed s/line/LINE/g lines.txt

LINE 1

LINE 2

LINE 3

LINE 4

LINE 5

Notice the file didn't change at all

$ cat lines.txt

line 1

line 2

line 3

line 4

line 5

To save the changes, add the -i flag

$ sed -i s/line/LINE/g lines.txt

$ cat lines.txt

LINE 1

LINE 2

LINE 3

LINE 4

LINE 5

Problem 6. Problem6() is a function that accepts an integer n as input and returns three

di�erent lists in the following order: a list of integers from 0 to n in increments of 1; a list of

integers from n to 0 in increments of −2; a list of integers from 0 to n in increments of 3.

It contains two syntax errors that are repeated in multiple locations. Look in your

shell2.py �le and identify the syntax errors, but do not �x them yet. After you �nd them, use

sed commands to replace those errors with the correct commands. To test if your commands

worked, you can review your lab �le that you edited, or just simply run prob6().

Formatting output using awk

Earlier in this lab we mentioned ls -l, and as we have seen, this outputs lots of information. Using

awk, we can select which �elds we wish to print. Suppose we only cared about the �le name and the

permissions. We can get this output by running the following command.

$ cd Shell2/Documents

$ ls -l | awk ' {print $1, $9} '

total

-rw-r--r--. assignments.txt

-rw-r--r--. doc1.txt

-rw-r--r--. doc2.txt

-rw-r--r--. doc3.txt

12 Lab 2. Unix Shell 2

-rw-r--r--. doc4.txt

-rw-r--r--. files.txt

-rw-r--r--. lines.txt

-rw-r--r--. newfiles.txt

-rw-r--r--. people.txt

-rw-r--r--. review.txt

-rw-r--r--. urls.txt

-rw-r--r--. words.txt

Notice we pipe the output of ls -l to awk. When calling a command using awk, we have to

use quotation marks. It is a common mistake to forget to add these quotation marks. Inside these

quotation marks, commands always take the same format.

awk ' <options> {<actions>} '

In the remaining examples we will not be using any of the options, but we will address various

actions.

In the Documents/ directory, you will �nd a people.txt �le that we will use for the following

examples. In our �rst example, we use the print action. The $1 and $9 mean that we are going to

print the �rst and ninth �elds.

Beyond specifying which �elds we wish to print, we can also choose how many characters to

allocate for each �eld. This is done using the % command within the printf command, which allows

us to edit how the relevant data is printed. Look at the last part of the example below to see how it

is done.

contents of people.txt

$ cat people.txt

male,John,23

female,Mary,31

female,Sally,37

male,Ted,19

male,Jeff,41

female,Cindy,25

Change the field separator (FS) to space at the beginning of run using BEGIN

Printing each field individually proves we have successfully separated the ←↩
fields

$ awk ' BEGIN{ FS = " " }; {print $1,$2,$3} ' < people.txt

male John 23

female Mary 31

female Sally 37

male Ted 19

male Jeff 41

female Cindy 25

Format columns using printf so everything is in neat columns in different ←↩
order

$ awk ' BEGIN{ FS = " " }; {printf "%-6s %2s %s\n", $1,$3,$2} ' < people.txt

male 23 John

13

female 31 Mary

female 37 Sally

male 19 Ted

male 41 Jeff

female 25 Cindy

The statement "%-6s %2s %s\n" formats the columns of the output. This says to set aside six

characters left justi�ed, then two characters right justi�ed, then print the last �eld to its full length.

Problem 7. Inside the Documents/ directory, you should �nd a �le named files.txt. This

�le contains details on approximately one hundred �les. The di�erent �elds in the �le are

separated by tabs. Using awk, sort, pipes, and redirects, write it to a new �le in the current

directory named date_modified.txt with the following speci�cations:

� in the �rst column, print the date the �le was modi�ed

� in the second column, print the name of the �le

� sort the �le from newest to oldest based on the date last modi�ed

All of this can be accomplished using one command.

(Hint: change the �eld separator to account for tab-delimited �les by setting FS = "\t" in the

BEGIN command)

We have barely scratched the surface of what awk can do. Performing an internet search for

awk one-liners will give you many additional examples of useful commands you can run using awk.

Note

Remember to archive and compress your Shell2 directory before pushing it to your online

repository for grading.

https://www.google.com/search?q=awk+one-liners&oq=awk+one-liners&aqs=chrome..69i57j0l7.3924j0j7&sourceid=chrome&ie=UTF-8

14 Lab 2. Unix Shell 2

Additional Material
Customizing the Shell

Though there are multiple Unix shells, one of the most popular is the bash shell. The bash shell

is highly customizable. In your home directory, you will �nd a hidden �le named .bashrc. All

customization changes are saved in this �le. If you are interested in customizing your shell, you can

customize the prompt using the PS1 environment variable. As you become more and more familiar

with the Unix shell, you will come to �nd there are commands you run over and over again. You

can save commands you use frequently with alias. If you would like more information on these and

other ways to customize the shell, you can �nd many quality reference guides and tutorials on the

internet.

System Management

In this section, we will address some of the basics of system management. As an introduction, the

commands in Table 2.6 are used to learn more about the computer system.

Command Description

passwd Change user password

uname View operating system name

uname -a Print all system information

uname -m Print machine hardware

w Show who is logged in and what they are doing

whoami Print userID of current user

Table 2.6: Commands for system administration.

	Unix Shell 2

